Separation of Pyrite from Arsenopyrite by Flotation

Total Page:16

File Type:pdf, Size:1020Kb

Separation of Pyrite from Arsenopyrite by Flotation SEPARATION OF PYRITE FROM ARSENOPYRITE BY FLOTATION by AYHAN ALI SIRKECI, B.Sc. A thesis submitted for the degree of Doctor of Philosophy of the University of London and for the Diploma of Imperial College of Science, Technology and Medicine Department of Mineral Resources Engineering Royal School of Mines, Imperial College University of London December 1992 Abstract This thesis reports investigations into the flotation separation of pyrite from arsenopyrite using xanthates and the new collectors Fl, S7 and F2B developed by Dow Chemical Company. The Dow surfactants were classified as chelating collectors by the manufacturer. For this purpose Hallimond tube, bench and column flotation tests were run in order to assess the flotation behaviour of these minerals. In addition to these experiments other tests performed were adsorption characteristics of Fl on pyrite and arsenopyrite, the effect of Fl on electrophoretic mobility and surface tension of Fl solutions. The effect of pH on the recovery of pyrite and arsenopyrite was studied for all collectors with the Hallimond tube. pH values ranging from 2 to 12 were tested at constant collector concentrations. At the optimum pH values further experiments were carried out under varying collector concentrations. The results obtained for five different collectors showed that selectivity was rather poor at all conditions except for Fl. A successful separation was seen to be possible employing Fl and by floating pyrite. This was proven by using a mixture of equal amounts of pyrite and arsenopyrite and selectively floating pyrite. Bench and column flotation tests were carried out in order to confirm the results obtained with the Hallimond tube. A Denver flotation cell was used and a column cell was constructed. In these tests Fl was used as a collector and in some cases amyl xanthate was blended. The effect of collector concentration was monitored and other parameters were adjusted for an optimum separation. Observations showed that a selective flotation of pyrite from arsenopyrite could be possible. Adsorption characteristics of Fl on pyrite and arsenopyrite were studied as a function of collector concentration, pH and time. Though there was not a direct correlation between the amount of Fl adsorbed and the success of flotation, in general pyrite was found to adsorb more Fl than arsenopyrite. Electrophoretic mobility of pyrite and arsenopyrite against pH and collector concentration was measured. It was observed that Fl did not have a substantial effect on the electrophoretic mobility of these minerals. The measured pK value of Fl indicated that most of the collector in solution was in molecular form above pH 9.2. Acknowledgements I would like to take this opportunity to thank; My supervisors Dr. R.J. Gochin and Dr. A.J. Monhemius for their advice and guidance, Prof. A.R. Burkin for his kind suggestions. My thanks are also due to: Past and present members of the hydrometallurgy group; Elia, Themis, Heidi, Veronica, Luis, Peter, Mike Haddon, Roberto and Steve for their sincere friendship, encourage, understanding and support throughout the years I shared with them otherwise, I believe, would be unbearable. And also Timur Ustaomer for his true and invaluable friendship. Mr. J. Burgess, Mr. V. Harris and Mr. Colin Richardson for their technical assistance and help. The National Educational Ministry of Turkey for their financial support. The Dow Chemical Company (Germany), and Mr. Simon Isherwood for supplying the collectors Fl, S7 and F2B. The Cyanamid Company (The Netherlands) for supplying the xanthates. The Spectratech Company and especially Mr. Alan Strawn for conducting FTIR analyses. And last but certainly not the least my sister who always supported, encouraged and loved me all my life with a care and affection of a mother; my gratitude can not likely be expressed in any language in the world. I can not possibly finish my words without stating my deep respect, love and agony that I feel about my mother, who passed away almost a year ago. She sacrificed herself for her beloved children just to see them happy, you will always live in my heart. Rest in peace. 4 Dedication To my mother, father and sister. Table of Contents Abstract 2 Acknowledgements 3 Dedication 4 Table of Contents 5 Table of Figures 8 Contents of Tables 12 CHAPTER 1 13 INTRODUCTION 13 Introduction 14 CHAPTER II 21 LITERATURE SURVEY 21 2.1. Review of Surface Characteristics of Sulphides 22 2.1.1. Introduction 22 2.1.2. Xanthate-Sulphide Mineral Interactions 28 2.1.3. Oxidation Reactions on the Surface of Pyrite 32 2.1.4. Oxidation Reactions on Arsenopyrite Surfaces 36 2.1.5. Effect of Semiconductivity on Surface Reactions 38 2.2. Review of Flotation Studies Carried Out on Pyrite and Arsenopyrite 40 2.3. Collectors 46 2.3.1. Introduction 46 2.3.2. Behaviour of Xanthates in Different Solutions 48 2.3.3. Complexes and Chelating Collectors 49 2.3.4. New Collectors Used in This Study 52 2.4. Column Flotation 54 CHAPTER III 59 METHODS AND MATERIALS 59 3.1. Description of Research Techniques 60 3.1.1. Hallimond Tube Tests 60 3.1.2. Bench Flotation 61 3.1.3. Column Flotation 62 3.1.4. Adsorption Tests 64 3.1.5. Electrophoretic Mobility Measurements 64 3.2. Description of Materials Used and Preparation 65 3.3. Description of Analytical Techniques 67 3.4. FTIR Studies 68 3.5. Surface Tension Measurements 69 CHAPTER IV 75 PYRITE FLOTATION 75 4.1. Hallimond Tube Flotation Tests 76 4.1.1. Flotation with Xanthates 76 4.1.2. Flotation with S7 78 4.1.3. Flotation with F2B 80 4.1.4. Flotation with F1 81 4.2. Adsorption 84 4.2.1. The Effect of Time on Adsorption 84 4.2.2. Adsorption Isotherms 86 4.2.3. The Effect of pH on Adsorption 88 4.3. Desorption 89 4.4. Electrophoretic Mobility 90 4.4.1. Electrophoretic Mobility Against pH 91 4.4.2. Electrophoretic Mobility with Respect to pH at Constant F1 Concentration 92 4.4.3. The Effect of Increasing F1 Concentration on Electrophoretic Mobility at Constant pH 92 4.4.4. The Effect of Dodecylamine and F1 on the Electrophoretic Mobility of Quartz at Constant pH 94 4.4.5. The Effect of Dodecylamine Concentration on the Electrophoretic Mobility of Pyrite at Constant pH 96 CHAPTER V 97 ARSENOPYRITE FLOTATION 97 5.1. Hallimond Tube Flotation Tests 98 5.1.1. Flotation with Xanthates 98 5.1.2. Flotation with S7 and F2B 98 5.1.3. Flotation with F1 100 5.2. Adsorption 102 5.2.1. Time Dependency of F1 Adsorption 102 5.2.2. Adsorption Against F1 Concentration 102 5.2.3. The Effect of pH on the Adsorption 105 5.3. Desorption 105 5.4. Electrophoretic Mobility 106 5.4.1. Electrophoretic Mobility Against pH 107 5.4.2. The Effect of F1 Concentration on the Electrophoretic Mobility 107 CHAPTER VI 109 SEPARATION TESTS 109 6.1. Introduction 110 6.2. Hallimond Tube Flotation 110 6.3. Bench Flotation 114 6.4. Column Flotation 120 6.4.1. Introduction 120 6.4.2. Experimental Results 121 CHAPTER VII 130 DISCUSSION, CONCLUSIONS AND FUTURE WORK 130 7.1. Discussion 131 7.1.1. Introduction 131 7.1.2. Pyrite 132 7.1.3. Arsenopyrite 144 7.1.4. Separation Tests 149 7.1.4.1. Hallimond Tube Flotation 149 7.1.4.2. Bench Flotation 150 7.1.4.3. Column Flotation 151 7.3. Conclusions 154 7.4. Future Work 156 Appendix 1 157 Appendix 11 160 REFERENCES 163 Table of Figures Figure 1.1. The minerals formed in the Fe-As-S system 16 Figure 2.1. Distribution of charges across a solid surface and solution according to Helmotz's model of double layer 24 Figure 2.2. The decay of surface potential with respect to distance from the surface after Gouy and Chapman 25 Figure 2.3. The distribution of potential into the interior of solution according to Stem's model 26 Figure 2.4. Potential distribution across the double layer after the modification of the Stem layer 26 Figure 3.1. The schematic diagram of the Hallimond tube used in this investigation 61 Figure 3.2. The schematic diagram of the column cell used in this study 63 Figure 3.3. The spectra of Fl, and pyrite powders conditioned in F1 solutions of different pH. (a) Fl, (b) pH 5, (c) pH 10, (d) pH 11 70 Figure 3.4. The surface tension of Fl at around pH 5.0-5.5 72 Figure 3.5. Surface tension of Fl and dodecylamine at pH 11 and 10.4 respectively 73 Figure 3.6. Surface tension of Fl and dodecylamine against pH 73 Figure 4.1. Flotation of pyrite with 6.94*10'^ mol/1 ethyl and 4.95*10"^ mol/1 amyl xanthates 77 Figure 4.2. Flotation of pyrite with ethyl and amyl xanthates at pH 4 and 3.5 respectively 77 Figure 4.3. Flotation of pyrite with S7 at 8.4*10"6 mol/1 collector concentration 79 Figure 4.4. Flotation of pyrite recovery against S7 concentration at pH 3 79 Figure 4.5. Recovery of pyrite with 2 mg/1 F2B concentration 80 Figure 4.6. Recovery of pyrite and quartz using Fl at different pH 82 Figure 4.7. The effect of increasing Fl concentration on the recovery 82 Figure 4.8. The effect of conditioning on the flotation of pyrite at increasing Fl concentrations 83 Figure 4.9. Adsorption of Fl onto pyrite against time around pH 11. Initial collector concentration is 5.06*10"^ mol/1 85 Figure 4.10.
Recommended publications
  • The Krásno Sn-W Ore District Near Horní Slavkov: Mining History, Geological and Mineralogical Characteristics
    Journal of the Czech Geological Society 51/12(2006) 3 The Krásno Sn-W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics Sn-W rudní revír Krásno u Horního Slavkova historie tìby, geologická a mineralogická charakteristika (47 figs, 1 tab) PAVEL BERAN1 JIØÍ SEJKORA2 1 Regional Museum Sokolov, Zámecká 1, Sokolov, CZ-356 00, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, CZ-115 79, Czech Republic The tin-tungsten Krásno ore district near Horní Slavkov (Slavkovský les area, western Bohemia) belongs to the most important areas of ancient mining in the Czech Republic. The exceptionally rich and variable mineral associations, and the high number of mineral species, make this area one of the most remarkable mineralogical localities on a worldwide scale. The present paper reviews the data on geological setting of the ore district, individual ore deposits and mining history. Horní Slavkov and Krásno were known as a rich source of exquisite quality mineral specimens stored in numerous museum collections throughout Europe. The old museum specimens are often known under the German locality names of Schlaggenwald (= Horní Slavkov) and Schönfeld (=Krásno). The megascopic properties and paragenetic position of selected mineral classics are reviewed which include arsenopyrite, fluorapatite, fluorite, hübnerite, chalcopyrite, carpholite, cassiterite, quartz, molybdenite, rhodochrosite, sphalerite, topaz and scheelite. Key words: Sn-W ores; tin-tungsten mineralization; mining history; ore geology; mineralogy; Slavkovský les; Krásno, Horní Slavkov ore district; Czech Republic. Introduction valleys dissected parts of the area. In the ore district area, the detailed surface morphology is modified by large de- In the mining history of Central Europe, Bohemia and pressions caused by the collapse of old underground Moravia are known as important source of gold, silver, workings and by extensive dumps.
    [Show full text]
  • The Mineralogical Fate of Arsenic During Weathering Of
    THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis Presented to the faculty of the Department of Geology California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Geology by Tamsen Leigh Burlak SPRING 2012 © 2012 Tamsen Leigh Burlak ALL RIGHTS RESERVED ii THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis by Tamsen Leigh Burlak Approved by: __________________________________, Committee Chair Dr. Charles Alpers __________________________________, Second Reader Dr. Lisa Hammersley __________________________________, Third Reader Dr. Dave Evans ____________________________ Date iii Student: Tamsen Leigh Burlak I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the project. _______________________, Graduate Coordinator ___________________ Dr. Dave Evans Date Department of Geology iv Abstract of THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY by Tamsen Leigh Burlak Mine waste piles within the historic gold mining site, Empire Mine State Historic Park (EMSHP) in Grass Valley, California, contain various amounts of arsenic and are the current subject of remedial investigations to characterize the arsenic present. In this study, electron microprobe, QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy), and X-ray absorption spectroscopy (XAS) were used collectively to locate and identify the mineralogical composition of primary and secondary arsenic-bearing minerals at EMSHP.
    [Show full text]
  • The Forming Conditions of Alyaskitovoe Tin-Tungsten Deposit, Russia
    0393-000066 The forming conditions of Alyaskitovoe tin-tungsten deposit, Russia Corresponding author: Elena Anikina, IGEM RAS, [email protected] Co-authors: Gennady Gamyanin, IGEM RAS, [email protected] The Alyaskitovoe Sn-W deposit is located at the boundary between the Kular-Nersko terrane and the Verkhoyansk fold-thrust belt. It is localized in the tin-tungsten sublatitudinal metallogenic zone. The deposit area is composed of Upper Triassic sandstone-shale intruded by granite porphyry stock (98 MA Rb-Sr). Stock refers to the formation of young Li-F granites (P2O5 = 0.22- 0.56%, F = 0.12-0.21%, Sr = 9224-688g/t, Li = 47-252g/t, Rb = 61-194g/t). Stock and enclosing hornfels dissected by series of steeply dipping quartz veins meridional strike (L = up to 700 m, M = 0.4-0.6 m). Veins are accompanied by wallrock changes. It is greisenization in granitoids (up to 3 m) and tourmalinization – in hornfels (0.5 m). Several paragenetic associations are identified. Metasomatic: molybdenite-apatite1-tourmaline1- quartz-muscovite, tourmaline2-apatite2-fluorite-arsenopyrite-hydromica. Ore: cassiterite- wolframite-tourmaline-arsenopyrite-quartz, pyrrhotite-stannite-sphalerite-pyrite, molybdenite- matildite-aramayoite-galena-(Bi-andorite) Sb-gustovite, hubnerite-Ag-sulfoantimonite-calcite- quartz. Fluid inclusions (FI) in quartz of greisen and ore veins were studied. Temperature of homogenization of greisen inclusions is 460-480°C. FI contain weakly concentrated solutions (4.9- 3.3 wt.% NaCl-equiv), the gas phase is presented СО2 (29.6-78,2 mol.%), СН4 (11.1-21.8 mol.%). FI in quartz of ore veins contain a liquid phase with concentration 9.2-3.3 wt.% NaCl-equiv and homogenization temperatures of 290-380°С.
    [Show full text]
  • Tungsten Minerals and Deposits
    DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance.................................
    [Show full text]
  • Clarke Jeff a 201709 Mscproj
    THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils.
    [Show full text]
  • Minerals Found in Michigan Listed by County
    Michigan Minerals Listed by Mineral Name Based on MI DEQ GSD Bulletin 6 “Mineralogy of Michigan” Actinolite, Dickinson, Gogebic, Gratiot, and Anthonyite, Houghton County Marquette counties Anthophyllite, Dickinson, and Marquette counties Aegirinaugite, Marquette County Antigorite, Dickinson, and Marquette counties Aegirine, Marquette County Apatite, Baraga, Dickinson, Houghton, Iron, Albite, Dickinson, Gratiot, Houghton, Keweenaw, Kalkaska, Keweenaw, Marquette, and Monroe and Marquette counties counties Algodonite, Baraga, Houghton, Keweenaw, and Aphrosiderite, Gogebic, Iron, and Marquette Ontonagon counties counties Allanite, Gogebic, Iron, and Marquette counties Apophyllite, Houghton, and Keweenaw counties Almandite, Dickinson, Keweenaw, and Marquette Aragonite, Gogebic, Iron, Jackson, Marquette, and counties Monroe counties Alunite, Iron County Arsenopyrite, Marquette, and Menominee counties Analcite, Houghton, Keweenaw, and Ontonagon counties Atacamite, Houghton, Keweenaw, and Ontonagon counties Anatase, Gratiot, Houghton, Keweenaw, Marquette, and Ontonagon counties Augite, Dickinson, Genesee, Gratiot, Houghton, Iron, Keweenaw, Marquette, and Ontonagon counties Andalusite, Iron, and Marquette counties Awarurite, Marquette County Andesine, Keweenaw County Axinite, Gogebic, and Marquette counties Andradite, Dickinson County Azurite, Dickinson, Keweenaw, Marquette, and Anglesite, Marquette County Ontonagon counties Anhydrite, Bay, Berrien, Gratiot, Houghton, Babingtonite, Keweenaw County Isabella, Kalamazoo, Kent, Keweenaw, Macomb, Manistee,
    [Show full text]
  • Bulletin 65, the Minerals of Franklin and Sterling Hill, New Jersey, 1962
    THEMINERALSOF FRANKLINAND STERLINGHILL NEWJERSEY BULLETIN 65 NEW JERSEYGEOLOGICALSURVEY DEPARTMENTOF CONSERVATIONAND ECONOMICDEVELOPMENT NEW JERSEY GEOLOGICAL SURVEY BULLETIN 65 THE MINERALS OF FRANKLIN AND STERLING HILL, NEW JERSEY bY ALBERT S. WILKERSON Professor of Geology Rutgers, The State University of New Jersey STATE OF NEw JERSEY Department of Conservation and Economic Development H. MAT ADAMS, Commissioner Division of Resource Development KE_rr_ H. CR_V_LINCDirector, Bureau of Geology and Topography KEMBLEWIDX_, State Geologist TRENTON, NEW JERSEY --1962-- NEW JERSEY GEOLOGICAL SURVEY NEW JERSEY GEOLOGICAL SURVEY CONTENTS PAGE Introduction ......................................... 5 History of Area ................................... 7 General Geology ................................... 9 Origin of the Ore Deposits .......................... 10 The Rowe Collection ................................ 11 List of 42 Mineral Species and Varieties First Found at Franklin or Sterling Hill .......................... 13 Other Mineral Species and Varieties at Franklin or Sterling Hill ............................................ 14 Tabular Summary of Mineral Discoveries ................. 17 The Luminescent Minerals ............................ 22 Corrections to Franklln-Sterling Hill Mineral List of Dis- credited Species, Incorrect Names, Usages, Spelling and Identification .................................... 23 Description of Minerals: Bementite ......................................... 25 Cahnite ..........................................
    [Show full text]
  • Phase Relationis Involving Arsenopyrite in The
    Canadlan Mineraloght Vol. 14, pp. 36a486 (1976) PHASERELATIONIS INVOLVING ARSENOPYRITE IN THESYSTEM Fe-As-SAND THEIRAPPLICATION' ULRICH KRETSCHMAR2 eNp S. D. SCOTT Departmentof Geology, University of Toronto, Toronto, Ontario, CanadaMsS lAl ABSTRACT tions and the composition of arsenopyrite from metamorphosed ore deposits, they suggest that tlte Subsolidus recrystallization experiments rn the effect of confining pressure is much smaller than system Fe-As-S have been carried out using dry, ind:icated by Clark (1960c) and that arsenopyrite is eutectic, halide fluxes to speed reaction mtes. At unlikely to be a useful geobarometer. 300'C the composition range of arsenopyrite ex- tends from less than 3O at. Vo As in equilibrium with pyrite and arsenic to approximately 33.5 at.% Sotrluetnr, As in equilibrium with pyrrhotite and loellingite. At 700"C arsenopyrite contains approximately 38.5 at. 7o As irrespective of the assemblage in which Des exp6riences de recristallisation sub-solidus it is synthesized. The As-content of alsenopyrite dans le systdme Fe-As-S ont 6t€ effectu6es b I'aide may be obtained from its 4s, and the equation: de flux d'halog6nures secs et eutectiques afin d'aug- At, Vo arsenic : 866.67 dBFl38I.l2 menter la vitesse des taux de r6action. A une tem- Microprobe analyses show that natural arseno- p6rature de 300'C, la gamme de compositions pyrite crystals coexisting with pyrrhotite, pyrite or d'ars6nopyrite s'6tend de moins de 30Vo (atomique) jusqu'i pyritefpyrrhotite are commonly zoned with a Si- As en dquilibre avec la pyrite et l'arsenic, rich center and an As-rich rim.
    [Show full text]
  • Au Mineralisation in “Listvenites” from Mina Descanso, Central Cuba: Preliminary Results
    Au Mineralisation in “Listvenites” from Mina Descanso, Central Cuba: Preliminary Results Daniel Rodríguez García, Cristina Villanova-de-Benavent, Lidia Butjosa, Thomas Aiglsperger, Joan Carles Melgarejo, Joaquín A Proenza Departament de Cristal·lografia, Mineralogia i Dipòsits Minerals, Facultat de Geologia, Universitat de Barcelona (UB), Martí i Franquès s/n, 08028 Barcelona, Spain Manuel Iturralde-Vinent Museo Nacional de Historia Natural, Ciudad Habana, Cuba Antonio García-Casco Departamento de Mineralogía y Petrología, Universidad de Granada, Spain Abstract. Listvenites are carbonatised serpentinites been widely studied worldwide (e.g. Buisson and occurring along faults in ophiolite complexes, which are Leblanc 1986; Ash and Arksey 1989; Halls and Zhao commonly associated with gold, and sulphide-arsenide 1995; Akbulut et al. 2006; Escayola et al. 2009; mineralisations. The origin of the ores is probably due to Buckman and Ashley 2010; Zoheir and Lehmann 2011; the metasomatism of the previous ultramafic rocks by Aftabi and Zarrinkoub 2013), but the source of gold in CO2-rich hydrothermal fluids during obduction, but the these deposits is still unclear. processes leading to the formation of these deposits are not yet defined. This contribution presents a The present study focuses on the “listvenite” occur- mineralogical and textural study of the gold-bearing rence in Mina Descanso (Central Cuba), which is curren- chloritite and the gold-free chlorite-carbonated rock as tly being mined and reaches grades of up to 280 ppm Au well in Mina Descanso (Central Cuba). The preliminary (Cabrera et al., 1986; López Kramer 2009 and references results state that gold is found as individual grains and is therein).
    [Show full text]
  • A World of Minerals in Your Mobile Device
    14 20 33 73 3 19 29 32 47 50 78 Si C 31 As 49 Ta 74 Li silicon K carbon Cu Ge arsenic Ag Sn tantalum Pt lithium 28.08 potassium 40.07 copper Ga germanium 74.92 silver In tin 180.94 W platinum 6.94 39.09 63.54 gallium 72.63 107.86 indium 118.71 tungsten 195.08 69.72 114.81 183.84 A World of Minerals in Your Mobile Device Mobile phones and other high-technology communications devices could not exist without mineral commodities. More than one-half of all components in a mobile device—including its electronics, display, battery, speakers, and more—are made from mined and semi-processed materials (mineral commodities). Some mineral commodities can be recovered as byproducts during the production and processing of other commodities. As an example, bauxite is mined for its aluminum content, but gallium is recovered during the aluminum production process. The images below show the ore minerals (sources) of some mineral commodities that are used to make components of a mobile device. On the reverse side, the map and table depict the major source countries producing some of these mineral commodities along with how these commodities are used in mobile devices. For more information on minerals, visit http://minerals.usgs.gov. Display Electronics and Circuitry A mobile device’s glass screen is very The content of copper in a mobile device durable because glassmakers combine its far exceeds the amount of any other main ingredient, silica (silicon dioxide or metal. Copper conducts electricity and quartz) sand, with ceramic materials and heat and comes from the source mineral then add potassium.
    [Show full text]
  • Geochemistry of Cassiterite and Wolframite from Tin and Tungsten Quartz Veins in Portugal ⁎ A.M.R
    Available online at www.sciencedirect.com Ore Geology Reviews 33 (2008) 221–238 www.elsevier.com/locate/oregeorev Geochemistry of cassiterite and wolframite from tin and tungsten quartz veins in Portugal ⁎ A.M.R. Neiva Department of Earth Sciences, University of Coimbra, 3000-272 Coimbra, Portugal Received 9 August 2005; accepted 29 May 2006 Available online 4 October 2007 Abstract Cassiterite and wolframite compositions from SnNW- and WNSn-bearing quartz veins in Northern and Central Portugal are compared to provide evidence on fluid compositions. In SnNW-bearing quartz veins, euhedral cassiterite shows sequences of alternating parallel darker and lighter zones. The darker zones are pleochroic, oscillatory zoned, exhibit exsolutions of columbite and ixiolite and are richer in Nb, Ta and Fe than the lighter zones which consist of nearly pure SnO2. Cassiterite from WNSn-bearing quartz veins is usually zoned, with homogeneous and slightly pleochroic darker zones, which are chemically similar to lighter zones. Both zones have inclusions of rutile and rare ilmenite. The darker zones of cassiterite from the former veins are richer in Nb, Ta and Fe contents and poorer in Ti than the darker and lighter zones of cassiterite from the latter veins. This is attributed to differences in the composition of magmatic hydrothermal fluids. Wolframite compositions from SnNW- and W NSn-bearing quartz veins do not show any significant distinction, because they precipitate from relatively similar magmatic hydrothermal fluids. In some deposits, most wolframite crystals are homogeneous, but others are heterogeneous. Inner patches, rich in a hübnerite component, rarely occur in crystals from the Filharoso and Panasqueira deposits.
    [Show full text]
  • Cobalt—Styles of Deposits and the Search for Primary Deposits
    Cobalt—Styles of Deposits and the Search for Primary Deposits By Murray W. Hitzman, Arthur A. Bookstrom, John F. Slack, and Michael L. Zientek Open-File Report 2017–1155 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior RYAN K. ZINKE, Secretary U.S. Geological Survey William H. Werkheiser, Deputy Director exercising the authority of the Director U.S. Geological Survey, Reston, Virginia: 2017 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment—visit https://www.usgs.gov/ or call 1–888–ASK–USGS (1–888–275–8747). For an overview of USGS information products, including maps, imagery, and publications, visit https://store.usgs.gov/. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text. Permission to reproduce copyrighted items must be secured from the copyright owner. Suggested citation: Hitzman, M.W., Bookstrom, A.A., Slack, J.F., and Zientek, M.L., 2017, Cobalt—Styles of deposits and the search for primary deposits: U.S. Geological Survey Open-File Report 2017–1155, 47 p., https://doi.org/10.3133/ofr20171155. ISSN 2331-1258 (online) Contents Slide Presentation ........................................................................................................................................
    [Show full text]