Thiol-Disulfide Exchange in Human Growth Hormone Saradha Chandrasekhar Purdue University

Total Page:16

File Type:pdf, Size:1020Kb

Thiol-Disulfide Exchange in Human Growth Hormone Saradha Chandrasekhar Purdue University Purdue University Purdue e-Pubs Open Access Dissertations Theses and Dissertations January 2015 Thiol-Disulfide Exchange in Human Growth Hormone Saradha Chandrasekhar Purdue University Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations Recommended Citation Chandrasekhar, Saradha, "Thiol-Disulfide Exchange in Human Growth Hormone" (2015). Open Access Dissertations. 1449. https://docs.lib.purdue.edu/open_access_dissertations/1449 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. i THIOL-DISULFIDE EXCHANGE IN HUMAN GROWTH HORMONE A Dissertation Submitted to the Faculty of Purdue University by Saradha Chandrasekhar In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2015 Purdue University West Lafayette, Indiana ii To my parents Chandrasekhar and Visalakshi & To my fiancé Niranjan iii ACKNOWLEDGEMENTS I would like to thank Dr. Elizabeth M. Topp for her tremendous support, guidance and valuable suggestions throughout. The successful completion of my PhD program would not have been possible without her constant encouragement and enthusiasm. Through the last five years, I’ve learned so much as a graduate student in her lab. My thesis committee members: Dr. Stephen R. Byrn, Dr. Gregory T. Knipp and Dr. Weiguo A. Tao, thank you for your time and for all your valuable comments during my oral preliminary exam. I would also like to thank Dr. Fred Regnier for his suggestions with the work on human growth hormone. I am grateful to all my lab members and friends for their assistance and support. I would like to especially thank Dr. Andreas S. Sophocleous, Dr. Jun Zhang and Dr. Shenbaga Moorthy Balakrishnan for helpful discussions, answering questions and for training on me on different instruments in the lab. Special thanks and gratitude go to Daniel E. Epling for his help with the temperature studies, Ruichao Xie for performing peptide studies and to John O. Grady for training me on the Perfinity Flash digest protocol. iv I am very grateful to my parents, who have encouraged and believed in me from the beginning. Thank you for being so patient and for giving me the opportunity to pursue my dreams. I am also thankful to my fiancé, Niranjan, for supporting me through the good and bad times of my graduate student life. I will be forever indebted to you all. v TABLE OF CONTENTS Page LIST OF TABLES ............................................................................................................. ix LIST OF FIGURES ........................................................................................................... xi LIST OF ABBREVIATIONS .......................................................................................... xix ABSTRACT ............................................................................................................ xxi CHAPTER 1. OVERVIEW OF THERAPEUTIC PROTEINS ................................... 1 1.1 Introduction .....................................................................................................1 1.2 Recombinant DNA technology .......................................................................3 1.3 Stability of protein drugs ................................................................................4 1.3.1 Physical degradation ............................................................................. 5 1.3.2 Chemical degradation ........................................................................... 7 1.4 Thiols and disulfide bonds ..............................................................................9 1.5 Disulfide bond formation in proteins ............................................................10 1.5.1 Disulfide bond disruption and rearrangement ..................................... 14 1.6 Factors that influence disulfide bond reactivity ............................................18 1.6.1 Intrinsic factors ................................................................................... 18 1.6.2 Extrinsic factors .................................................................................. 20 1.7 Impact on protein physical stability and biological activity .........................23 1.8 Formulation strategies for Cys-containing proteins .....................................25 1.8.1 Formulating proteins with a reducing agent ....................................... 25 1.8.2 Chemical modification of thiol groups ............................................... 25 1.8.3 Protein engineering ............................................................................. 27 1.9 Lyophilization of peptide and protein drugs .................................................29 1.9.1 Thiol-disulfide exchange in the solid-state ......................................... 30 vi Page 1.10 Disulfide bond mapping ...............................................................................32 1.11 Research objectives and specific aims ..........................................................36 1.12 Research Significance ...................................................................................38 CHAPTER 2. ELUCIDATING THE MECHANISM AND KINETICS OF THIOL- DISULFIDE EXCHANGE IN PEPTIDES DERIVED FROM HUMAN GROWTH HORMONE IN AQUEOUS SOLUTION ........................................................................ 41 2.1 Abstract .........................................................................................................41 2.2 Keywords ......................................................................................................42 2.3 Introduction ...................................................................................................42 2.4 Materials .......................................................................................................46 2.5 Methods ........................................................................................................47 2.5.1 Preparation of peptide stock solutions and disulfide linked peptides for kinetic studies........................................................................................................ 47 2.5.2 Homodimer formation ........................................................................ 47 2.5.3 Buffer preparation ............................................................................... 48 2.5.4 Quantification of reactants and products by HPLC ............................ 49 2.5.5 Determination of reaction order .......................................................... 52 2.5.6 Thiol-disulfide exchange reactions ..................................................... 52 2.5.7 Determining activation parameters for the reaction of T20 with T20-T21 ............................................................................................................. 53 2.6 Data analysis .................................................................................................54 2.7 Results ...........................................................................................................57 2.7.1 Addition of oxidation suppressants to favor the thiol-disulfide exchange reaction ............................................................................................................. 57 2.7.2 Apparent order of reaction; reaction of T20 and T20-T21 ................. 60 2.7.3 Effect of oxidation suppressants on thiol-disulfide exchange ............ 62 2.7.4 Effect of pH on the reaction of T20 with T20-T21 ............................. 64 2.7.5 Activation parameters for the reaction of T20 with T20-T21 ............. 71 2.7.6 Effect of peptide cyclization on thiol-disulfide exchange .................. 74 vii Page 2.8 Discussion .....................................................................................................77 2.9 Conclusion ....................................................................................................81 CHAPTER 3. INVESTIGATING THE EFFECT OF LYOPHILIZATION AND SUBSEQUENT STORAGE IN THE SOLID STATE ON THIOL-DISULFIDE EXCHANGE IN PEPTIDES DERIVED FROM HUMAN GROWTH HORMONE .... 83 3.1 Abstract .........................................................................................................83 3.2 Keywords ......................................................................................................84 3.3 Introduction ...................................................................................................84 3.4 Materials .......................................................................................................88 3.4.1 Quantification of reactants and products by HPLC ............................ 89 3.4.2 Thiol-disulfide exchange reactions ..................................................... 90 3.4.3 Lyophilization of peptide samples ...................................................... 93 3.4.4 Peptide adsorption to ice ..................................................................... 94 3.4.5 Method for detecting reaction intermediates ...................................... 95 3.4.6 Data analysis ....................................................................................... 96 3.5 Results ...........................................................................................................98 3.5.1 Effect of lyophilization on thiol-disulfide exchange .......................... 98 3.5.2 Disulfide bond stability during lyophilization .................................
Recommended publications
  • Emerging Role of the Hexosamine Biosynthetic Pathway in Cancer Neha M
    Akella et al. BMC Biology (2019) 17:52 https://doi.org/10.1186/s12915-019-0671-3 REVIEW Open Access Fueling the fire: emerging role of the hexosamine biosynthetic pathway in cancer Neha M. Akella, Lorela Ciraku and Mauricio J. Reginato* “ ” Abstract conditions [2]. This switch, termed the Warburg effect , funnels glycolytic intermediates into pathways that produce Altered metabolism and deregulated cellular energetics nucleosides, amino acids, macromolecules, and organelles are now considered a hallmark of all cancers. Glucose, required for rapid cell proliferation [3]. Unlike normal cells, glutamine, fatty acids, and amino acids are the primary cancer cells reprogram cellular energetics as a result of drivers of tumor growth and act as substrates for the oncogenic transformations [4]. The hexosamine biosyn- hexosamine biosynthetic pathway (HBP). The HBP thetic pathway utilizes up to 2–5% of glucose that enters a culminates in the production of an amino sugar uridine non-cancer cell and along with glutamine, acetyl- diphosphate N-acetylglucosamine (UDP-GlcNAc) that, coenzyme A (Ac-CoA) and uridine-5′-triphosphate (UTP) along with other charged nucleotide sugars, serves as the are used to produce the amino sugar UDP-GlcNAc [5]. basis for biosynthesis of glycoproteins and other The HBP and glycolysis share the first two steps and di- glycoconjugates. These nutrient-driven post-translational verge at fructose-6-phosphate (F6P) (Fig. 1). Glutamine modifications are highly altered in cancer and regulate fructose-6-phosphate amidotransferase (GFAT) converts protein functions in various cancer-associated processes. F6P and glutamine to glucosamine-6-phosphate and glu- In this review, we discuss recent progress in tamate in the rate-limiting step of HBP [6].
    [Show full text]
  • Sodium Borohydride (Nabh4) Itself Is a Relatively Mild Reducing Agent
    1770 Vol. 35 (1987) Chem. Pharm. Bull. _35( 5 )1770-1776(1987). Reactions of Sodium Borohydride. IV.1) Reduction of Aromatic Sulfonyl Chlorides with Sodium Borohydride ATSUKO NOSE and TADAHIRO KUDO* Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815, Japan (Received September 12, 1986) Aromatic sulfonyl chlorides were reduced with sodium borohydride in tetrahydrofuran at 0•Ž to the corresponding sulfinic acids in good yields. Further reduction proceeded when the reaction was carried out under reflux in tetrahydrofuran to give disulfide and thiophenol derivatives via sulfinic acid. Furthermore, sulfonamides were reduced with sodium borohydride by heating directly to give sulfide, disulfide and thiophenol derivatives, and diphenyl sulfone was reduced under similar conditions to give thiophenol and biphenyl. Keywords reduction; sodium borohydride; aromatic sulfonyl chloride; sulfonamide; sulfone; aromatic sulfinic acid; disulfide; sulfide; thiophenol Sodium borohydride (NaBH4) itself is a relatively mild reducing agent which is extensively used for the selective reduction of the carbonyl group of ketone, aldehyde and (carboxylic) acid halide derivatives. In the previous papers, we reported that NaBI-14 can reduce some functional groups, such as carboxylic anhydrides,2) carboxylic acids3) and nitro compounds.1) As a continuation of these studies, in the present paper, we wish to report the reduction of aromatic sulfonyl chlorides, sulfinic acids and sulfonamides with NaBH4. Many methods have been reported for the reduction of sulfonyl chlorides to sulfinic acids, such as the use of sodium sulfite,4a-d) zinc,5) electrolytic reduction,6) catalytic reduction,7) magnesium,8) sodium amalgam,9) sodium hydrogen sulfite,10) stannous chlo- TABLE I.
    [Show full text]
  • Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses
    life Review Tricarboxylic Acid (TCA) Cycle Intermediates: Regulators of Immune Responses Inseok Choi , Hyewon Son and Jea-Hyun Baek * School of Life Science, Handong Global University, Pohang, Gyeongbuk 37554, Korea; [email protected] (I.C.); [email protected] (H.S.) * Correspondence: [email protected]; Tel.: +82-54-260-1347 Abstract: The tricarboxylic acid cycle (TCA) is a series of chemical reactions used in aerobic organisms to generate energy via the oxidation of acetylcoenzyme A (CoA) derived from carbohydrates, fatty acids and proteins. In the eukaryotic system, the TCA cycle occurs completely in mitochondria, while the intermediates of the TCA cycle are retained inside mitochondria due to their polarity and hydrophilicity. Under cell stress conditions, mitochondria can become disrupted and release their contents, which act as danger signals in the cytosol. Of note, the TCA cycle intermediates may also leak from dysfunctioning mitochondria and regulate cellular processes. Increasing evidence shows that the metabolites of the TCA cycle are substantially involved in the regulation of immune responses. In this review, we aimed to provide a comprehensive systematic overview of the molecular mechanisms of each TCA cycle intermediate that may play key roles in regulating cellular immunity in cell stress and discuss its implication for immune activation and suppression. Keywords: Krebs cycle; tricarboxylic acid cycle; cellular immunity; immunometabolism 1. Introduction The tricarboxylic acid cycle (TCA, also known as the Krebs cycle or the citric acid Citation: Choi, I.; Son, H.; Baek, J.-H. Tricarboxylic Acid (TCA) Cycle cycle) is a series of chemical reactions used in aerobic organisms (pro- and eukaryotes) to Intermediates: Regulators of Immune generate energy via the oxidation of acetyl-coenzyme A (CoA) derived from carbohydrates, Responses.
    [Show full text]
  • N* Interactions Modulate the Properties of Cysteine Residues
    n →π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation Kilgore, Henry R. and Ronald T. Raines. “n →π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins.” Journal of the American Chemical Society 140 (2018): 17606-17611 © 2018 The Author(s) As Published https://dx.doi.org/10.1021/JACS.8B09701 Publisher American Chemical Society (ACS) Version Author's final manuscript Citable link https://hdl.handle.net/1721.1/125597 Terms of Use Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. HHS Public Access Author manuscript Author ManuscriptAuthor Manuscript Author J Am Chem Manuscript Author Soc. Author Manuscript Author manuscript; available in PMC 2019 May 21. Published in final edited form as: J Am Chem Soc. 2018 December 19; 140(50): 17606–17611. doi:10.1021/jacs.8b09701. n➝π* Interactions Modulate the Properties of Cysteine Residues and Disulfide Bonds in Proteins Henry R. Kilgore and Ronald T. Raines* Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States Abstract Noncovalent interactions are ubiquitous in biology, taking on roles that include stabilizing the conformation of and assembling biomolecules, and providing an optimal environment for enzymatic catalysis. Here, we describe a noncovalent interaction that engages the sulfur atoms of cysteine residues and disulfide bonds in proteins—their donation of electron density into an antibonding orbital of proximal amide carbonyl groups.
    [Show full text]
  • Tunable, Post-Translational Hydroxylation of Collagen Domains in Escherichia Coli † § † § ‡ † Daniel M
    LETTERS pubs.acs.org/acschemicalbiology Tunable, Post-translational Hydroxylation of Collagen Domains in Escherichia coli † § † § ‡ † Daniel M. Pinkas, , Sheng Ding, , Ronald T. Raines, and Annelise E. Barron ,* † Department of Bioengineering and, by courtesy, Department of Chemical Engineering, Schools of Medicine and of Engineering, Stanford University, Stanford, California 94305, United States ‡ Departments of Biochemistry and Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States bS Supporting Information ABSTRACT: Prolyl 4-hydroxylases are ascorbate-dependent oxygenases that play key roles in a variety of eukaryotic biological processes including oxygen sensing, siRNA regula- tion, and collagen folding. They perform their functions by catalyzing the post-translational hydroxylation of specificpro- line residues on target proteins to form (2S,4R)-4-hydroxypro- line. Thus far, the study of these post-translational modifica- tions has been limited by the lack of a prokaryotic recombinant expression system for producing hydroxylated proteins. By introducing a biosynthetic shunt to produce ascorbate-like molecules in Eschericia coli cells that heterologously express human prolyl 4-hydroxylase (P4H), we have created a strain of E. coli that produces collagenous proteins with high levels of (2S,4R)-4-hydroxyproline. Using this new system, we have observed hydroxylation patterns indicative of a processive catalytic mode for P4H that is active even in the absence of ascorbate. Our results provide insights into P4H enzymology and create a foundation for better understanding how post- translational hydroxylation affects proteins. ioxygenases dependent on R-ketoglutarate play diverse roles Thus, reconstitution of collagen folding pathways in a prokaryotic Din a variety of eukaryotic biological processes, by catalyzing the host will greatly increase our understanding of how these essential irreversible post-translational hydroxylation of proteins.1 They biomolecules assemble.
    [Show full text]
  • Ihyd-Pseaac: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity Into Pseudo Amino Acid Composition
    Int. J. Mol. Sci. 2014, 15, 7594-7610; doi:10.3390/ijms15057594 OPEN ACCESS International Journal of Molecular Sciences ISSN 1422-0067 www.mdpi.com/journal/ijms Article iHyd-PseAAC: Predicting Hydroxyproline and Hydroxylysine in Proteins by Incorporating Dipeptide Position-Specific Propensity into Pseudo Amino Acid Composition Yan Xu 1,5,*, Xin Wen 1, Xiao-Jian Shao 2, Nai-Yang Deng 3 and Kuo-Chen Chou 4,5 1 Department of Information and Computer Science, University of Science and Technology Beijing, Beijing 100083, China; E-Mail: [email protected] 2 Department of Mathematics and Information Science, Binzhou University, Binzhou 256603, China; E-Mail: [email protected] 3 College of Science, China Agricultural University, Beijing 100083, China; E-Mail: [email protected] 4 Center of Excellence in Genomic Medicine Research (CEGMR), King Abdulaziz University, Jeddah 21589, Saudi Arabia; E-Mail: [email protected] 5 Gordon Life Science Institute, Boston, MA 02478, USA * Author to whom correspondence should be addressed; E-Mail: [email protected] or [email protected]; Tel./Fax: +86-10-6233-2589. Received: 7 February 2014; in revised form: 4 April 2014 / Accepted: 17 April 2014 / Published: 5 May 2014 Abstract: Post-translational modifications (PTMs) play crucial roles in various cell functions and biological processes. Protein hydroxylation is one type of PTM that usually occurs at the sites of proline and lysine. Given an uncharacterized protein sequence, which site of its Pro (or Lys) can be hydroxylated and which site cannot? This is a challenging problem, not only for in-depth understanding of the hydroxylation mechanism, but also for drug development, because protein hydroxylation is closely relevant to major diseases, such as stomach and lung cancers.
    [Show full text]
  • And the Failure to Detect N-Acetylation of 2-Aminofluorene in the Dog*
    The N- and Ring-Hydroxylation of 2-Acetylaminofluorene and the Failure To Detect N-Acetylation of 2-Aminofluorene in the Dog* LIONEL A. P0IRIER, JAMES A. MILLER, AND ELIZABETH C. MILLER (McArdle Memorial Latoratoryfor Cancer Research, Medical School, University of Wiscon.rin, Madison, Wisconthi) SUMMARY N-Hydroxy-2-acetylaminofluorene (N-hydroxy-AAF), in conjugated form, was identified as a urinary metabolite of 2-acetylaminofluorene (AM') in male mongrel dogs. This metabolite was isolated and characterized in crystalline form. 7-Hydnoxy AM', in conjugated form, and AM? were also found in the urine of dogs fed AAF; no 1-, 3-, or 5-hydroxy-AAF was detected. The ingestion of N-hydroxy-AAF led to the urinary excretion of the same metabolites; however, none of these acetylated metabo lites was detected in the urine of dogs fed 2-aminofluorene, N-hydroxy-2-aminofluorene, 1-hydroxy-AAF, or 3-hydroxy-AAF. Dietary supplementation with calcium pantoth enate and riboflavin and an attempt to induce acetylase activity by feeding 2-amino fluonene for several days did not lead to the urinary excretion of any recognizable acetylated urinary metabolites of 2-aminofluorene. Furthermore, under similar condi tions the specific activities of the acetylated urinary metabolites of 2-(acetyl-1'-C'4) aminofluonene fed in mixtures with unlabeled 2-aminofluorene were not appreciably different from the specific activity of the ingested acetyl-labeled AAF. In a dog fed a single dose of AAF-9-C'4 63 pen cent of the C'4 was excreted in the feces, and 19 per cent of the C'4 was found in the urine during the next 5 days.
    [Show full text]
  • Validation of a Methodology to Determine Benzene, Toluene
    M. L. Gallego-Diez et al.; Revista Facultad de Ingeniería, No. 79, pp. 138-149, 2016 Revista Facultad de Ingeniería, Universidad de Antioquia, No. 79, pp. 138-149, 2016 Validation of a methodology to determine Benzene, Toluene, Ethylbenzene, and Xylenes concentration present in the air and adsorbed in activated charcoal passive samplers by GC/ FID chromatography Validación de una metodología para la determinación de la concentración de Benceno, Tolueno, Etilbenceno y Xilenos, presentes en muestras aire y adsorbidos en captadores pasivos de carbón activado, mediante cromatografía GC/FID Mary Luz Gallego-Díez1*, Mauricio Andrés Correa-Ochoa2, Julio César Saldarriaga-Molina2 1Facultad de Ingeniería, Universidad de Antioquia. Calle 67 # 53- 108. A. A. 1226. Medellín, Colombia. 2Grupo de Ingeniería y Gestión Ambiental (GIGA), Facultad de Ingeniería, Universidad de Antioquia. Calle 67 # 53- 108. A. A. 1226. Medellín, Colombia. ARTICLE INFO ABSTRACT: This article shows the validation of the analytical procedure which allows Received August 28, 2015 determining concentrations of Benzene (B), Toluene (T), Ethylbenzene (E), and Xylenes (X) Accepted April 02, 2016 -compounds known as BTEX- present in the air and adsorbed by over activated charcoal by GC-FID using the (Fluorobenzene) internal standard addition as quantification method. In the process, reference activated charcoal was employed for validation and coconut -base granular charcoal (CGC) for the construction of passive captors used in sample taken in external places or in environmental air. CGC material was selected from its recovering capacity of BTEX, with an average of 89.1% for all analytes. In this research, BTEX presence KEYWORDS in air samples, taken in a road of six lines and characterized for having heavy traffic, in Validation, activated Medellín city (Antioquia, Colombia), was analyzed.
    [Show full text]
  • Is Chromogranin a Prohormone? Had Only a Fraction of the Pancreastatin Potency of the Peptide Characterized by Lee E
    ~N...:.AT.;:...U=--R.;:...E_V_O_L_.~32_5 _22_J_A_NU_A_R_Y_l_98_7 _________ NEWS ANDVIEWS-------------------'--301 Peptide function small percentage of plasma chromogranin was processed to a pancreastatin-like molecule, or if native chromogranin A Is chromogranin a prohormone? had only a fraction of the pancreastatin potency of the peptide characterized by Lee E. Eiden Tatemoto et at .. It is clearly necessary to establish that the molecule isolated by IN THE 4 December issue of Nature!, K. terminal processing signal for the forma- Tatemoto et at. is indeed the substance Tatemoto and co-workers report the tion of pancreastatin from a chromogranin found at beta-cell and D-cell receptors in sequence of a newly discovered putative A-like precursor in the rat. vivo. It will be of special interest to deter- hormone, pancreastatin, which as its There is chromogranin, as well as mine if amidation is necessary for bio­ name implies inhibits insulin (and soma­ pancreastatin, immunoreactivity in the logical activity, because amidation of tostatin) secretion from the endocrine pancreas of several species, and both poly- other biologically active peptides such as pancreas. There is a striking structural peptides are present in the brain"!', consis- enkephalins seems to oc-cur differentially similarity between pancreastatin and part tent with a precursor-product relationship in central and autonomic nervous tissue, of bovine chromogranin A, whose se­ between chromogranin A and pancreas- and this differential post-translational quence was recently reported in Nature by tatin. Whether or not pancreastatin is gen- modification may be relevant to different, myself and collaborators, and independ­ erated from chromogranin A or a chromo- as yet undiscovered hormonal functions of ently in the EMBO Journal by Benedum granin A-like precursor must await the these molecules.
    [Show full text]
  • THIOL OXIDATION a Slippery Slope the Oxidation of Thiols — Molecules RSH Oxidation May Proceed Too Predominates
    RESEARCH HIGHLIGHTS Nature Reviews Chemistry | Published online 25 Jan 2017; doi:10.1038/s41570-016-0013 THIOL OXIDATION A slippery slope The oxidation of thiols — molecules RSH oxidation may proceed too predominates. Here, the maximum of the form RSH — can afford quickly for intermediates like RSOH rate constants indicate the order − − − These are many products. From least to most to be spotted and may also afford of reactivity: RSO > RS >> RSO2 . common oxidized, these include disulfides intractable mixtures. Addressing When the reactions are carried out (RSSR), as well as sulfenic (RSOH), the first problem, Chauvin and Pratt in methanol-d , the obtained kinetic reactions, 1 sulfinic (RSO2H) and sulfonic slowed the reactions down by using isotope effect values (kH/kD) are all but have (RSO3H) acids. Such chemistry “very sterically bulky thiols, whose in the range 1.1–1.2, indicating that historically is pervasive in nature, in which corresponding sulfenic acids were no acidic proton is transferred in the been very disulfide bonds between cysteine known to be isolable but were yet rate-determining step. Rather, the residues stabilize protein structures, to be thoroughly explored in terms oxidations involve a specific base- difficult to and where thiols and thiolates often of reactivity”. The second problem catalysed mechanism wherein an study undergo oxidation by H2O2 or O2 in was tackled by modifying the model acid–base equilibrium precedes the order to protect important biological system, 9-mercaptotriptycene, by rate-determining nucleophilic attack − − − structures from damage. Among including a fluorine substituent to of RS , RSO or RSO2 on H2O2. the oxidation products, sulfenic serve as a spectroscopic handle.
    [Show full text]
  • Rate of Phenylalanine Hydroxylation in Healthy School-Aged Children
    0031-3998/11/6904-0341 Vol. 69, No. 4, 2011 PEDIATRIC RESEARCH Printed in U.S.A. Copyright © 2011 International Pediatric Research Foundation, Inc. Rate of Phenylalanine Hydroxylation in Healthy School-Aged Children JEAN W. HSU, FAROOK JAHOOR, NANCY F. BUTTE, AND WILLIAM C. HEIRD Department of Pediatrics, USDA-ARS Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030 ABSTRACT: Hydroxylation of phenylalanine to tyrosine is the first adults may be due to phenylalanine hydroxylation being lim- and rate-limiting step in phenylalanine catabolism. Currently, there ited in children. It was suggested that phenylalanine may not are data on the rate of phenylalanine hydroxylation in infants and provide the total needs for phenylalanine plus tyrosine in adults but not in healthy children. Thus, the aim of the study reported children fed an amino acid-based diet without tyrosine (16). here was to measure the rate of phenylalanine hydroxylation and Thus, further investigation of the rate of phenylalanine hy- oxidation in healthy school-aged children both when receiving diets droxylation in children is necessary. with and without tyrosine. In addition, hydroxylation rates calculated from the isotopic enrichments of amino acids in plasma and in very In the past, the rate of phenylalanine hydroxylation was LDL apoB-100 were compared. Eight healthy 6- to 10-y-old children mostly determined from phenylalanine and tyrosine isotopic were studied while receiving a control and again while receiving a enrichments measured in plasma. However, this approach may tyrosine-free diet. Phenylalanine flux, hydroxylation, and oxidation not be appropriate because it has been shown that phenylala- were determined by a standard tracer protocol using oral administra- nine hydroxylation rates were overestimated in parenterally 13 2 tion of C-phenylalanine and H2-tyrosine for 6 h.
    [Show full text]
  • Chemical Modification of Microsomal Cytochrome P450: Role of Lysyl Residues in Hydroxylation Activity
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Volume 161, number 2 J?EBS 0813 September 1983 Chemical modification of microsomal cytochrome P450: role of lysyl residues in hydroxylation activity Barbara C. Kunz and Christoph Richter* Eidgeniissische Technische Hochschule, Laboratorium fiir Biochemie I, Universitiitstrasse 16, CH-8092 Zurich, Switzerland Received 4 August 1983 Cytochrome P450 purified from phenobarbital-induced rat liver microsomes was acetylakd at 3 lysyl residues. When reconstituted with purified NADPH-cytochrome P450 reductase, the modified cytochrome showed full activity and substrate-induced spectral changes with d-benzphetamine. With 7-ethoxycoumar- in, neither enzymic activity nor binding was detected. It is concluded that the positively charged lysine residues of cytochrome P450 are important for metabolism of ‘I-ethoxycoumarin by cytochrome P450. Microsomal monoxygenase Cytochrome P450 activity Acetylation Reconstitution 1. INTRODUCTION stoichiometry (20-30 cytochromes/recfuctase) raises questions as to the mechanism of electron Cytochrome P450 and NADPH-cytochrome transfer from the reductase to the cytochrome and P450 reductase are key enzymes of the hepatic the functional interactions of the proteins in the microsomal monooxygenase system, catalyzing the monooxygenase system. oxidative metabolism of endogenous substrates Some progress has been made in our under- and many xenobiotics [l-3]. The reductase standing of the structure of cytochrome P450. (Mr - 78000) is anchored to the membrane via a Amino acid sequences of several species are now small (M- 6000) hydrophobic segment [4,5]. The available [7,8]. In addition the dimension of the large hydrophilic part protrudes from the mem- heme pocket has been partially characterized by brane into the cytoplasmic space and accepts heme alkylation studies [9, lo].
    [Show full text]