VARISCITE from CENTRAL TAJIKISTAN: PRELIMINARY RESULTS Andrey K
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
SYMMETRY of PHOSPHOSIDERITE Duncelc Mcconnbr.L, The
SYMMETRY OF PHOSPHOSIDERITE DuNcelc McCoNNBr.l, The Uniaersity of Teras, Austin, Teras INrnooucuoN Prior to the description of crystals lrom Sardinia by M. de Angelis (l) in 1926, phosphosiderite was supposed to exhibit the external sym- metry of a substance belonging to the orthorhombic holohedral class. This mineral had been investigated by H. Laubmann and H. Steinmetz (2) as well as the authors who originally described the mineral, W. Bruhns and K. Busz (3). More recently phosphosideritehas been de- scribedfrom Kirunavara, Sweden,by R. Koechlin (4). De Angelis demonstrated that the symmetry is monoclinic on the basis of three difierent types of evidence: (1) The etch figures on the basal pinakoid do not exhibit planar symmetry with respect to a plane normal to the o axis, nor axial sym- metry with respect to the c axis (Fig. 4). (2) The goniometric measurementscannot be reconciled with ortho- rhombic axes of reference,but are quite amenable to monoclinic axes wittr B:89"24t. Certain prominent faces are not repeated as required by orthorhombic symmetry. (3) The optical data are not consistent with orthorhombic symmetry, becauseX Ac> J-3". Before the appearanceof the work by De Angelis, W. T. Schaller (5) had pointed out the marked similarity between the compositions,crystal habits and axial ratios of phosphosiderite and metavariscite [formerly called variscite (6)] and he had suggestedthe possibility of an isodimor- phous series: Octahedral Habit Tabular Habit Scorodite Strengite Phosphosiderite Variscite Metavariscite P. Kokkoros (7) has recently shown that scorodite and strengite are isostructural and the writer has found that variscite produces a powder diffraction pattern sufficiently similar to indicate that it also belongs to this group. -
2015 AFMS Endowment Fund Drawing
2015 AFMS Endowment Fund Drawing The 2014 Endowment Fund Drawing took place in Tulsa, Oklahoma. We had some very nice donations for prizes, and a lot of people stepped up and bought tickets to support the AFMS Endowment Fund. Thank you for your support. And thank you to those who picked up prizes to deliver at the banquet in Tulsa. That helped save the cost of mailing the items. We have received the following donations for the 2015 Endowment Fund Drawing, which will be held on October 24, 2015, at the awards banquet in Austin, Texas. 1.Copper piece and stock certificate donated by Pam Hecht. Estimated value is $65. MWF 2. Howelite and onyx agate necklace and earrings. Donated by Sharon Rogow, crafted by Betsy Oberheim. Estimated value is $75. CFMS 2015 AFMS Endowment Fund Drawing Page 1 of 11 10-11-2015 3. A large agatized coral head donated by the Suncoast Gem and Mineral Society. It was from an old collection of Withlacoochee River coral donated by a member who passed some years ago. The value is estimated to be at least $100. SFMS (This one is larger than the one given last year.) 4. Phareodus encaustus (fossil fish) from the Eocene Period, Green River formation, Kemmerer, Wyoming. This was donated by J.C. and Donna Moore with an approximate value of $65. MWF #5 - is a Tampa Bay Coral pair donated by Barbara Sky, MWF Uniform Rules Chairman. The pair is about six inches long and two and a half inches wide. The estimated value is $50. -
38Th RMS Program Notes
E.fu\wsoil 'og PROGRAM Thursday Evening, April 14, 2011 PM 4:00-6:00 Cocktails and Snacks – Hospitality Suite 400 (4th Floor) 6:00-7:45 Dinner – Baxter’s 8:00-9:15 THE GUALTERONI COLLECTION: A TIME CAPSULE FROM A CENTURY AGO – Dr. Renato Pagano In 1950, the honorary curator of the Museum of Natural History in Genoa first introduced Dr. Renato Pagano to mineral collecting as a Boy Scout. He has never looked back. He holds a doctorate in electrical engineering and had a distinguished career as an Italian industrialist. His passion for minerals has produced a collection of more than 13,000 specimens, with both systematic and aesthetic subcollections. His wife Adriana shares his passion for minerals and is his partner in collecting and curating. An excellent profile of Renato, Adriana, and their many collections appeared earlier this year in Mineralogical Record (42:41-52). Tonight Dr. Pagano will talk about an historic mineral collection assembled between 1861 and 1908 and recently acquired intact by the Museum of Natural History of Milan. We most warmly welcome Dr. Renato Pagano back to the speakers’ podium. 9:15 Cocktails and snacks in the Hospitality Suite on the 4th floor will be available throughout the rest of the evening. Dealers’ rooms will be open at this time. All of the dealers are located on the 4th floor. Friday Morning, April 15, 2011 AM 9:00 Announcements 9:15-10:15 CRACKING THE CODE OF PHLOGOPITE DEPOSITS IN QUÉBEC (PARKER MINE), MADAGASCAR (AMPANDANDRAVA) AND RUSSIA (KOVDOR) – Dr. Robert F. Martin Robert François Martin is an emeritus professor of geology at McGill University in Montreal. -
The Use of Raman Spectroscopy in the Characterization of Variscite Provenance: the Gavà Case
Chapitre III : Apport des méthodes d’analyses à l’étude de la diffusion des productions The use of Raman spectroscopy in the characterization of variscite provenance: the Gavà case Joan Carlos Melgarejo, Laia Arqués, Cristina Villanova-de-Benavent, Tariq Jahwari, Lisard Torró, Josep Bosch Argilagós, Montgarri Castillo-Oliver, Marc Campeny, Sandra Amores, Aleu Andreazini, Saleh Lehbib, Antoni Camprubí Abstract. The Gavà phosphate deposit, mined during the Neolithic, was produced by weathering processes affecting primary apatite beds. It exhibits a neat vertical zoning, related to chemical gradients during weathering. Strengite, yellowish Al-rich strengite and ferroan variscite are found at the top, pale- green variscite at the intermediate levels, and green variscite in depth. Fe values are very low in the greenish samples, as well as Cr and V. Raman spectrums of the Gavà variscite show differences with samples from other occurrences worldwide. Moreover, some spectral differences can also be observed in the Raman spectra of variscite coming from different depths in the deposit. Raman spectroscopy can be an efficient tool to discriminate not only samples from different geographical localities, but also from its original position in a given deposit. Key-words: variscite, Raman, microprobe, veins, supergene. Résumé. Le gîte de phosphates de Gavà, exploité au Néolithique, s’est formé par des processus de météorisation qui auraient affecté des strates primaires d’apatite. Ce gîte a une zonation chimique verticale, qui aurait été produite par des gradations chimiques lors de la météorisation. La partie haute du gîte contient de la strengite, de l’Al-strengite et de la Fe-variscite jaunâtres ; les niveaux intermédiaires contiennent de la variscite verdâtre et les niveaux plus profonds, de la variscite verte. -
NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr. -
New Mineral Names*
American Mineralogist, Volume 75, pages 240-246, 1990 NEW MINERAL NAMES* JOHN L. JAMBOR CANMET, 555 Booth Street, Ottawa, Ontario KIA OGI, Canada EDWARD S. GREW Department of Geological Sciences, University of Maine, Orono, Maine 04469, U.S.A. Baiyuneboite-(Ce) the formula for cordylite-(Ce) requires revision such that Pigqiu Fu, Xlanze Su (1987) Baiyuneboite-A new min- cordylite-(Ce) and baiyuneboite-(Ce) may be identical. The eral. Acta Mineralogica Sinica, 7, 289-297 (in Chinese, Chairman therefore withdrew the approval and asked that English abstract). the authors withhold publication of their description of Pingqiu Fu, Youhua Kong, Guohong Gong, Meicheng baiyuneboite-(Ce) until the matter could be resolved. The Shao, Jinzi Qian (1987) The crystal structure of bai- request, unfortunately, was ignored. J.L.J. yuneboite-(Ce). Acta Mineralogica Sinica, 7, 298-304 (in Chinese, English abstract). Diaoyudaoite* Electron-microprobe analyses of ten grains, whose va- lidity was checked by single-crystal X-ray methods prior Shunxi Shen, Lirong Chen, Anchun Li, Tailu Dong, Qiu- to analysis, gave an average ofNa20 4.73, CaO 1.04, BaO huo Huang, Wenqiang Xu (1986) Diaoyudaoite-A new 20.38, Ce20, 24.21, La20, 10.92, Pr20, 0.62, Nd20, 10.04, mineral. Acta Mineralogica Sinica, 6, 224-227 (in Gd20, 0.13, F 2.50, C02 (by gas chromatography) 24.64, Chinese, English abstract). o == F 1.05, sum 98.16 wt%, corresponding to Nal.OS- The average of 13 electron-microprobe analyses gave (BaO.94CaO.I,)n07( Ce I.OSLao.4sN do.42Pr 0.0'Gdo.OI)"1.99F 0.9'C,.97- Na20 4.54, AI20, 93.00, Cr20, 1.95, MgO 0.10, CaO 0.10, 012.07'ideally NaBaCe2F(CO')4' The mineral occurs as yel- SiOz 0.23, K20 0.12, sum 100.04 wt%, corresponding to low, irregular grains 0.3 to 3 mm in size, frequently as (N ao.87Ko.ozMgo.02CaO.01)ro.92(AllO.84CrO.lsSio.02)"'1.01 0,7, ide- thin hexagonal tablets. -
The Mineralogical Fate of Arsenic During Weathering Of
THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis Presented to the faculty of the Department of Geology California State University, Sacramento Submitted in partial satisfaction of the requirements for the degree of MASTER OF SCIENCE in Geology by Tamsen Leigh Burlak SPRING 2012 © 2012 Tamsen Leigh Burlak ALL RIGHTS RESERVED ii THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY A Thesis by Tamsen Leigh Burlak Approved by: __________________________________, Committee Chair Dr. Charles Alpers __________________________________, Second Reader Dr. Lisa Hammersley __________________________________, Third Reader Dr. Dave Evans ____________________________ Date iii Student: Tamsen Leigh Burlak I certify that this student has met the requirements for format contained in the University format manual, and that this thesis is suitable for shelving in the Library and credit is to be awarded for the project. _______________________, Graduate Coordinator ___________________ Dr. Dave Evans Date Department of Geology iv Abstract of THE MINERALOGICAL FATE OF ARSENIC DURING WEATHERING OF SULFIDES IN GOLD-QUARTZ VEINS: A MICROBEAM ANALYTICAL STUDY by Tamsen Leigh Burlak Mine waste piles within the historic gold mining site, Empire Mine State Historic Park (EMSHP) in Grass Valley, California, contain various amounts of arsenic and are the current subject of remedial investigations to characterize the arsenic present. In this study, electron microprobe, QEMSCAN (Quantitative Evaluation of Minerals by SCANning electron microscopy), and X-ray absorption spectroscopy (XAS) were used collectively to locate and identify the mineralogical composition of primary and secondary arsenic-bearing minerals at EMSHP. -
Strengite.Pdf
3+ Strengite Fe PO4 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are variable in habit, may be dominated by {111}, lathlike along [001], or elongated along [100] or [010], to 5 cm, with many forms. Generally radial fibrous, as botryoidal or spherical aggregates and crusts. Twinning: Rarely on {201}. Physical Properties: Cleavage: On {010}, good; on {001}, poor. Hardness = 3.5 D(meas.) = 2.84–2.87 D(calc.) = 2.84 Optical Properties: Transparent to translucent. Color: Purple, violet, pink, peach-blossom- red, carmine, greenish white; may be nearly colorless. Streak: White. Luster: Vitreous. Optical Class: Biaxial (+). Orientation: X = a; Y = c; Z = b. Dispersion: r< v,strong. α = 1.697–1.708 β = 1.708–1.719 γ = 1.741–1.745 2V(meas.) = Moderate to small. Cell Data: Space Group: P cab. a = 10.122(1) b = 9.886(1) c = 8.7233(7) Z = 8 X-ray Powder Pattern: The Kreuzberg, Germany. (ICDD 33–667). 3.114 (100), 4.383 (85), 5.509 (60), 2.546 (50), 3.996 (45), 3.002 (45), 2.949 (45) Chemistry: (1) (2) P2O5 38.24 37.99 Fe2O3 43.40 42.73 H2O 18.89 19.28 Total 100.53 100.00 • (1) Pleystein, Germany. (2) FePO4 2H2O. Polymorphism & Series: Dimorphous with phosphosiderite, forms a series with variscite. Mineral Group: Variscite group. Occurrence: A late secondary mineral in complex granite pegmatites; in “limonite” iron ores and gossans; with magnetite iron ores; rarely a cave mineral. Association: Beraunite, hur´eaulite,dufr´enite,bermanite, stewartite, cacoxenite, rockbridgeite, vivianite, apatite, leucophosphite, phosphosiderite. -
Turquoise: the Cerrillos Mineral Gem
A Living History Museum Turquoise: The Cerrillos Mineral Gem The mines of Cerrillos, New Mexico produce a particularly beautiful blue/ green variety of turquoise, so stunning in fact that they have been mined for roughly the last 3,000 years! Chemically, it is a phosphate of aluminum carrying small quantities of copper and iron and a green mineral, variscite. These give the gemstone its color as well as its value and beauty. This is the only phosphate that is considered a precious stone. Ancestral Puebloans first started mining the Cerrillos hills circa 900 BCE, and it’s been mined ever since. This “gem” of a mineral has been found across the state, and archaeological evidence shows it’s been mined and fashioned into ornaments and jewelry for centuries, with remnants found at one of the most ancient sites in the state, Chetro Ketl at Chaco Canyon. Southwest indigenous groups call turquoise chalchihuitl, as did the ancient peoples of Mexico and Central America who used the same word to describe jade or green turquoise. One of the hills still being mined in Cerrillos still bears the name, Mount Chalchihuitl. Combined with shell and coral from the California coast acquired in trade, turquoise jewelry itself became a valued commodity. Spanish settlers didn’t have much interest in turquoise as they were looking for what they considered a more important prize, namely gold and silver. In fact, outside of local indigenous groups, other cultural groups weren’t much interested in it and it didn’t really gain popularity with the American cultural at large until the 1890s. -
Turquoise and Variscite by Dean Sakabe MEETING Wednesday
JANUARY 2015 - VOLUME 50, ISSUE 1 Meeting Times Turquoise and Variscite By Dean Sakabe MEETING We are starting the year off with Tur- Wednesday quoise and Variscite. January 28, 2015 Turquoise is a copper aluminum phosphate, whose name originated in 6:15-8:00 pm medieval Europe. What happened was Makiki District Park that traders from Turkey introduced the blue-green gemstone obtained Admin Building from Persia (the present day Iran) to Turquoise (Stabilized), Europeans. Who in turn associated Chihuahua, Mexico NEXT MONTH this stone with the Turkish traders, Tucson Gem & rather than the land of the stones origin. Hence they called this stone Mineral Show “Turceis” or, later in French “turquois.” Over time english speakers adopted this French word, but adding an “e” (Turquiose). The Spanish called this stone “Turquesa”. LAPIDARY The gemstone grade of Turquoise has a hardness of around 6, however Every Thursday the vast majority of turquoise falls in the softer 3–5 range. With the 6:30-8:30pm exception being the Turquoise from Cripple Creek, Colorado which is in the 7-8 range. Turquoise occurs in range of hues from sky blue to grey Makiki District Park -green. It is also found in arid places that has a high concentration of 2nd floor Arts and copper in the soil. The blue color is created by copper and the green Crafts Bldg by bivalent iron, with a little amount of chrome. Turquoise often, has veins or blotches running MEMBERSHIP through it, most often brown, but can be light gray or black DUE COSTS 2015 depending on where it was Single: $10.00 found. -
New Mineral Names*,†
American Mineralogist, Volume 106, pages 1360–1364, 2021 New Mineral Names*,† Dmitriy I. Belakovskiy1, and Yulia Uvarova2 1Fersman Mineralogical Museum, Russian Academy of Sciences, Leninskiy Prospekt 18 korp. 2, Moscow 119071, Russia 2CSIRO Mineral Resources, ARRC, 26 Dick Perry Avenue, Kensington, Western Australia 6151, Australia In this issue This New Mineral Names has entries for 11 new species, including 7 minerals of jahnsite group: jahnsite- (NaMnMg), jahnsite-(NaMnMn), jahnsite-(CaMnZn), jahnsite-(MnMnFe), jahnsite-(MnMnMg), jahnsite- (MnMnZn), and whiteite-(MnMnMg); lasnierite, manganflurlite (with a new data for flurlite), tewite, and wumuite. Lasnierite* the LA-ICP-MS analysis, but their concentrations were below detec- B. Rondeau, B. Devouard, D. Jacob, P. Roussel, N. Stephant, C. Boulet, tion limits. The empirical formula is (Ca0.59Sr0.37)Ʃ0.96(Mg1.42Fe0.54)Ʃ1.96 V. Mollé, M. Corre, E. Fritsch, C. Ferraris, and G.C. Parodi (2019) Al0.87(P2.99Si0.01)Ʃ3.00(O11.41F0.59)Ʃ12 based on 12 (O+F) pfu. The strongest lines of the calculated powder X-ray diffraction pattern are [dcalc Å (I%calc; Lasnierite, (Ca,Sr)(Mg,Fe)2Al(PO4)3, a new phosphate accompany- ing lazulite from Mt. Ibity, Madagascar: an example of structural hkl)]: 4.421 (83; 040), 3.802 (63, 131), 3.706 (100; 022), 3.305 (99; 141), characterization from dynamic refinement of precession electron 2.890 (90; 211), 2.781 (69; 221), 2.772 (67; 061), 2.601 (97; 023). It diffraction data on submicrometer sample. European Journal of was not possible to perform powder nor single-crystal X-ray diffraction Mineralogy, 31(2), 379–388.