1 a Brief Introduction to Traditional Bioconjugate Chemistry
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Sodium Borohydride (Nabh4) Itself Is a Relatively Mild Reducing Agent
1770 Vol. 35 (1987) Chem. Pharm. Bull. _35( 5 )1770-1776(1987). Reactions of Sodium Borohydride. IV.1) Reduction of Aromatic Sulfonyl Chlorides with Sodium Borohydride ATSUKO NOSE and TADAHIRO KUDO* Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815, Japan (Received September 12, 1986) Aromatic sulfonyl chlorides were reduced with sodium borohydride in tetrahydrofuran at 0•Ž to the corresponding sulfinic acids in good yields. Further reduction proceeded when the reaction was carried out under reflux in tetrahydrofuran to give disulfide and thiophenol derivatives via sulfinic acid. Furthermore, sulfonamides were reduced with sodium borohydride by heating directly to give sulfide, disulfide and thiophenol derivatives, and diphenyl sulfone was reduced under similar conditions to give thiophenol and biphenyl. Keywords reduction; sodium borohydride; aromatic sulfonyl chloride; sulfonamide; sulfone; aromatic sulfinic acid; disulfide; sulfide; thiophenol Sodium borohydride (NaBH4) itself is a relatively mild reducing agent which is extensively used for the selective reduction of the carbonyl group of ketone, aldehyde and (carboxylic) acid halide derivatives. In the previous papers, we reported that NaBI-14 can reduce some functional groups, such as carboxylic anhydrides,2) carboxylic acids3) and nitro compounds.1) As a continuation of these studies, in the present paper, we wish to report the reduction of aromatic sulfonyl chlorides, sulfinic acids and sulfonamides with NaBH4. Many methods have been reported for the reduction of sulfonyl chlorides to sulfinic acids, such as the use of sodium sulfite,4a-d) zinc,5) electrolytic reduction,6) catalytic reduction,7) magnesium,8) sodium amalgam,9) sodium hydrogen sulfite,10) stannous chlo- TABLE I. -
Second Tranche HTS Subheading Product Description 2710.19.30
Second Tranche HTS Subheading Product Description 2710.19.30 Lubricating oils, w/or w/o additives, fr. petro oils and bitumin minerals (o/than crude) or preps. 70%+ by wt. fr. petro oils 2710.19.35 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils but n/o 10% by wt. of fatty acid salts animal/vegetable origin 2710.19.40 Lubricating greases from petro oil/bitum min/70%+ by wt. fr. petro. oils > 10% by wt. of fatty acid salts animal/vegetable origin 3403.19.10 Lubricating preparations containing 50% but less than 70% by weight of petroleum oils or of oils obtained from bituminous minerals 3403.19.50 Lubricating preparations containing less than 50% by weight of petroleum oils or of oils from bituminous minerals 3403.99.00 Lubricating preparations (incl. lubricant-based preparations), nesoi 3811.21.00 Additives for lubricating oils containing petroleum oils or oils obtained from bituminous minerals 3811.29.00 Additives for lubricating oils, nesoi 3901.10.10 Polyethylene having a specific gravity of less than 0.94 and having a relative viscosity of 1.44 or more, in primary forms 3901.10.50 Polyethylene having a specific gravity of less than 0.94, in primary forms, nesoi 3901.20.10 Polyethylene having a specific gravity of 0.94 or more and having a relative viscosity of 1.44 or more, in primary forms 3901.20.50 Polyethylene having a specific gravity of 0.94 or more, in primary forms, nesoi 3901.30.20 Ethylene copolymer: Vinyl acetate-vinyl chloride-ethylene terpoly w/ < 50% deriv of vinyl acetate, exc polymer aromatic/mod -
N* Interactions Modulate the Properties of Cysteine Residues
n →π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kilgore, Henry R. and Ronald T. Raines. “n →π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins.” Journal of the American Chemical Society 140 (2018): 17606-17611 © 2018 The Author(s) As Published https://dx.doi.org/10.1021/JACS.8B09701 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125597 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Am Chem Manuscript Author Soc. Author Manuscript Author manuscript; available in PMC 2019 May 21. Published in final edited form as: J Am Chem Soc. 2018 December 19; 140(50): 17606–17611. doi:10.1021/jacs.8b09701. n➝π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins Henry R. Kilgore and Ronald T. Raines* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Abstract Noncovalent interactions are ubiquitous in biology, taking on roles that include stabilizing the conformation of and assembling biomolecules, and providing an optimal environment for enzymatic catalysis. Here, we describe a noncovalent interaction that engages the sulfur atoms of cysteine residues and disulfide bonds in proteins—their donation of electron density into an antibonding orbital of proximal amide carbonyl groups. -
TR-470: Pyridine (CASRN 110-86-1) in F344/N Rats, Wistar Rats, And
NTP TECHNICAL REPORT ON THE TOXICOLOGY AND CARCINOGENESIS STUDIES OF PYRIDINE (CAS NO. 110-86-1) IN F344/N RATS, WISTAR RATS, AND B6C3F1 MICE (DRINKING WATER STUDIES) NATIONAL TOXICOLOGY PROGRAM P.O. Box 12233 Research Triangle Park, NC 27709 March 2000 NTP TR 470 NIH Publication No. 00-3960 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health FOREWORD The National Toxicology Program (NTP) is made up of four charter agencies of the U.S. Department of Health and Human Services (DHHS): the National Cancer Institute (NCI), National Institutes of Health; the National Institute of Environmental Health Sciences (NIEHS), National Institutes of Health; the National Center for Toxicological Research (NCTR), Food and Drug Administration; and the National Institute for Occupational Safety and Health (NIOSH), Centers for Disease Control and Prevention. In July 1981, the Carcinogenesis Bioassay Testing Program, NCI, was transferred to the NIEHS. The NTP coordinates the relevant programs, staff, and resources from these Public Health Service agencies relating to basic and applied research and to biological assay development and validation. The NTP develops, evaluates, and disseminates scientific information about potentially toxic and hazardous chemicals. This knowledge is used for protecting the health of the American people and for the primary prevention of disease. The studies described in this Technical Report were performed under the direction of the NIEHS and were conducted in compliance with NTP laboratory health and safety requirements and must meet or exceed all applicable federal, state, and local health and safety regulations. Animal care and use were in accordance with the Public Health Service Policy on Humane Care and Use of Animals. -
Heats of Formation of Certain Nickel-Pyridine Complex Salts
HEATS OF FORFATION OF CERTAIN NICKEL-PYRIDINE COLPLEX SALTS DAVID CLAIR BUSH A THESIS submitted to OREGON STATE COLLEGE in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE June l9O [4CKNOWLEDGMENT The writer wishes to acknowledge his indebtedness and gratitude to Dr. [4. V. Logan for his help and encour- agement during this investigation. The writer also wishes to express his appreciation to Dr. E. C. Gilbert for helpful suggestions on the con- struction of the calortheter, and to Lee F. Tiller for his excellent drafting and photostating of the figures and graphs. APPROVED: In Charge of ?ajor Head of Department of Chemistry Chairrian of School Graduate Comrittee Dean of Graduate School Date thesis is presented /11 ' Typed by Norma Bush TABLE OF CONTENTS HISTORICAL BACKGROUND i INTRODUCTION 2 EXPERIMENTAL 5 Preparation of the Compounds 5 Analyses of the Compounds 7 The Calorimeter Determination of the Heat Capacity 19 Determination of the Heat of Formation 22 DISCUSSION 39 41 LITERATURE CITED 42 TABLES I Analyses of the Compounds 8 II Heat Capacity of the Calorimeter 23 III Heat of Reaction of Pyridine 26 IV Sample Run and Calculation 27 V Heat of Reaction of Nickel Cyanate 30 VI Heat of Reaction of Nickel Thiocyanate 31 VII Heat of Reaction of Hexapyridinated Nickel Cyanate 32 VIII Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 33 IX Heat of Formation of the Pyridine Complexes 34 FI GURES i The Calorimeter 10 2 Sample Ijector (solids) 14 2A Sample Ejector (liquids) 15 3 Heater Circuit Wiring Diagram 17 4 heat Capacity of the Calorimeter 24 5 Heat of Reaction of Pyridine 28 6 Heat of Reaction of Hexapyridinated Nickel Cyanate 35 7 Heat of Reaction of Tetrapyridinated Nickel Thiocyanate 36 8 Heat of Reaction of Nickel Cyanate 37 9 Heat of Reaction of Nickel Thiocyanate 38 HEATS OF FOW ATION OF CERTAIN NICKEL-PYRIDINE COMPLEX SALTS HISTORICAL BACKGROUND Compounds of pyridine with inorganic salts have been prepared since 1970. -
Validation of a Methodology to Determine Benzene, Toluene
M. L. Gallego-Diez et al.; Revista Facultad de Ingeniería, No. 79, pp. 138-149, 2016 Revista Facultad de Ingeniería, Universidad de Antioquia, No. 79, pp. 138-149, 2016 Validation of a methodology to determine Benzene, Toluene, Ethylbenzene, and Xylenes concentration present in the air and adsorbed in activated charcoal passive samplers by GC/ FID chromatography Validación de una metodología para la determinación de la concentración de Benceno, Tolueno, Etilbenceno y Xilenos, presentes en muestras aire y adsorbidos en captadores pasivos de carbón activado, mediante cromatografía GC/FID Mary Luz Gallego-Díez1*, Mauricio Andrés Correa-Ochoa2, Julio César Saldarriaga-Molina2 1Facultad de Ingeniería, Universidad de Antioquia. Calle 67 # 53- 108. A. A. 1226. Medellín, Colombia. 2Grupo de Ingeniería y Gestión Ambiental (GIGA), Facultad de Ingeniería, Universidad de Antioquia. Calle 67 # 53- 108. A. A. 1226. Medellín, Colombia. ARTICLE INFO ABSTRACT: This article shows the validation of the analytical procedure which allows Received August 28, 2015 determining concentrations of Benzene (B), Toluene (T), Ethylbenzene (E), and Xylenes (X) Accepted April 02, 2016 -compounds known as BTEX- present in the air and adsorbed by over activated charcoal by GC-FID using the (Fluorobenzene) internal standard addition as quantification method. In the process, reference activated charcoal was employed for validation and coconut -base granular charcoal (CGC) for the construction of passive captors used in sample taken in external places or in environmental air. CGC material was selected from its recovering capacity of BTEX, with an average of 89.1% for all analytes. In this research, BTEX presence KEYWORDS in air samples, taken in a road of six lines and characterized for having heavy traffic, in Validation, activated Medellín city (Antioquia, Colombia), was analyzed. -
Development and Applications of N-Terminal Protein Bioconjugation Reactions
Development and Applications of N-terminal Protein Bioconjugation Reactions by Kanwal Siddique Palla A dissertation submitted in partial satisfaction of the requirements for the degree of Doctor of Philosophy in Chemistry in the Graduate Division of the University of California, Berkeley Committee in charge: Professor Matthew B. Francis, Chair Professor Jamie Cate Professor Wenjun Zhang Summer 2016 Development and Applications of N-terminal Protein Bioconjugation Reactions Copyright © 2016 By: Kanwal Siddique Palla Abstract Development and Applications of N-terminal Protein Bioconjugation Reactions by Kanwal Siddique Palla Doctor of Philosophy in Chemistry University of California, Berkeley Professor Matthew B. Francis, Chair With highly evolved structures and function, proteins have an extraordinarily diverse range of capabilities. In order to take advantage of their unparalleled specificity in the field of chemical biology, bioconjugation methods can be used to produce synthetically modified proteins. As ap- plications for protein-based materials are becoming ever-increasingly complex, there is a constant need for methodologies that can covalently modify protein substrates. More specifically, there is a requirement for reliable and chemoselective reactions that result in well-defined bioconjugates that are modified in a single location. We have developed a protein transamination strategy that uses N-methylpyridinium-4-carboxaldehyde benzenesulfonate salt (Rapoport's salt) to oxidize the N-terminal amine to a ketone or aldehyde functionality. We have identified high-yielding con- ditions for this reaction, such as N-terminal sequence and pH, and shown its applicability in the modification of several protein systems. In addition, we have used N-terminal protein modifica- tion methodologies in the synthesis of protein-DNA conjugates, towards the goal of developing a generalizable DNA-directed protein immobilization platform. -
THIOL OXIDATION a Slippery Slope the Oxidation of Thiols — Molecules RSH Oxidation May Proceed Too Predominates
RESEARCH HIGHLIGHTS Nature Reviews Chemistry | Published online 25 Jan 2017; doi:10.1038/s41570-016-0013 THIOL OXIDATION A slippery slope The oxidation of thiols — molecules RSH oxidation may proceed too predominates. Here, the maximum of the form RSH — can afford quickly for intermediates like RSOH rate constants indicate the order − − − These are many products. From least to most to be spotted and may also afford of reactivity: RSO > RS >> RSO2 . common oxidized, these include disulfides intractable mixtures. Addressing When the reactions are carried out (RSSR), as well as sulfenic (RSOH), the first problem, Chauvin and Pratt in methanol-d , the obtained kinetic reactions, 1 sulfinic (RSO2H) and sulfonic slowed the reactions down by using isotope effect values (kH/kD) are all but have (RSO3H) acids. Such chemistry “very sterically bulky thiols, whose in the range 1.1–1.2, indicating that historically is pervasive in nature, in which corresponding sulfenic acids were no acidic proton is transferred in the been very disulfide bonds between cysteine known to be isolable but were yet rate-determining step. Rather, the residues stabilize protein structures, to be thoroughly explored in terms oxidations involve a specific base- difficult to and where thiols and thiolates often of reactivity”. The second problem catalysed mechanism wherein an study undergo oxidation by H2O2 or O2 in was tackled by modifying the model acid–base equilibrium precedes the order to protect important biological system, 9-mercaptotriptycene, by rate-determining nucleophilic attack − − − structures from damage. Among including a fluorine substituent to of RS , RSO or RSO2 on H2O2. the oxidation products, sulfenic serve as a spectroscopic handle. -
'Photochemical Reactions in the Synthesis of Protein–Drug Conjugates'
Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Photochemical Reactions in the Synthesis of Protein–Drug Conjugates Holland, Jason P ; Gut, Melanie ; Klingler, Simon ; Fay, Rachael ; Guillou, Amaury Abstract: The ability to modify biologically active molecules such as antibodies with drug molecules, fluorophores or radionuclides is crucial in drug discovery and target identification. Classic chemistry used for protein functionalisation relies almost exclusively on thermochemically mediated reactions. Our recent experiments have begun to explore the use of photochemistry to effect rapid and efficient protein functionalisation. This article introduces some of the principles and objectives of using photochemically activated reagents for protein ligation. The concept of simultaneous photoradiosynthesis of radiolabelled antibodies for use in molecular imaging is introduced as a working example. Notably, the goal of producing functionalised proteins in the absence of pre‐association (non‐covalent ligand‐protein binding) introduces requirements that are distinct from the more regular use of photoactive groups in photoaffinity labelling. With this in mind, the chemistry of thirteen different classes of photoactivatable reagents that react through the formation of intermediate carbenes, electrophiles, dienes, or radicals, is assessed. DOI: https://doi.org/10.1002/chem.201904059 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-183515 Journal Article Accepted Version Originally published at: Holland, Jason P; Gut, Melanie; Klingler, Simon; Fay, Rachael; Guillou, Amaury (2020). Photochemical Reactions in the Synthesis of Protein–Drug Conjugates. Chemistry - A European Journal, 26(1):33-48. DOI: https://doi.org/10.1002/chem.201904059 Photochemical reactions in the synthesis of protein-drug conjugates Jason P. -
Chemical Tools for Residue-Specific and Secondary Amine Selective Petasis (SASP) Bioconjugation of Peptides and Proteins
Seton Hall University eRepository @ Seton Hall Seton Hall University Dissertations and Theses (ETDs) Seton Hall University Dissertations and Theses Spring 5-4-2020 Chemical tools for Residue-Specific and Secondary Amine Selective Petasis (SASP) bioconjugation of Peptides and Proteins Yonnette Sim [email protected] Follow this and additional works at: https://scholarship.shu.edu/dissertations Part of the Biochemistry Commons Recommended Citation Sim, Yonnette, "Chemical tools for Residue-Specific and Secondary Amine Selective Petasis (SASP) bioconjugation of Peptides and Proteins" (2020). Seton Hall University Dissertations and Theses (ETDs). 2776. https://scholarship.shu.edu/dissertations/2776 Chemical tools for Residue-Specific and Secondary Amine Selective Petasis (SASP) bioconjugation of Peptides and Proteins A dissertation submitted to Seton Hall University in partial fulfillment for the Doctor of Philosophy Degree By: Yonnette E. Sim May 2020 Department of Chemistry and Biochemistry Seton Hall University South Orange, NJ. 07079 USA © 2020 Yonnette E. Sim DocuSign Envelope ID: 9EF6018D-72DB-4316-B86E-3A103260E910 We certify that we have read this dissertation and in our opinion it is adequate in scientific scope and quality as dissertation for the degree of Doctor of Philosophy Dr. Gregory R. Wiedman Mentor Dr. Monika Raj Co-Mentor (No Longer SHU Faculty) Dr. Joseph Badillo Member of Dissertation Committee Dr. Stephen Kelty Department Chair Seton Hall University I dedicate this thesis to my husband, Ebo, my children Ebony and Ethan for their tremendous love and support & My late parents Rupert and Theresa for their love and wisdom. “The only limit to the height of your achievements is the reach of your dreams and your willingness to work for them” – Michelle Obama i ACKNOWLEDGEMENTS First I would like to express my appreciation and thanks to my research mentor, Dr. -
Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P
Angewandte. Highlights DOI: 10.1002/anie.201204470 Alkene Difunctionalization Intramolecular Alkoxycyanation and Alkoxyacylation Reactions: New Types of Alkene Difunctionalizations for the Construction of Oxygen Heterocycles John P. Wolfe* alkenes · catalysis · heterocycles · ketones · nitriles Saturated oxygen heterocycles, such as tetrahydrofurans and not require an exogenous carbon electrophile.[6,7] Instead, the dihydrobenzofurans, are important motifs in a myriad of carbon electrophile is covalently attached to the cyclizing biologically active compounds, including natural products and oxygen atom in the substrate, and the carboalkoxylations are pharmaceutical targets. Therefore, there has been consider- accomplished through activation of this CÀO bond by the able interest in the development of new synthetic methods for catalyst. Importantly, these two approaches lead to the the construction of these important structures.[1] Many tradi- formation of dihydrobenzofuran derivatives that bear func- tional approaches to the generation of these compounds tional groups (ketones or nitriles), which are convenient involve ring formation through intramolecular SN2 reactions handles for further elaboration of the molecule, and cannot be and related strategies. However, these approaches typically directly installed by using previously developed alkene lead to the formation of only one bond during ring closure and carboalkoxylation methods. often require somewhat complicated substrates.[1] The method of the Douglas group involves the use of Late transition metal catalyzed alkene carboalkoxylations a cationic RhI complex to catalyze the intramolecular are a subclass of alkene difunctionalization reactions[2] that alkoxyacylation of acylated 2-allylphenol derivatives have considerable utility for the construction of tetrahydro- (Scheme 2).[6] These reactions afford 2-acylmethyl dihydro- furans, dihydrobenzofurans, and related oxygen heterocycles. -
Bioconjugation
research highlights BIOCONJUGATION insensitive to ReACT, the probe was applied transcripts along with developmental to selectively label reactive methionines for delay and cell cycle progression defects, Methionine’s time to shine activity-based protein profiling, leading to indicative of a defective MZT. Overall, these Science 355, 597–602 (2017) the identification of hyperreactive residues findings indicate that the m6A modification in enolase that have redox-active functions has a key role in transcriptome switching in vivo. With methionine now a viable choice during early embryo development. GM for chemoselective bioorthogonal tagging, the options for bioconjugation are wider IMAGING AAAS than ever. CD Luciferase matchmaker DEVELOPMENT J. Am. Chem. Soc. 139, 2351–2358 (2017) Methionine is one of the rarest amino Marking the transition Nature , 475–478 (2017) acids in proteins, making it a potentially 542 attractive handle for highly selective protein N6-Methyladenosine (m6A) is an mRNA modification. However, because of a lack post-translational modification that is of robust bioorthogonal reactions for recognized by the RNA-binding protein targeting methionine, it has historically YTHDF2, which regulates mRNA stability. JACS been overlooked in favor of the other In order to understand the dynamics of sulfur-containing residue, cysteine, which m6A modification during embryonic is more nucleophilic. Lin et al. have now development, Zhao et al. performed developed a modification strategy that m6A sequencing of zebrafish maternal utilizes methionine’s redox activity for transcripts and found that 36% were conjugation under physiological conditions. m6A modified. Given that these maternal Bioluminescence imaging techniques This method, redox-activated chemical transcripts decreased in abundance during use luciferase to catalyze the oxidation tagging (ReACT), relies on an oxaziridine the maternal–zygotic transition (MZT), of a luciferin substrate, producing light.