Historical Perspectives in the Conservation of Works of Art on Paper

Total Page:16

File Type:pdf, Size:1020Kb

Historical Perspectives in the Conservation of Works of Art on Paper Readings in Conservation Historical Perspectives in the Conservation of Works of Art on Paper Edited by MARGARET HOLREN ELLIS THE GETTY CONSERVATION INSTITUTE LOS ANGELES Contents Foreword xiii Preface xv Acknowledgments xvii Note to the Reader xix Part I The Powers of Paper i reading i Verner W. Clapp | The Story of Permanent/Durable Book-Paper, 1115—1970 (1972) 3 2 Thomas Churchyard | A Sparke of Frendship and Warme Goodwill, That Shewes the Effect of True Affection and Unfoldes the Finenesse of This World (1588) 8 3 Robert Bell | Observations Relative to the Manufactures of Paper and Printed Books in the Province of Pennsylvania (1773) 18 4 Richard Herring | Paper & Paper Making, Ancient and Modern (1856) 20 5 Henri Pourrat | The Devil in the Paper Mill: A Tale (1948) 22 6 Eden Phillpotts | Storm in a Teacup (1919) 29 7 Henry Morris | Nicolas Louis Robert and His Endless Wire Papermaking Machine: With Facsimiles of the Inventors Original Drawings of the First Paper Machine . (2000) 32 8 Jacques Derrida | Paper or Me, You Know . (1997) 34 9 Pierre-Marc de Biasi | A Paradoxical Substance (2011) 36 Part II The Mastery of Drawing 43 reading io Winslow Ames | Introduction to The Mastery of Drawing, by Joseph Meder (1978) 46 11 Letizia Montalbano | Drawings Revealed: Analyses of Graphic Techniques, Challenges, Directions and Points of View (2008) 49 12 Walter Koschatzky | Technique as Artistic Expression (1987) 13 Konrad Oberhuber | Introduction to Sixteenth Century Italian Drawings from the Collection ofjanos Scholz (1973) 14 Max Klinger | Painting and Drawing (1891) 15 Henri Zerner | What Gave Connoisseurship Its Bad Name? (1987) 16 J. D. Harding | Elementary Art; or, The Use of the Lead Pencil Advocated and Explained (1838) 17 Johann Peter Eckermann | Conversations with Goethe in the Last Years of His Life (1836—1848) 18 Henry Petroski | The Pencil: A History of Design and Circumstance (1990) 19 W. Ostwald | Letters to a Painter on the Theory and Practice of Painting (1904) 20 Joseph Farington | The Farington Diary (1795) 21 Marjorie B. Cohn | A Note on Media and Methods (1970) Part III Printmaking: Multiple Originals reading 22 Ugo da Carpi | Petition to the Venetian Senate (1516) 23 William M. Ivins Jr. | How Prints Look: Photographs with a Commentary (1943) 24 Seymour Haden | About Etching (1878—1879) 25 Joseph Pennell | Etchers and Etching: Chapters in the History of the Art Together with Technical Explanations of Modern Artistic Methods (1925) 26 W. Biscombe Gardner | Wood Engraving as Compared with Other Reproductive Arts, and Its Future as a Fine Art (1896) 27 Hans W. Singer and William Strang | Etching, Engraving and the Other Methods of Printing Pictures (1897) 28 Arthur Hayden | Chats on Old Prints (1906) vi 29 Roy Vernon Sowers and Pauline Sowers | Enjoy Your Museum II: Prints (1934) 117 30 William M. Ivins Jr. | How Prints Look: Photographs with a Commentary (1943) 119 31 Rudolph Ackermann | Some Account of the Art of Lithography, or Process for Taking Fac-Simile Impressions of Drawings from Stone (1817) 123 32 Andre Mellerio | Original Color Lithography (1898) 129 33 Carl Zigrosser | The Historical Background of Originality (1965) 137 34 Walter Benjamin | The Work of Art in the Age of Mechanical Reproduction (1936) 144 35 Johanna Drucker | Offset: The Work of Mechanical Art in the Age of Electronic (Re)production (1998) 149 36 Ruth Weisberg | The Syntax of the Print: In Search of an Aesthetic Context (1986) 156 Part IV "Paper Is Part of the Picture" 159 reading 37 Heinz Corte | Perception of the Optical Properties of Paper (1976) 162 38 A. H. Munsell | A Color Notation System (1905) 168 39 E. J. Labarre | Dictionary and Encyclopedia of Paper and Paper-Making (1952) 173 40 J.-S.-E. (Jean-Sebatien-Eugene) Julia de Fontenelle | The Papermakers' and Paper Merchants' Complete Manual (1828) 177 41 R. H. Clapperton | Paper and Its Relationship to Books (1934) 180 42 James Harper | Verso: The Flip Side of Master Drawings (2001) 182 43 Allan H. Stevenson | Watermarks Are Twins (1951—1952) 186 44 Paul Needham | The Study of Paper from an Archival Point of View (1988) 198 45 Elizabeth Lunning | Characteristics of Italian Paper in the Seventeenth Century (1989) 203 vii 46 Elizabeth Lunning and Roy Perkinson | The Print Council of America Paper Sample Book: A Practical Guide to the Description of Paper (1996) 47 Judith Walsh | Paper Survey (1999) Part V Deterioration and Change: Paper "Yellow'd with Their Age" reading 48 John Murray | Practical Remarks on Modern Paper (1829) 2 49 Honore de Balzac | Lost Illusions (1837—1843) 2: 50 Wolfgang Schlieder | Friedrich Gottlob Keller, Inventor of the Wood-Pulping Machine: Contributions to His Biography from Letters (1977) 24 51 B. L. Browning | The Nature of Paper (1970) 24 52 S. Kohler and G. Hall | Acidity in Paper (1925) 2; 53 Arthur David Baynes-Cope | Superstition and Science in Conservation (1982) 25 54 W. J. Barrow | Migration of Impurities in Paper (1953) 2( 55 Philip Luner | Paper Permanence (1969) 2" 56 American National Standard for Information Sciences | Permanence of Paper for Printed Library Materials Z39.48-1984 (1984) 27 57 Antoinette Dwan | Paper Complexity and the Interpretation of Conservation Research (1987) 27 58 Vincent Daniels | The Discolouration of Paper on Ageing (1988) 28 59 Paul M. Whitmore | The Mechanisms of Chemical Deterioration of Paper (1994) 28 60 Helmut Bansa | Accelerated Ageing of Paper: Some Ideas on Its Practical Benefit (2002) 29 61 Henk J. Porck | Rate of Paper Degradation: The Predictive Value of Artificial Aging Tests (2000) 29 via 62 Nicholson Baker | Double Fold: Libraries and the Assault on Paper (2001) 298 63 Robert L. Feller | The Deteriorating Effect of Light on Museum Objects: Principles of Photochemistry, the Effect on Varnishes and Paint Vehicles and on Paper (1964) 303 64 Robert L. Feller | Concerning the Place of Science in the Scheme of Things (1989) 309 Part VI Deterioration and Change: Media "Even in Their Partial Ruin Marvelous" 315 Watercolors reading 65 Marjorie B. Cohn | Wash and Gouache: A Study of the Development of the Materials of Watercolor (1977) 317 66 Joseph Sidebotham | Letter to the Manchester Literary and Philosophical Society (1877, 1881) 326 67 W. J. Russell and W. de W. Abney | Report to the Science and Art Department of the Committee of Council on Education on the Action of Light on Water Colours (1888) 329 68 Winsor & Newton | Statement of Policy 1892 (1997) 335 69 W. Ostwald | Letters to a Painter on the Theory and Practice of Painting (1904) 339 Iron-Gall Ink 70 Thaddeus Davids | The History of Ink including Its Etymology, Chemistry, and Bibliography (i860) 342 71 J.R. | Ink for Lawyers (1884) 348 72 John Murray | Practical Remarks on Modern Paper (1829) 351 73 Sigmund Lehner | Ink Manufacture including Writing, Copying, Lithographic, Marking, Stamping and Laundry Inks (1902) 353 74 Walter S. Landis | The Electrolytic Corrosion of Electroplated Objects (1911) 356 ix 75 Otto Posse | The Conservation of Manuscripts, According to the International Conference for the Conservation and Repair of Old Manuscripts at St. Gallen (1899) 3* Part VII Treatment: Limits and Limitations 36 reading 76 Arthur David Baynes-Cope | Ethics in Paper Conservation (1982) 36 77 Irene Briickle | The Practice of Looking in Paper Conservation (2001) 3" 78 Mitchell S. Buck | Book Repair and Restoration (1918) 35 79 Chris Caple | Conservation Skills: Judgement, Method and Decision Making (2000) 37 80 Alfred Whitman | The Print-Collector's Handbook (1903) 38 81 Carlo James | Old Master Prints and Drawings: An Art-Historical Survey of Collecting and of Preservation Methods (1992) 38 82 Thea Burns | Preserving Master Drawings: A Cultural Perspective (2001) 40 83 Irene Briickle | Aqueous Treatment in Context (2011) 41 84 Antoinette King | The Conservation Treatment of a Collage: Man with a Hat by Pablo Picasso (1987) 42 85 Keiko Mizushima Keyes | The Unique Qualities of Paper as an Artifact in Conservation Treatment (1978) 42 86 Antoinette King | Technical and Esthetic Attitudes about the Cleaning of Works of Art on Paper (1986) 43 87 Keiko Mizushima Keyes | Alternatives to Conventional Methods of Reducing Discoloration in Works of Art on Paper (1980) 44 88 Carlo James, Caroline Corrigan, Marie Christine Enshaian, and Marie Rose Greca | Old Master Prints and Drawings: A Guide to Preservation and Conservation (1997) 45 89 Jane McAusland | The Practicalities and Aesthetics of Retouching: Rationality versus Intuition (2002) 45 X Part VIII The Paper Conservator: Going beyond the Bench 471 reading 90 George Cumberland| An Essay on the Utility of Collecting the Best Works of the Ancient Engravers of the Italian School . (1827) 475 91 Max Schweidler | The Restoration of Engravings, Drawings, Books, and Other Works on Paper (1950) 477 92 Anne F. Clapp | Curatorial Care of Works of Art on Paper (1973) 480 93 Marjorie B. Cohn | Editorial (1979) 482 94 Marjorie B. Cohn | Change, We Hope for the Better (2001) 485 95 Salvador Munoz-Vinas | Contemporary Theory of Conservation (2005) 492 96 Richard Hemmings | Restoration (2004) 495 Further Reading 498 About the Editor 513 Index 514 xi .
Recommended publications
  • TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector
    TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector 2018 TABLE OF contEnts ACKNOWLEDGEMENTS 10 EXECUTIVE SUMMARY 11 1 INTRODUCTION 13 2 OVERVIEW OF THE PULP AND PAPER SECTOR 15 2.1. Status of the Indian Paper Industry 15 2.2. Overview of the Pulp and Papermaking Process 20 2.3. Patenting in the Paper and Pulp Industry: A Historical Perspective 22 2.4. Environmental Impact of the Pulp and Paper Industry 25 3 METHODOLOGY 27 3.1. Search Strategy 27 4 ANALYSIS OF PATENT DOCUMENTS USING GPI 31 4.1. Papermaking; Production of Cellulose (IPC or CPC class D21) 31 4.2. Analysis of Patenting Activity in Different Technology Areas using GPI 38 5 ANALYSIS OF THE INDIAN PATENT SCENARIO WITHIN THE CONTEXT OF THIS REPORT 81 5.1. Analysis of Patents Filed in India 81 6 CONCLUDING REMARKS 91 REFERENCES 93 ANNEXURE 94 Annexure 1. Technologies related to paper manufacturing 94 Annexure 2. Sustainable/green technologies related to pulp and paper sector 119 Annexure 3. Emerging Technology Areas 127 List OF FIGURES Figure 2.1: Geographical Spread of Figure 4.11: (d) Applicant vs. Date of Indian Paper Mills .................................16 Priority Graph: Paper-Making Machines Figure 2.2: Share of Different Segments and Methods ........................................42 in Total Paper Production .......................19 Figure 4.11: (e) Applicant vs. Date of Figure 2.3: Variety Wise Production of Priority Graph: Calendars and Accessories ..43 Paper from Different Raw Materials ........19 Figure 4.11: (f) Applicant vs. Date of Figure 2.4: Different Varieties of Paper Priority Graph: Pulp or Paper Comprising Made from Various Raw Materials ..........19 Synthetic Cellulose or Non-Cellulose Fibres ..43 Figure 2.5: Diagram of a Process Block Figure 4.11: (g) Applicant vs.
    [Show full text]
  • Born As Twins - Papermaking and Recycling
    1 Born as twins - papermaking and recycling Boris Fuchs, Frankenthal, Germany Abstract: It will be shown that in the year 105 AD., when the purchasing administrator at the Chinese Emperor’s Court, G-ii Ltm, invented, or better said, recorded the papermaking process, it was common practice to recycle used textile clothes, fishing nets and the hemp material of ropes to get a better and cheaper (less labour intensive) raw material for papermaking than the bark of mulberry trees, bamboo and china grass. When the art of papemaking, on its long march through the Arabian World, came to Europe, used textile rags were the only raw material, thus recycling was again closely related to papermaking, and to secure the paper-maker’s business base, it was strictly forbidden to export textile rags to other countries. Despite heavy punishments, smuggling flourished at that time. The &inking process was invented in 1774 by Julius Claproth and bleaching by Claude Louis Berthollet in 1785, but with the introduction of ground wood in 1845 by Friedrich Keller, recycling lost its preferential status in the paper manufacmring industry by the second half of the 20ti century, when economic considerations, especially in Central Europe, caused its comeback, long before ecological demands forced its reintroduction and environmental legislation was set in place. Thus recycling with papermaking is not an invention of the present time, but a twin arrangement right from the beginning. For the future, a certain balance between primary and secondary fibre input should be kept to avoid any collapse in the paper strength by too often repeated recycling., also to assist the forest industry in keeping our forests clean and healthy.
    [Show full text]
  • Erfindung Der Erzeugung Von Holzschliff Durch Friedrich Gottlob Keller
    **SGRD* PAPIERGESCHICHTE Abb. 1: Friedrich Gottlob Keller Erfindung der Erzeugung von Holzschliff durch Friedrich Gottlob Keller Im Lebensbild Friedrich Gottlob Kellers spiegeln sich auf chemischem Wege Papierfaserstoff aus Holz zu gewinnen. die Facetten der industriellen Revolution in Deutsch- Im Ergebnis seiner Versuche kam er zu dem Schluss „ …dass unter land in der Mitte des 19. Jahrhunderts. Als Querein- Einwirkung höherer Hitzegrade, als sie der bloße Siedepunkt gestattet, steiger greift er den rasch wachsenden Bedarf der es vielleicht möglich sein könnte, dies (nämlich den chemische Auf- bereitung von Holz zu Faserstoff) zu erreichen. Allein der gleichen Papierindustrie an einem alternativen Rohstoff zu Dampfapparate standen mir nicht zur Verfügung, und deshalb musste Hadern auf und hält in seinem Ideenbuch unter ich davon absehen.“ 1 Damit war Keller aus heutiger Sicht bereits 1840 anderen den Gedanken fest, „Papier zu fertigen von gedanklich einen Schritt in Richtung der später entwickelten Holzfasern, welche durch Friktion erzeugt werden“. chemischen Aufschlussverfahren gegangen. Seine Erfindung der Holzschlifferzeugung findet welt- Beide Gedankenrichtungen machen deutlich, dass Keller – gewisser- weit Verbreitung - der persönliche wirtschaftliche maßen als „Quereinsteiger“– für die Faserstoff- und Papiererzeugung Ertrag bleibt ihm jedoch in tragischer Weise verwehrt. sowie das Druckgewerbe ein lebhaftes Interesse hatte. In eigener Er- innerung bezieht er sich in diesem Zusammenhang auf ein Polytech- nisches Journal aus dem Jahr 1839 oder 1840. In der Tat finden sich zu Unruhiger Geist jener Zeit zum Beispiel im „Polytechnischen Journal“ verschiedene Am 27. Juni 1816 wird Keller (Abb. 1) in Hainichen /Sachsen geboren. Publikationen und Patentschriften, die auf die Erzeugung von Faser- Bereits während seiner Schulzeit zeigen sich seine technischen stoffen für die Papierherstellung ausgerichtet sind, u.a.
    [Show full text]
  • The-Gutenberg-Museum-Mainz.Pdf
    The Gutenberg Museum Mainz --------------------------------------------------------------------- Two original A Guide Gutenberg Bibles and many to the other documents from the dawn of the age of printing Museum ofType and The most beautiful Printing examples from a collection of 3,000 early prints Printing presses and machines in wood and iron Printing for adults and children at the Print Shop, the museum's educational unit Wonderful examples of script from many countries of the world Modern book art and artists' books Covers and illustrations from five centuries Contents The Gutenberg Museum 3 Johannes Gutenberg- the Inventor 5 Early Printing 15 From the Renaissance to the Rococo 19 19th Century 25 20th Century 33 The Art and Craftmanship of the Book Cover 40 Magic Material Paper 44 Books for Children and Young Adults 46 Posters, Job Printing and Ex-Libris 48 Graphics Techniques 51 Script and Printing in Eastern Asia 52 The Development of Notation in Europe and the Middle East 55 History and Objective of the Small Press Archives in Mainz 62 The Gutenberg Museum Print Shop 63 The Gutenberg Society 66 The Gutenberg-Sponsorship Association and Gutenberg-Shop 68 Adresses and Phone Numbers 71 lmpressum The Gutenberg Museum ~) 2001 The Cutcnlx~rg Museum Mainz and the Cutcnbc1g Opposite the cathedral in the heart of the old part ofMainz Spons01ship Association in Germany lies the Gutenberg Museum. It is one of the oldest museums of printing in the world and This guide is published with tbc kind permission of the attracts experts and tourists from all corners of the globe. Philipp von Zahc1n publisher's in Mainz, In r9oo, soo years after Gutenberg's birth, a group of citi­ with regard to excLrpts of text ;md illustrations zens founded the museum in Mainz.
    [Show full text]
  • Part I Chemical Pulping
    1 Part I Chemical Pulping Handbook of Pulp. Edited by Herbert Sixta Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30999-3 3 1 Introduction Herbert Sixta 1.1 Introduction Industrial pulping involves the large-scale liberation of fibers from lignocellulosic plant material, by either mechanical or chemical processes. Chemical pulping relies mainly on chemical reactants and heat energy to soften and dissolve lignin in the plant material, partially followed by mechanical refining to separate fibers. Mechanical pulping involves the pretreatment of wood with steam (and some- times also with aqueous sulfite solution) prior to the separation into fibrous mate- rial by abrasive refining or grinding. Depending on its end-use, the material recov- ered from such processes – the unbleached pulp – may be further treated by screening, washing, bleaching and purification (removal of low molecular-weight hemicelluloses) operations. For any given type of production, the properties of the unbleached pulp are de- termined by the structural and chemical composition of the raw material. The variation in fiber dimension and chemical composition of some selected fibers is detailed in Tab. 1.1. By far, the predominant use of the fiber material is the manufacture of paper, where it is re-assembled as a structured network from an aqueous solution. Fiber morphology such as fiber length and fiber geometry have a decisive influence on the papermaking process. A high fiber wall thickness to fiber diameter ratio means that the fibers will be strong, but that they may not be able to bond as effec- tively with each other in the sheet-forming process.
    [Show full text]
  • The Problem of Paper in the Weimar Republic Heidi JS Tworek
    The Death of News? The Problem of Paper in the Weimar Republic Heidi J. S. Tworek This is an Accepted Manuscript of an article published by Cambridge University Press in Central European History 50, no. 3 (2017), pp. 328–346. Access the version of record here: https://doi.org/10.1017/S0008938917000619 Abstract: In the early 1920s, the press faced an existential challenge. Publishers proclaimed the death of news, not because nothing was happening, but because there was insufficient paper to print newspapers. While historians of the early modern period have long investigated material constraints on the spread of information, the problem of paper in Weimar Germany shows that the economics and politics of supply chains continued to shape cultural production in the twentieth century as well. Rationing during World War I subsequently became a crisis in the 1920s, when paper shortages, which had started as an issue of prices and supply chains, ballooned into a discussion about the role of the press in political and economic life, about the relationship between the federal states and the central government, and about the responsibility of a democratic government to ensure an independent press. Paper became a litmus test for the relationship between politicians and the press. The failure to resolve the crisis not only undermined the trust of publishers in Weimar institutions, but, this article argues, also enabled greater control by right-wing media empires. The public sphere, it turned out, had a very material basis. In den frühen 1920er Jahren sah sich die deutsche Presse mit einer existentiellen Herausforderung konfrontiert.
    [Show full text]
  • Inside ACAT 26
    18 APPLIED CHEMICALS International Group 01 Issue 26 Newspaper for customers, friends and employees MAP-STAR ACAT produces struvite INTELLIGENT FLOCSTARS FlocStar®Giga 1970L ECOSORB® In Cyprus it does not stink anymore CONTENTS NEWS, EVENTS 2 Ressources, Innovations, Solutions: IFAT, the World‘s Leading Trade Fair for environmental technologies TECHNICS 4 MAP-Star: ACAT produces struvite 8 DispStar® – the new stars in the ACAT sky 10 Product development: FlocStar® Giga 1970 L Our new, patented MAP system solves Intelligent flocculants adjusting to individual conditions the struvite problem in sewage sludge treatment. 12 SKYVELL - Two nasty malodours where Skyvell “got it” and cleared the air simply and naturally! 14 Fighting foul odours at Tao’s Restaurant-, Lounge and Bar in Zurich 16 In Cyprus it does not stink anymore: Ecosorb® 505 Gel helps! 18 Lithopone by VB TECHNO is the solution for the partial replacement of TiO2 20 Black on white: The history of papermaking (part 3) COMPANY NEWS 24 Christine Nestler-Kenzian: A passionate photographer With FlocStar® Giga 1970 L we have 26 Healthy through the year: developed flexible flocculants according The importance of vitamin D3 for human health to customer needs adjusting automati- cally to individual conditions.. 28 Cooking according to the five elements in spring 29 Anniversaries, newcomers and special occasions 30 Brain work, mental exercise and competition 32 Our products Imprint: inside acat Issue 26, April 2018 Owner, publisher and ©: Applied Chemicals International AG CH-4054 Basle, Neubadstrasse 7 T: + 43 1 979 34 73, e-mail: [email protected] Website: www.acat.com Whether in the sewer or in the waste Editor: Dr.
    [Show full text]
  • Volume Completo Paper Design 10236.00KB .PDF
    Collana editoriale Material Design Essays PAPER DESIGN Comitato Scientifico Alfonso Acocella, Università di Ferrara Alberto Campo Baeza, Escuela Técnica Superior de Arquitectura de Madrid Medardo Chiapponi, Università IUAV, Venezia Fabio Gramazio, Eidgenössische Technische Hochschule Zürich Kengo Kuma, Keio University, Tokyo Silvia Piardi, Politecnico di Milano Direzione Alfonso Acocella mdmaterial design www.materialdesign.it PAPER DESIGN A cura di | Edited by Alfonso Acocella Contributi di | Essays by Alessandra Acocella, Luigi Alini, Valeria Bucchetti, Veronica Dal Buono, Sabrina Lucibello, Michela Toni, Eleonora Trivellin, Davide Turrini, Michele Zannoni Progetto grafico | Graphic design Veronica Dal Buono Impaginazione | Layout Giulia Pellegrini Collaborazione grafica | Graphic collaboration Federica Capoduri © Altralinea Edizioni s.r.l. – 2014 Via Pierluigi da Palestrina 17/19 rosso, 50144 Firenze Tel. +39 055 333428 Traduzione inglese | English translation [email protected] www.altralineaedizioni.it Wikitrado Tutti i diritti sono riservati: nessuna parte può essere riprodotta in alcun modo (compresi fotocopie e microfilms) senza il permesso scritto dalla Casa Editrice Finito di stampare nel dicembre 2014 Stampa: Bandecchi&Vivaldi, Pontedera (Pisa) www.bandecchievivaldi.com All rights reserved: no part may be reproduced in any way (including photocopying and microfilm) without the prior written permission from the Publisher Printed in December 2014 in Pontedera (Pisa) through Bandecchi&Vivaldi, www.bandecchievivaldi.com La pubblicazione
    [Show full text]
  • 2 Paper. History, Production, Properties and Products
    2 Paper. History, production, properties and products A tree is a slow explosion of a seed Bruno Munari, ‘Drawing a tree’ [1] § 2.1 Introduction Paper is a material we know from our day-to-day lives because it is used in newspapers, tissues, packaging, etc. Its web-like structure consists of wood fibres and can be visualised by comparing it to the cooking of a portion of spaghetti that is later served onto a plate. [2] Paper is often associated with traditional materials and production technologies. Brought to life in the second century AD, [3, 4] paper has had a significant role in the history of civilisations, from the Chinese empire through the Guttenberg era up to the current ‘digital age’. It has primarily been used as an information carrier and packaging material. However, the architectural applications of paper have been known since the eighth century AD. [5] Although production technologies and the finish of paper have changed and improved over the years, paper has in fact remained remarkably the same through the centuries. It still has the same composition: cellulose fibres bonded in a wet environment, then pressed and dried. Recently, not only the paper-making industry has undergone change, but other industries, like architecture, electronics, the automotive industry and others, are also receptive to the innovative qualities of paper. Growing awareness of the scarceness of fossil fuels and natural resources, the need to curb CO2 emissions and the necessity of reducing the ecological burden caused by the use of materials such as plastics, foam, concrete or steel is encouraging people to find more environmentally friendly solutions, including the circular economy.
    [Show full text]
  • 9 Conclusions
    9 Conclusions § 9.1 Introduction This study has demonstrated how paper and its derivatives can be used as a building material and main structural material in design and architecture. The usage of paper in architecture is limited by many factors, including its vulnerability to moisture, humidity and water, creep and the limited variety of products created by the paper industry. However, paper and paper products can be successfully used in several types of architecture and design. The advantages of using paper in architecture are its low price, the fact that it is mass-produced, its ease of recycling and the mechanical properties of the material. The paper industry’s current focus seems to be on packaging materials and new functionalities of paper and cellulose-based materials. Paper will never replace traditional building materials, but it can fulfil a niche demand created by certain designers and architects. It can be used for products such as interior and industrial design, including everyday objects, partition wall systems, furniture, exhibition pavilions, stage sets, venues for temporary events such as trade fairs or major sporting events, medium-lifespan housing (with a lifespan of up to twenty years) for the private and public sectors, public buildings emergency shelters. This Chapter 8 presents the conclusions of this thesis. First, the research questions and sub-questions are discussed. The research questions are answered in the relevant chapters of the thesis. Chapter 2 presents the some fundamental research on paper, including its history, production, mechanical properties and products produced by the paper industry. Chapters 3 and 4 present the scope of paper usage in design and architecture.
    [Show full text]
  • Designing Grinding Tools to Control and Understand Fibre Release in Groundwood Pulping
    Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1817 Designing grinding tools to control and understand fibre release in groundwood pulping MAGNUS HELDIN ACTA UNIVERSITATIS UPSALIENSIS ISSN 1651-6214 ISBN 978-91-513-0672-8 UPPSALA urn:nbn:se:uu:diva-382719 2019 Dissertation presented at Uppsala University to be publicly examined in Häggsalen, Ångströmlaboratoriet, Lägerhyddsvägen 1, Uppsala, Friday, 23 August 2019 at 09:15 for the degree of Doctor of Philosophy. The examination will be conducted in English. Faculty examiner: Associate Professor Birgitta Engberg (Mid Sweden University). Abstract Heldin, M. 2019. Designing grinding tools to control and understand fibre release in groundwood pulping. Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 1817. 59 pp. Uppsala: Acta Universitatis Upsaliensis. ISBN 978-91-513-0672-8. Mechanical pulping is a very energy demanding process in which only a fraction of the energy is used for the actual separation of wood fibres. The rest of the energy is lost, partly in damaging already separated fibres and partly as heat during viscoelastic deformation of the wood. Groundwood pulping is one of the major mechanical pulping processes. In this process, a piece of wood is pressed against a rotating grinding stone. The stone surface has traditionally been made of grinding particles fused to a vitrified matrix. Though the process is close to 200 years old, the detailed mechanisms of the interactions between the grinding particles and the wood surface are still not fully understood. The random nature of the grinding stones combined with the heterogeneous nature of wood creates a stochastic process that is difficult to study in detail.
    [Show full text]
  • The Second Industrial Revolution Has Brought Modern Social and Economic Developments
    Munich Personal RePEc Archive The Second Industrial Revolution has Brought Modern Social and Economic Developments Mohajan, Haradhan Assistant Professor, Department of Mathematics, Premier University, Chittagong, Bangladesh 21 October 2019 Online at https://mpra.ub.uni-muenchen.de/98209/ MPRA Paper No. 98209, posted 20 Jan 2020 13:37 UTC Journal of Social Sciences and Humanities, Vol. 6, No. 1, 2020, pp. 1-14. The Second Industrial Revolution has Brought Modern Social and Economic Developments Haradhan Kumar Mohajan Department of Mathematics, Premier University, Chittagong, Bangladesh Email: [email protected] Email: [email protected] Cell: +8801716397232 Abstract The American Industrial Revolution (IR) is considered as the Second IR (IR2) which creates rural to an urban society. Great inventions during the IR2 are electricity, internal combustion engine, the chemical industries, petroleum and other chemicals, alloys, electrical communication technologies, and running water with indoor plumbing. The development of steel and oil refining has affected US industry. Transportation and communications technology has changed business practices and daily life style of many people. Inventions of medicine and medical instruments have reduced the rates of infections and death from many diseases and public health has improved greatly. Global political, economic, and social systems have widely changed very rapidly. Between 1820 and 1920 about 33 million people, mainly labors, have migrated to the USA for seeking greater economic opportunity and cities become overcrowded. Low wage, dangerous working conditions, long working hours, child labor, discrimination in wages, etc. have created labor dissatisfaction. Moreover jobless and wage cut of labors railroad strike has broke out in many cities of the USA.
    [Show full text]