The Mineralogical Fate of Arsenic During Weathering Of
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Characterization of Sulfide Minerals from Gabbroic and Ultramafic Rocks by Electron Microscopy1 D.J
Blackman, D.K., Ildefonse, B., John, B.E., Ohara, Y., Miller, D.J., MacLeod, C.J., and the Expedition 304/305 Scientists Proceedings of the Integrated Ocean Drilling Program, Volume 304/305 Data report: characterization of sulfide minerals from gabbroic and ultramafic rocks by electron microscopy1 D.J. Miller,2 T. Eisenbach,2 and Z.P. Luo3 Chapter contents Abstract Abstract . 1 This objective of this research was to investigate the potential of using transmission electron microscopy (TEM) to determine sul- Introduction . 1 fide mineral speciation in gabbroic rocks from Atlantis Massif, the Geologic background . 2 site of Integrated Ocean Drilling Program Expedition 304/305. Method development . 2 The method takes advantage of TEM analysis techniques and Results . 2 proved successful in sulfide mineral identification. TEM can pro- Discussion . 3 vide imaging of the sample morphology, crystal structure through Acknowledgments. 4 the electron diffraction, and chemical compositional information References . 4 through X-ray energy dispersive spectroscopy. Electron probe mi- Figures . 5 croanalysis was also used to determine the chemical composition. Table . 11 Introduction Integrated Ocean Drilling Program (IODP) Expedition 304/305 at Atlantis Massif, 30°N on the Mid-Atlantic Ridge (MAR) (Fig. F1) comprised a coordinated, dual-expedition drilling program aimed at investigating oceanic core complex (OCC) formation and the exposure of ultramafic rocks in young oceanic lithosphere. One of the scientific objectives of this drilling program is to investigate the role of magmatism in the development of OCCs. Whereas precruise submersible and geophysical surveys suggested the po- tential of recovering substantial amounts of serpentinized perido- tite and possibly fresh residual mantle, coring on the central dome of the massif returned a 1.4 km thick section of plutonic mafic rock with only a thin (<150 m) interval of ultramafic or near-ultramafic composition rocks of indeterminate origin. -
The Krásno Sn-W Ore District Near Horní Slavkov: Mining History, Geological and Mineralogical Characteristics
Journal of the Czech Geological Society 51/12(2006) 3 The Krásno Sn-W ore district near Horní Slavkov: mining history, geological and mineralogical characteristics Sn-W rudní revír Krásno u Horního Slavkova historie tìby, geologická a mineralogická charakteristika (47 figs, 1 tab) PAVEL BERAN1 JIØÍ SEJKORA2 1 Regional Museum Sokolov, Zámecká 1, Sokolov, CZ-356 00, Czech Republic 2 Department of Mineralogy and Petrology, National Museum, Václavské nám. 68, Prague 1, CZ-115 79, Czech Republic The tin-tungsten Krásno ore district near Horní Slavkov (Slavkovský les area, western Bohemia) belongs to the most important areas of ancient mining in the Czech Republic. The exceptionally rich and variable mineral associations, and the high number of mineral species, make this area one of the most remarkable mineralogical localities on a worldwide scale. The present paper reviews the data on geological setting of the ore district, individual ore deposits and mining history. Horní Slavkov and Krásno were known as a rich source of exquisite quality mineral specimens stored in numerous museum collections throughout Europe. The old museum specimens are often known under the German locality names of Schlaggenwald (= Horní Slavkov) and Schönfeld (=Krásno). The megascopic properties and paragenetic position of selected mineral classics are reviewed which include arsenopyrite, fluorapatite, fluorite, hübnerite, chalcopyrite, carpholite, cassiterite, quartz, molybdenite, rhodochrosite, sphalerite, topaz and scheelite. Key words: Sn-W ores; tin-tungsten mineralization; mining history; ore geology; mineralogy; Slavkovský les; Krásno, Horní Slavkov ore district; Czech Republic. Introduction valleys dissected parts of the area. In the ore district area, the detailed surface morphology is modified by large de- In the mining history of Central Europe, Bohemia and pressions caused by the collapse of old underground Moravia are known as important source of gold, silver, workings and by extensive dumps. -
LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, and COBALT ARSENIDE and SULFIDE ORE FORMATION Nicholas Allin
Montana Tech Library Digital Commons @ Montana Tech Graduate Theses & Non-Theses Student Scholarship Spring 2019 EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION Nicholas Allin Follow this and additional works at: https://digitalcommons.mtech.edu/grad_rsch Part of the Geotechnical Engineering Commons EXPERIMENTAL INVESTIGATION OF THE THERMOCHEMICAL REDUCTION OF ARSENITE AND SULFATE: LOW TEMPERATURE HYDROTHERMAL COPPER, NICKEL, AND COBALT ARSENIDE AND SULFIDE ORE FORMATION by Nicholas C. Allin A thesis submitted in partial fulfillment of the requirements for the degree of Masters in Geoscience: Geology Option Montana Technological University 2019 ii Abstract Experiments were conducted to determine the relative rates of reduction of aqueous sulfate and aqueous arsenite (As(OH)3,aq) using foils of copper, nickel, or cobalt as the reductant, at temperatures of 150ºC to 300ºC. At the highest temperature of 300°C, very limited sulfate reduction was observed with cobalt foil, but sulfate was reduced to sulfide by copper foil (precipitation of Cu2S (chalcocite)) and partly reduced by nickel foil (precipitation of NiS2 (vaesite) + NiSO4·xH2O). In the 300ºC arsenite reduction experiments, Cu3As (domeykite), Ni5As2, or CoAs (langisite) formed. In experiments where both sulfate and arsenite were present, some produced minerals were sulfarsenides, which contained both sulfide and arsenide, i.e. cobaltite (CoAsS). These experiments also produced large (~10 µm along longest axis) euhedral crystals of metal-sulfide that were either imbedded or grown upon a matrix of fine-grained metal-arsenides, or, in the case of cobalt, metal-sulfarsenide. Some experimental results did not show clear mineral formation, but instead demonstrated metal-arsenic alloying at the foil edges. -
The Role of Interaction Between Paenibacillus Polymyxa Bacteria and Pyrolusite-Hematite System Through Bioflotation Nagui A
International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056 Volume: 04 Issue: 04 | Apr-2017 www.irjet.net p-ISSN: 2395-0072 The Role of Interaction between Paenibacillus polymyxa Bacteria and Pyrolusite-Hematite System through Bioflotation Nagui A. Abdel-Khalek1, Khaled A. Selim1, Mohamed M.A. Hassan2, Moharram M.R.3 Saleh A. M.3, A. M. Ramadan3 1Central Metallurgical Research and Development Institute, (CMRDI), Helwan, Egypt 2Mining and Petroleum Engineering Department, Faculty of Engineering, Al-Azhar University, Qena, Egypt 3Mining and Petroleum Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt -----------------------------------------------------------------------------------***--------------------------------------------------------------------------------- Abstract –Applying Paenibacillus polymyxa bacterial furnace with parts entering the slag. This is why the strain as a surface modifier in flotation process and at the reduction behavior of Mn in the blast furnace was studied optimum conditions, succeeded in the removal of 64.89 % of extensively before, trying to avoid the harmful effect of Mn MnO2.Applying the same conditions for flotation of a natural in the ironmaking and steel industries [4, 5, 6]. At the iron ore yielded a concentrate containing 3.7% MnO2, 0.5% same time, due to the similarity of their chemical and SiO2 and 71.30% Fe2O3 with a hematite recovery of 72.46% physical properties, Fe and Mn are always associated in from a feed containing 8.79% MnO2, 0.49% SiO2 and -
Scorodite Precipitation in the Presence of Antimony
Title Scorodite precipitation in the presence of antimony Authors Kossoff, D; Welch, MD; Hudson-Edwards, KA Description publisher: Elsevier articletitle: Scorodite precipitation in the presence of antimony journaltitle: Chemical Geology articlelink: http://dx.doi.org/10.1016/j.chemgeo.2015.04.013 content_type: article copyright: Copyright © 2015 The Authors. Published by Elsevier B.V. Date Submitted 2015-03-31 Chemical Geology 406 (2015) 1–9 Contents lists available at ScienceDirect Chemical Geology journal homepage: www.elsevier.com/locate/chemgeo Scorodite precipitation in the presence of antimony David Kossoff a,MarkD.Welchb, Karen A. Hudson-Edwards a,⁎ a Department of Earth and Planetary Sciences, Birkbeck, University of London, Malet St., London WC1E 7HX, UK b Department of Earth Science, The Natural History Museum, Cromwell Road, London SW7 5BD, UK article info abstract Article history: The effects of Sb on the precipitation of synthetic scorodite, and the resultant phases formed, were investigated. Received 7 October 2014 Nine synthetic precipitates with varying concentrations of Sb, together with As-only and Sb-only end members, Received in revised form 12 April 2015 were prepared using a scorodite synthesis method, and these were characterised using XRD, SEM, chemical Accepted 13 April 2015 digestion and μXRF mapping. XRD analysis shows that the end members are scorodite (FeAsO ·2H O) Available online 27 April 2015 4 2 and tripuhyite (FeSbO4), and that the intermediate members are not Sb-substituted scorodite, but instead are Editor: Carla M Koretsky physical mixtures of scorodite and tripuhyite, with tripuhyite becoming more prominent with increasing amounts of Sb in the synthesis. Electron microprobe analysis on natural scorodites confirms that they contain Keywords: negligible concentrations of Sb. -
Oxidation of Sulfide Minerals. V. Galena, Sphalerite and Chalcogite
Canadian Mineralogist Vol. 18,pp. 365-372(1980) OXIDATIONOF SULFIDEMINERALS. V. GALENA,SPHALERITE AND CHALCOGITE H.F. STEGBR eup L.E. DESJARDINS Mineral SciencesLaboratories, Canada Centre lor Mineral and Energy Technology, Department ol Energy, Mines and Resources,Ottawa, Ontaio KIA OGI AssrRecr long-term stability of sulfide-bearing ores and concentrates.Part of this study was concerned Samples of galena, sphalerite and cbalcocite were with the nature of the products and kinetics of oxidized at 52oC and, 68Vo of relative humidity the oxidation of the commonly encountered periods to five weeks, and the prqd- in air for up sulfide minerals. The oxidation of pyrite, chal- for metal and sulfur-bearing ucts were analyzed pyrrhotite at 52oC and, 687o of. species. Galena is. oxidized to PbSOa, sphalerite copyrite and (RH) has already been in- to ZnSO. * FezO, if iron-bearing, and chalcocite relative humidity to CuO and CuS. The oxidation of galena and vestigated (Steger & Desjardins 1978). This re- sphalerite proceeds according to a linear rate potr summarizes the results of the study 9f tle law: that of chalcocite leads to the formation of a bxidation of galena, sphalerite and chalcocite coherent product layer impenetrable to Oz and HrO under the same conditions. vapor. The air oxidation of galena at relatively low without Keywords: air oxidation, oxidation products, sul- temperatures has been investigated fide minerals, galena, sphalerite, chalcocite. reaching a consensuson the nature of the oxida- tion product. Hagihara (1952), using a re- Sourvrlrnp flection electron-diffraction technique, and Kirkwood & Nutting (1965), using a trans- Nous avons 6tudi6 I'oxydation dans I'air d'6chan- mission electron-diffraction technique, found tillons de galdne, de sphal6rite et de chalcocite i this product to be PbSOo,whereas Leia et al. -
Porphyry Copper Deposits of the American Cordillera
Porphyry Copper Deposits of the American Cordillera Frances Wahl Pierce and John G. Bolm, Editors Arizona Geological Society Digest 20 1995 The Helvetia Area Porphyry Systems, Pima County, Arizona S. A. ANZALONE ASARCO Incorporated, Tu cson, Arizona ABSTRACT INTRODUCTION The Helvetia area porphyry copper deposits occur within The Helvetia area copper deposits occur within a large an extensive Laramide porphyry system located in the Santa Laramide porphyry system located in the Santa Rita Mountains, Rita Mountains, Pima County, Arizona. The entire system Pima County, Arizona. This porphyry copper system consists of consists of four separate centers of copper mineralization: four separate areas of copper mineralization - Rosemont, Peach Rosemont, Peach-Elgin, Broadtop Butte, and Copper Wo rld. Elgin, Broadtop Butte, and Copper World - lying within a Mineralization and alteration are primarily of the contact broad alteration zone in the northern segment of the Santa Rita pyrometasomatic type and hydrothermal alteration and zon Mountains. Mineralization and alteration are primarily contact ing of sulfide mineral assemblages resemble those observed at pyrometasomatic, and zoning of hydrothermal alteration and sul the Twin Buttes Copper Mine located approximately 30 kilo fide mineral assemblages is similar to those observed at the meters west of Helvetia. The stratigraphic sequence, ranging Twin Buttes and Mission Copper Mines located approximately from Cambrian Bolsa Formation to Permian Rain Va lley For 30 kilometers west of Helvetia. ASARCO acquired the copper mation, correlates well with sections developed in the Tw in deposits within the Helvetia area porphyry systems in 1988 and Buttes and Mission Mine areas. The Paleozoic section in the has continued the exploration and development effort since then. -
The Forming Conditions of Alyaskitovoe Tin-Tungsten Deposit, Russia
0393-000066 The forming conditions of Alyaskitovoe tin-tungsten deposit, Russia Corresponding author: Elena Anikina, IGEM RAS, [email protected] Co-authors: Gennady Gamyanin, IGEM RAS, [email protected] The Alyaskitovoe Sn-W deposit is located at the boundary between the Kular-Nersko terrane and the Verkhoyansk fold-thrust belt. It is localized in the tin-tungsten sublatitudinal metallogenic zone. The deposit area is composed of Upper Triassic sandstone-shale intruded by granite porphyry stock (98 MA Rb-Sr). Stock refers to the formation of young Li-F granites (P2O5 = 0.22- 0.56%, F = 0.12-0.21%, Sr = 9224-688g/t, Li = 47-252g/t, Rb = 61-194g/t). Stock and enclosing hornfels dissected by series of steeply dipping quartz veins meridional strike (L = up to 700 m, M = 0.4-0.6 m). Veins are accompanied by wallrock changes. It is greisenization in granitoids (up to 3 m) and tourmalinization – in hornfels (0.5 m). Several paragenetic associations are identified. Metasomatic: molybdenite-apatite1-tourmaline1- quartz-muscovite, tourmaline2-apatite2-fluorite-arsenopyrite-hydromica. Ore: cassiterite- wolframite-tourmaline-arsenopyrite-quartz, pyrrhotite-stannite-sphalerite-pyrite, molybdenite- matildite-aramayoite-galena-(Bi-andorite) Sb-gustovite, hubnerite-Ag-sulfoantimonite-calcite- quartz. Fluid inclusions (FI) in quartz of greisen and ore veins were studied. Temperature of homogenization of greisen inclusions is 460-480°C. FI contain weakly concentrated solutions (4.9- 3.3 wt.% NaCl-equiv), the gas phase is presented СО2 (29.6-78,2 mol.%), СН4 (11.1-21.8 mol.%). FI in quartz of ore veins contain a liquid phase with concentration 9.2-3.3 wt.% NaCl-equiv and homogenization temperatures of 290-380°С. -
Insight Into Mineralizer Modified and Tailored Scorodite Crystal
RSC Advances View Article Online PAPER View Journal | View Issue Insight into mineralizer modified and tailored scorodite crystal characteristics and leachability for Cite this: RSC Adv.,2018,8, 19560 arsenic-rich smelter wastewater stabilization† Yonggang Sun,ab Qi Yao,ab Xin Zhang, *ab Hongling Yang,ab Na Li,ab Zhongshen Zhangab and Zhengping Hao ab Arsenic-rich non-ferrous smelter wastewater has the potential to cause harm to the environment and human health. The use of mineralizer modified and tailored scorodite crystals, a secondary As-bearing mineral, is considered to be the most promising strategy for arsenic stabilization. In this work, firstly, the mechanisms influencing the scorodite crystal characteristics for arsenic stabilization were investigated, and the results indicated that the scorodite stability was greatly influenced by the scorodite crystal shape and particle size. The crystal shape changes that the scorodite solids undergo during the aging period were observed, from a laminar structure to a polyhedron to a standard octahedral structure, and À1 À1 Creative Commons Attribution-NonCommercial 3.0 Unported Licence. meanwhile, the As-concentration decreased from 10.2 mg L to 3.7 mg L , with the relative particle size value (RPS) increasing from 1.50 to 2.64. Secondly, the addition of a mineralizer to further improve the scorodite crystal stability was investigated. It was meaningful to observe that the lowest As- concentration of 0.39 mg LÀ1 could be attained when trace NaF was employed, and it was of great significance to apply this strategy for the disposal of As and F-containing wastewater due to the electrostatic interaction between scorodite and sodium fluoride. -
Tungsten Minerals and Deposits
DEPARTMENT OF THE INTERIOR FRANKLIN K. LANE, Secretary UNITED STATES GEOLOGICAL SURVEY GEORGE OTIS SMITH, Director Bulletin 652 4"^ TUNGSTEN MINERALS AND DEPOSITS BY FRANK L. HESS WASHINGTON GOVERNMENT PRINTING OFFICE 1917 ADDITIONAL COPIES OF THIS PUBLICATION MAY BE PROCURED FROM THE SUPERINTENDENT OF DOCUMENTS GOVERNMENT PRINTING OFFICE WASHINGTON, D. C. AT 25 CENTS PER COPY CONTENTS. Page. Introduction.............................................................. , 7 Inquiries concerning tungsten......................................... 7 Survey publications on tungsten........................................ 7 Scope of this report.................................................... 9 Technical terms...................................................... 9 Tungsten................................................................. H Characteristics and properties........................................... n Uses................................................................. 15 Forms in which tungsten is found...................................... 18 Tungsten minerals........................................................ 19 Chemical and physical features......................................... 19 The wolframites...................................................... 21 Composition...................................................... 21 Ferberite......................................................... 22 Physical features.............................................. 22 Minerals of similar appearance................................. -
Clarke Jeff a 201709 Mscproj
THE CHARACTERIZATION OF ARSENIC MINERAL PHASES FROM LEGACY MINE WASTE AND SOIL NEAR COBALT, ONTARIO by Jeff Clarke A research project submitted to the Department of Geological Sciences and Geological Engineering In conformity with the requirements for the degree of Master of Science in Applied Geology Queen’s University Kingston, Ontario, Canada (July, 2017) Copyright © Jeff Clarke, 2017 i ABSTRACT The Cobalt-Coleman silver (Ag) mining camp has a long history of mining dating back to 1903. Silver mineralization is hosted within carbonate veins and occurs in association with Fe-Co-Ni arsenide and sulpharsenide mineral species. The complex mineralogy presented challenges to early mineral processing methods with varying success of Ag recovery and a significant amount of arsenic (As) in waste material which was disposed in the numerous tailings deposits scattered throughout the mining camp, and in many instances disposed of uncontained. The oxidation and dissolution of As-bearing mineral phases in these tailings and legacy waste sites releases As into the local aquatic environment. Determining the distribution of primary and secondary As mineral species in different legacy mine waste materials provides an understanding of the stability of As. Few studies have included detailed advanced mineralogical characterization of As mineral species from legacy mine waste in the Cobalt area. As part of this study, a total of 28 samples were collected from tailings, processed material near mill sites and soils from the legacy Nipissing and Cart Lake mining sites. The samples were analyzed for bulk chemistry to delineate material with strongly elevated As returned from all sample sites. This sampling returned highly elevated As with up to 6.01% As from samples near mill sites, 1.71% As from tailings and 0.10% As from soils. -
VARISCITE from CENTRAL TAJIKISTAN: PRELIMINARY RESULTS Andrey K
NOTES & NEW TECHNIQUES VARISCITE FROM CENTRAL TAJIKISTAN: PRELIMINARY RESULTS Andrey K. Litvinenko, Elena S. Sorokina, Stefanos Karampelas, Nikolay N. Krivoschekov, and Roman Serov variscite group (variscite and strengite) are isodimor- An occurrence of variscite containing strengite, phous with the metavariscite monoclinic phosphate as well as other minerals from both the variscite mineral group members metavariscite and phospho- and metavariscite groups, was discovered in the siderite, respectively. late 1970s in central Tajikistan. The material, Most of the variscite in the market today comes ranging from light blue to light green to green, is from the state of Utah, close to the cities of Lucin and suitable for cabochon cutting. The samples pre- Fairfield, though some of these mines are practically sented in this study showed traces of sulfur and exhausted (Larsen, 1942; Solodova et al., 1985; Willing arsenic, with higher iron and generally lower et al., 2008). The occurrences at Woodlands, Western vanadium and chromium concentrations than Australia, and Yauli, Peru were discovered in 2004 and variscites reported from other localities.These dif- 2011, respectively (Willing et al., 2008; Hyršl, 2011). ferences may result from the intergrowth of Among the minerals of the variscite and variscite with other minerals from the variscite metavariscite groups, variscite is most often used for and metavariscite groups. carvings and ornaments (see Koivula, 1986; Fritz and Rockwell, 2006; Willing et al., 2008; and Hyršl, 2011). Variscite has a waxy luster and is transparent to translucent with a color range from white to brown ariscite (figure 1), a relatively common cave min- and blue to green to yellow, which can cause misiden- eral that forms as a result of phosphate-bearing V tification as turquoise and chrysoprase (Willing et al., surface solutions reacting with aluminum-rich rocks 2008).