Born As Twins - Papermaking and Recycling

Total Page:16

File Type:pdf, Size:1020Kb

Born As Twins - Papermaking and Recycling 1 Born as twins - papermaking and recycling Boris Fuchs, Frankenthal, Germany Abstract: It will be shown that in the year 105 AD., when the purchasing administrator at the Chinese Emperor’s Court, G-ii Ltm, invented, or better said, recorded the papermaking process, it was common practice to recycle used textile clothes, fishing nets and the hemp material of ropes to get a better and cheaper (less labour intensive) raw material for papermaking than the bark of mulberry trees, bamboo and china grass. When the art of papemaking, on its long march through the Arabian World, came to Europe, used textile rags were the only raw material, thus recycling was again closely related to papermaking, and to secure the paper-maker’s business base, it was strictly forbidden to export textile rags to other countries. Despite heavy punishments, smuggling flourished at that time. The &inking process was invented in 1774 by Julius Claproth and bleaching by Claude Louis Berthollet in 1785, but with the introduction of ground wood in 1845 by Friedrich Keller, recycling lost its preferential status in the paper manufacmring industry by the second half of the 20ti century, when economic considerations, especially in Central Europe, caused its comeback, long before ecological demands forced its reintroduction and environmental legislation was set in place. Thus recycling with papermaking is not an invention of the present time, but a twin arrangement right from the beginning. For the future, a certain balance between primary and secondary fibre input should be kept to avoid any collapse in the paper strength by too often repeated recycling., also to assist the forest industry in keeping our forests clean and healthy. Paper recycling and environmental protection are generally seen as the two sides of the same coin, which complement one other. But in the following, in a historical review, I will explain to you: - that paper recycling already existed long before environmental thinking determined our industrial actions; in fact, that papermaking and recycling were born as twins, - that paper recycling has always been driven more by economic considerations than by ecological ones, and - that overdone environmental legislation may in the end be to the detriment of the environment. When in 105 A.D. the purchasing administrator Cai Lun at the Court of the Chinese Emperor Hi Di of the Eastern Han dynasty invented, or better said, recorded the papermaking process, which already then had been long in existence (sources have been found from 12 B.D.), it was common practice to recycle used textile clothes, fishing nets and the hemp material of ropes. The predecessors of Cai Lun used recycled silk rags, while Cai Lun’s invention was mainly determined by the introduction of the bark of mulberry trees, bamboo and china grass as an alternative material for papermaking (Liu Guojun, 1988). Thus, recycling has been with us since the early beginning of papermaking by transforming silk and textile rags into paper, but the strict environment protectors of today would call this “down-cycling” and would not accept this as a true recycling process. Only when the same is produced out of the same is their recycling definition fulfilled. While the Koreans and Japanese, when the art ofpapermaking came to them, continued to use the straw of rice plants, as well as the fibre material of the Mitsumata and Gampy plants as a raw material for papermaking, this possibility was totally forgotten when the art came to the West on its long march through the Arabian World (Walter Brecht, 1989). Used textile rags corn hemp and flax were the only raw material left in their experiences. This was also true, when papermaking came to Europe in the 12& (Spain, France), 13* (Italy) and 14* (Germany) centuries and it continued to be so up to the mid-19* century. With the growing demand for paper, textile rags became in shorter and shorter supply. As a result, in 1855 a man called Doctor Deck in Syracuse, New York, hit on a somewhat strange idea, which he published in the newspaper “Syracuse Standard” (Wilhelm Sandmann, 1977). 2 He explained in this article that the 800 paper mills in North America at that time required a total of 450 mio, pounds of textile rags every year. To cover this huge demand, the mummies in Egypt could contribute to a large extent, because each of those was wrapped by around 30 pounds of linen. And because the Egyptians also burried their holy bulls, cats, ibisses and crocodiles in this way, this could be considered a significant source of raw materiaL While in the USA one pound of textile rags cost between 4 and 6 cents each, those mummy linen rags could be delivered for just 3 cents, which is why he claimed his proposal to be a very economically efficient one. On the other hand, his proposal was not as new as expected, In a travel report of a medical doctor from Baghdad in 1140 it was said: “The Beduins and Fellahs are visiting the old Negropoles to search for textiles in which the mummies are wrapped, and if these are not for use for their own clothes, they sell them to paper mills, which make paper out of them for the food market.” With this strong dependence on a single raw material source, it is understandable that smuggling these materials across the borders was put under heavy punishment, but despite this, the smuggling business flourished. Because bleaching was not yet available, the rags and used textile clothes had to be selected to obtain “snow-white” paper as the final product. This selection process was not a clean and healthy job from the beginning even up to the present day, when textile rag selection was replaced by garbage and waste paper sorting. Preference was given in this respect to imported rags from specific counties, like the Netherlands, when Christoph Kefferstein, owner of the Criillwitz paper mill in 1756 said: “There are no quality rags in this country like those of the Dutch and East-Frisian types!“(Frieder Schmidt,1 997). This may have been another reason for smuggling textile rags over borders. The situation changed only when the chemical bleaching procedure was invented, so that papermakers could make use of cheaper rags and still meet the high demands of their customers. In 1774, the Swedish chemist Karl Wilhelm Scheele discovered elementary chlorine and in 1785/86 the French chemist Claude Louis Berthollet for the first time was succes&tl in his bleaching trials with chlorine. But it took up to 1793 (Johann Gottlob Tenner) and 183 1 (Wilhelm Heinrich von Kurrer) for this process to become known and widely used in Central Europe. Today, bleaching by chlorine is strictly forbidden for environmental reasons and has been replaced by oxygen bleaching. That apart from textile rags, waste paper, i.e. paper recycling, must have been an alternative as raw material for paper-making already in the 14”h century, was reported by Dieter Porthmann at an APV Annual Conference in Darmstadt (Dieter Porthmann, 1996), by citing a literature source from Georg Friedrich Wehrs of the year 1789 (Georg Friedrich Wehrs, 1789), according to which the city council of Venice, Italy, on August 19, 1366, had given a permission (privilege) for waste paper collection to the paper mill in Treviso. Under threat of heavy punishment it was forbidden to bring paper of this kind to any other place than the paper mill in Treviso. Certainly, this waste paper contained at least some writing ink. But how had this been removed before recycling? A first source of the invention of the so called de&king process is to be found not before the year 1774, when Justus Claproth, professor of law at the university of G&tingen, Germany, published a book with the title: “Eine Erfindung aus gedrucktem Papier wiederum neues Papier zu machen und die Druckfarbe viillig heraus zu waschen.” (An invention to make new 3 3 paper out of printed paper and to wash-out the printing ink comletely). Facsimiles of this booklet have been published later (Forderverein Historische Spinnerei Gartetal e.V.,1996) In this book, a detailed description of the recipe of the de-inking process is given, as Justus Claproth had invented it, with turpentine to re-wet the ink first and a kind of clay to wash the ink out of the paper fibres. He also reported from his experiences gained at the paper mill of the papermaker Schmidt in Klein-Lengarden near G&tingen - the paper mill later on was tranformed into a spinning mill and now is an industrial museum - and claimed it economic advantages for it by stating the following: - less time and labour intensive, thus cheaper in its total manufacturing costs, - while rags have to spend 24 hours in the stamper, recycled material needs only 12 hours and less, - in the beater, rags have to spend 12 hours, while recycled material only for 2 hours. But Claproth’s invention did not achieve a breakthrough at that time and was more or less forgotten over the years. This is why waste paper for long was only used for brown packaging paper and cardboard, but not for printed matters. Even after ground-wood as a new raw material for paper-making was invented in 1845 by Friedrich Gottlob Keller in Saxony and was turned into a manufacturing process by the papermaker Heimich Voelter in Bautzen and the mechanics J.M. Voith in Heidenheim, de- inking long remained an unknown possibility. Still in 1915, the weekly magazine “Prometheus” (Prometheus, 1915) complained in an article: “It is a shame that only 10% of all printed matters and other paper products are returned to paper mills, while 90% is spoiled and wasted! ” It was not before the early 1950s that the de-inking process came to the fore.
Recommended publications
  • Infra Oct03 An
    CONSTRUCTION • PUBLIC WORKS • NATURAL RESOURCES Volume 8, Number 9 • October 2003 Welcome to InfraStructures CONSTRUCTION • TRAVAUX PUBLICS • RESSOURCES NATURELLES Volume 8 Number 9 Until recently, InfraStructures has been read mainly by French speaking October 2003 users of heavy machinery. Over the last seven years, InfraStructures has become a leader in its field. First by becoming the only magazine covering all aspects of the industry published in French in Canada. Then by being the first to publish all its editorial content on the web, and also by being the only construction magazine, published in French, having a significant readership outside the Province of Quebec. ÉDITOR / PUBLISHER Jean-François Villard For many years, we have received requests for an English version of InfraStructures. Technical limitations, and the lack of advertising revenue have prevented us from publishing such a magazine in print. Now, with the ADVERTISING extent of the use of Internet by professionals, we feel that the time as come MONTRÉAL for a portable digital file (.pdf) version of InfraStructures in English. Jean-François Villard André Charlebois While the content of the English version differs slightly from the original, most of the important news will be published in English. In the near future, QUEBEC City more and more of the content of the original will be translated into English. Gilbert Marquis (418) 651-1176 With over 500 visitors per day on average, spending over 13 minutes per visit, the website of InfraStructures in one of the most important sites of this kind. More than two thirds of the visitors come from outside Canada.
    [Show full text]
  • TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector
    TECHNICAL REPORT – PATENT ANALYSIS Enhancing Productivity in the Indian Paper and Pulp Sector 2018 TABLE OF contEnts ACKNOWLEDGEMENTS 10 EXECUTIVE SUMMARY 11 1 INTRODUCTION 13 2 OVERVIEW OF THE PULP AND PAPER SECTOR 15 2.1. Status of the Indian Paper Industry 15 2.2. Overview of the Pulp and Papermaking Process 20 2.3. Patenting in the Paper and Pulp Industry: A Historical Perspective 22 2.4. Environmental Impact of the Pulp and Paper Industry 25 3 METHODOLOGY 27 3.1. Search Strategy 27 4 ANALYSIS OF PATENT DOCUMENTS USING GPI 31 4.1. Papermaking; Production of Cellulose (IPC or CPC class D21) 31 4.2. Analysis of Patenting Activity in Different Technology Areas using GPI 38 5 ANALYSIS OF THE INDIAN PATENT SCENARIO WITHIN THE CONTEXT OF THIS REPORT 81 5.1. Analysis of Patents Filed in India 81 6 CONCLUDING REMARKS 91 REFERENCES 93 ANNEXURE 94 Annexure 1. Technologies related to paper manufacturing 94 Annexure 2. Sustainable/green technologies related to pulp and paper sector 119 Annexure 3. Emerging Technology Areas 127 List OF FIGURES Figure 2.1: Geographical Spread of Figure 4.11: (d) Applicant vs. Date of Indian Paper Mills .................................16 Priority Graph: Paper-Making Machines Figure 2.2: Share of Different Segments and Methods ........................................42 in Total Paper Production .......................19 Figure 4.11: (e) Applicant vs. Date of Figure 2.3: Variety Wise Production of Priority Graph: Calendars and Accessories ..43 Paper from Different Raw Materials ........19 Figure 4.11: (f) Applicant vs. Date of Figure 2.4: Different Varieties of Paper Priority Graph: Pulp or Paper Comprising Made from Various Raw Materials ..........19 Synthetic Cellulose or Non-Cellulose Fibres ..43 Figure 2.5: Diagram of a Process Block Figure 4.11: (g) Applicant vs.
    [Show full text]
  • Third Quarter 2020
    THIRD QUARTER 2020 - QUARTERLY REPORT - PRESENTATION - PRESS RELEASES NORSKE SKOG QUARTERLY REPORT – THIRD QUARTER 2020 (UNAUDITED) 2 ││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││││ INTRODUCTION Norske Skog is a world leading producer of publication paper with Of the four mills in Europe, two will produce recycled containerboard strong market positions in Europe and Australasia. Publication paper following planned conversion projects. In addition to the traditional includes newsprint and magazine paper. Norske Skog operates six publication paper business, Norske Skog aims to further diversify its mills in five countries, with an annual production capacity of 2.3 million operations and continue its transformation into a growing and high- tonnes. Four of the mills are located in Europe, one in Australia and margin business through a range of exciting fibre projects. one in New Zealand. The group also operates a pellet facility in New Zealand. Newsprint and magazine paper is sold through sales offices The parent company, Norske Skog ASA, is incorporated in Norway and and agents to over 80 countries. The group has approximately 2 300 has its head office at Skøyen in Oslo. The company is listed on Oslo employees. Stock Exchange with the ticker NSKOG. KEY FIGURES NOK MILLION Q3 2020 Q2 2020 Q3 2019 YTD 2020 YTD 2019 INCOME STATEMENT
    [Show full text]
  • Erfindung Der Erzeugung Von Holzschliff Durch Friedrich Gottlob Keller
    **SGRD* PAPIERGESCHICHTE Abb. 1: Friedrich Gottlob Keller Erfindung der Erzeugung von Holzschliff durch Friedrich Gottlob Keller Im Lebensbild Friedrich Gottlob Kellers spiegeln sich auf chemischem Wege Papierfaserstoff aus Holz zu gewinnen. die Facetten der industriellen Revolution in Deutsch- Im Ergebnis seiner Versuche kam er zu dem Schluss „ …dass unter land in der Mitte des 19. Jahrhunderts. Als Querein- Einwirkung höherer Hitzegrade, als sie der bloße Siedepunkt gestattet, steiger greift er den rasch wachsenden Bedarf der es vielleicht möglich sein könnte, dies (nämlich den chemische Auf- bereitung von Holz zu Faserstoff) zu erreichen. Allein der gleichen Papierindustrie an einem alternativen Rohstoff zu Dampfapparate standen mir nicht zur Verfügung, und deshalb musste Hadern auf und hält in seinem Ideenbuch unter ich davon absehen.“ 1 Damit war Keller aus heutiger Sicht bereits 1840 anderen den Gedanken fest, „Papier zu fertigen von gedanklich einen Schritt in Richtung der später entwickelten Holzfasern, welche durch Friktion erzeugt werden“. chemischen Aufschlussverfahren gegangen. Seine Erfindung der Holzschlifferzeugung findet welt- Beide Gedankenrichtungen machen deutlich, dass Keller – gewisser- weit Verbreitung - der persönliche wirtschaftliche maßen als „Quereinsteiger“– für die Faserstoff- und Papiererzeugung Ertrag bleibt ihm jedoch in tragischer Weise verwehrt. sowie das Druckgewerbe ein lebhaftes Interesse hatte. In eigener Er- innerung bezieht er sich in diesem Zusammenhang auf ein Polytech- nisches Journal aus dem Jahr 1839 oder 1840. In der Tat finden sich zu Unruhiger Geist jener Zeit zum Beispiel im „Polytechnischen Journal“ verschiedene Am 27. Juni 1816 wird Keller (Abb. 1) in Hainichen /Sachsen geboren. Publikationen und Patentschriften, die auf die Erzeugung von Faser- Bereits während seiner Schulzeit zeigen sich seine technischen stoffen für die Papierherstellung ausgerichtet sind, u.a.
    [Show full text]
  • Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment
    Forest Products BestPractices Plant-Wide Assessment Case Study Industrial Technologies Program—Boosting the productivity and competitiveness of U.S. industry through improvements in energy and environmental performance Augusta Newsprint: Paper Mill Pursues Five Projects Following Plant-Wide Energy Efficiency Assessment BENEFITS Summary • Saves an estimated 11,000 MWh of Augusta Newsprint undertook a plant-wide energy efficiency assessment of its Augusta, electricity annually Georgia, plant in the spring and summer of 2001. The objectives of the assessment were to • Saves an estimated $1.6 million identify systems and operations that were good candidates for energy-efficiency improvements, annually from energy reduction and then ascertain specific energy saving projects. The assessment team identified the thermo- other improvements mechanical pulp (TMP) mill, the recycled newsprint plant (RNP), and the No. 1 and No. 2 • Improves system efficiency and paper machines area as the systems and operations on which to focus. The project evaluation reliability process was unique for two reasons, (1) much of the steam is a by-product of the TMP process and, because it is essentially “free,” it precludes opportunities for steam conservation • Produces a more consistent product initiatives; and (2) the company is reportedly Georgia’s largest electricity customer and • Project paybacks range from consequently has very favorable rates. 4.3 to 21.4 months Despite these perceived disincentives, the company found strong economic justification for five projects that would reduce electricity consumption. Four of the five projects, when complete, will save the company 11,000 MWh of electrical energy each year ($369,000 per year). The APPLICATION remaining project will produce more than $300,000 each year in the sale of a process The Augusta Newsprint plant-wide byproduct (turpentine).
    [Show full text]
  • A Historical Geography of the Paper Industry in the Wisconsin River Valley
    A HISTORICAL GEOGRAPHY OF THE PAPER INDUSTRY IN THE WISCONSIN RIVER VALLEY By [Copyright 2016] Katie L. Weichelt Submitted to the graduate degree program in Geography& Atmospheric Science and the Graduate Faculty of the University of Kansas in partial fulfillment of the requirements for the degree of Doctor of Philosophy. ________________________________ Chairperson Dr. James R. Shortridge ________________________________ Dr. Jay T. Johnson ________________________________ Dr. Stephen Egbert ________________________________ Dr. Kim Warren ________________________________ Dr. Phillip J. Englehart Date Defended: April 18, 2016 The Dissertation Committee for Katie L. Weichelt certifies that this is the approved version of the following dissertation: A HISTORICAL GEOGRAPHY OF THE PAPER INDUSTRY IN THE WISCONSIN RIVER VALLEY ________________________________ Chairperson Dr. James R. Shortridge Date approved: April 18, 2016 ii Abstract The paper industry, which has played a vital social, economic, and cultural role throughout the Wisconsin River valley, has been under pressure in recent decades. Technology has lowered demand for paper and Asian producers are now competing with North American mills. As a result, many mills throughout the valley have been closed or purchased by nonlocal corporations. Such economic disruption is not new to this region. Indeed, paper manufacture itself emerged when local businessmen diversified their investments following the decline of the timber industry. New technology in the late nineteenth century enabled paper to be made from wood pulp, rather than rags. The area’s scrub trees, bypassed by earlier loggers, produced quality pulp, and the river provided a reliable power source for new factories. By the early decades of the twentieth century, a chain of paper mills dotted the banks of the Wisconsin River.
    [Show full text]
  • Changes in Print Paper During the 19Th Century
    Purdue University Purdue e-Pubs Charleston Library Conference Changes in Print Paper During the 19th Century AJ Valente Paper Antiquities, [email protected] Follow this and additional works at: https://docs.lib.purdue.edu/charleston An indexed, print copy of the Proceedings is also available for purchase at: http://www.thepress.purdue.edu/series/charleston. You may also be interested in the new series, Charleston Insights in Library, Archival, and Information Sciences. Find out more at: http://www.thepress.purdue.edu/series/charleston-insights-library-archival- and-information-sciences. AJ Valente, "Changes in Print Paper During the 19th Century" (2010). Proceedings of the Charleston Library Conference. http://dx.doi.org/10.5703/1288284314836 This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact [email protected] for additional information. CHANGES IN PRINT PAPER DURING THE 19TH CENTURY AJ Valente, ([email protected]), President, Paper Antiquities When the first paper mill in America, the Rittenhouse Mill, was built, Western European nations and city-states had been making paper from linen rags for nearly five hundred years. In a poem written about the Rittenhouse Mill in 1696 by John Holme it is said, “Kind friend, when they old shift is rent, Let it to the paper mill be sent.” Today we look back and can’t remember a time when paper wasn’t made from wood-pulp. Seems that somewhere along the way everything changed, and in that respect the 19th Century holds a unique place in history. The basic kinds of paper made during the 1800s were rag, straw, manila, and wood pulp.
    [Show full text]
  • SUSTAINABILITY REPORT 2020 We Create Green Value Contents
    SUSTAINABILITY REPORT 2020 We create green value Contents SUMMARY Key figures 6 Norske Skog - The big picture 7 CEO’s comments 8 Short stories 10 SUSTAINABILITY REPORT About Norske Skog’s operations 14 Stakeholder and materiality analysis 15 The sustainable development goals are an integral part of our strategy 16 Compliance 17 About the sustainability report 17 Sustainability Development Goals overview 20 Prioritised SDGs 22 Our response to the TCFD recommendations 34 How Norske Skog relates to the other SDGs 37 Key figures 50 GRI standards index 52 Independent Auditor’s assurance report 54 Design: BK.no / Print: BK.no Paper: Artic Volum white Editor: Carsten Dybevig Cover photo: Carsten Dybevig. All images are Norske Skog’s property and should not be used for other purposes without the consent of the communication department of Norske Skog Photo: Carsten Dybevig SUMMARY BACK TO CONTENTS > BACK TO CONTENTS > SUMMARY Key figures NOK MILLION (UNLESS OTHERWISE STATED) 2015 2016 2017 2018 2019 2020 mills in 5 countries INCOME STATEMENT 7 Total operating income 11 132 11 852 11 527 12 642 12 954 9 612 Skogn, Norway / Saugbrugs, Norway / Golbey, France / EBITDA* 818 1 081 701 1 032 1 938 736 Bruck, Austria / Boyer, Australia / Tasman, New Zealand / Operating earnings 19 -947 -1 702 926 2 398 -1 339 Nature’s Flame, New Zealand Profit/loss for the period -1 318 -972 -3 551 1 525 2 044 -1 884 Earnings per share (NOK)** -15.98 -11.78 -43.04 18.48 24.77 -22.84 CASH FLOW Net cash flow from operating activities 146 514 404 881 602 549 Net cash flow
    [Show full text]
  • The-Gutenberg-Museum-Mainz.Pdf
    The Gutenberg Museum Mainz --------------------------------------------------------------------- Two original A Guide Gutenberg Bibles and many to the other documents from the dawn of the age of printing Museum ofType and The most beautiful Printing examples from a collection of 3,000 early prints Printing presses and machines in wood and iron Printing for adults and children at the Print Shop, the museum's educational unit Wonderful examples of script from many countries of the world Modern book art and artists' books Covers and illustrations from five centuries Contents The Gutenberg Museum 3 Johannes Gutenberg- the Inventor 5 Early Printing 15 From the Renaissance to the Rococo 19 19th Century 25 20th Century 33 The Art and Craftmanship of the Book Cover 40 Magic Material Paper 44 Books for Children and Young Adults 46 Posters, Job Printing and Ex-Libris 48 Graphics Techniques 51 Script and Printing in Eastern Asia 52 The Development of Notation in Europe and the Middle East 55 History and Objective of the Small Press Archives in Mainz 62 The Gutenberg Museum Print Shop 63 The Gutenberg Society 66 The Gutenberg-Sponsorship Association and Gutenberg-Shop 68 Adresses and Phone Numbers 71 lmpressum The Gutenberg Museum ~) 2001 The Cutcnlx~rg Museum Mainz and the Cutcnbc1g Opposite the cathedral in the heart of the old part ofMainz Spons01ship Association in Germany lies the Gutenberg Museum. It is one of the oldest museums of printing in the world and This guide is published with tbc kind permission of the attracts experts and tourists from all corners of the globe. Philipp von Zahc1n publisher's in Mainz, In r9oo, soo years after Gutenberg's birth, a group of citi­ with regard to excLrpts of text ;md illustrations zens founded the museum in Mainz.
    [Show full text]
  • Resin Profile in a Bleached Kraft Pulp Process
    Resin Profile in a Bleached Kraft Pulp Process Jennie Berglund May 2012 Degree Project in Polymeric Materials, First Level Department of Fibre and Polymer Technology Royal Institute of Technology Stockholm, Sweden Abstract The aim with this project was to investigate how the amount and composition of resins varied during the process producing bleached birch pulp at the mill SCA Packaging Munksund. A literature study about how the resin removal can be improved has also been included. Problems with resins in the process are common at pulp and paper mills, especially when birch is used as a raw material. The resin can cause deposits on the equipment leading to process stops, but also lowered mechanical properties and spots on the paper products. The addition of tall oil to the digester is one way of improving the removal of resins, seasoning of wood, and a good debarking are other ones. Also the different washing and bleaching steps can affect the amount of resin remaining in the pulp. In this study pulp samples from eight different positions in the process were analyzed. To extract the samples a Soxtec device was used. Results showed that the most effective resin removal happened during the washing in their first washing step after the digester, a DD-washer. Here 77 % of the resin was removed, of totally 88 % during the whole process. Another step which was effective was the final washing step, the PO-press. About 36 % of the remaining resins in the pulp which entered the PO-press were washed out here. The extracts were analyzed with GC-FID and GC-MS to identify and quantify the substances, and determine how the composition varied over the manufacturing process.
    [Show full text]
  • Part I Chemical Pulping
    1 Part I Chemical Pulping Handbook of Pulp. Edited by Herbert Sixta Copyright © 2006 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim ISBN: 3-527-30999-3 3 1 Introduction Herbert Sixta 1.1 Introduction Industrial pulping involves the large-scale liberation of fibers from lignocellulosic plant material, by either mechanical or chemical processes. Chemical pulping relies mainly on chemical reactants and heat energy to soften and dissolve lignin in the plant material, partially followed by mechanical refining to separate fibers. Mechanical pulping involves the pretreatment of wood with steam (and some- times also with aqueous sulfite solution) prior to the separation into fibrous mate- rial by abrasive refining or grinding. Depending on its end-use, the material recov- ered from such processes – the unbleached pulp – may be further treated by screening, washing, bleaching and purification (removal of low molecular-weight hemicelluloses) operations. For any given type of production, the properties of the unbleached pulp are de- termined by the structural and chemical composition of the raw material. The variation in fiber dimension and chemical composition of some selected fibers is detailed in Tab. 1.1. By far, the predominant use of the fiber material is the manufacture of paper, where it is re-assembled as a structured network from an aqueous solution. Fiber morphology such as fiber length and fiber geometry have a decisive influence on the papermaking process. A high fiber wall thickness to fiber diameter ratio means that the fibers will be strong, but that they may not be able to bond as effec- tively with each other in the sheet-forming process.
    [Show full text]
  • Domestic Recycled Paper Capacity Increases - Updated November 18, 2019
    139 Main Street, Suite 401• Brattleboro, Vermont 05301 802.254.3636 • www.nerc.org •[email protected] Domestic Recycled Paper Capacity Increases - Updated November 18, 2019 The following is a list of announced increases in the capacity of North American paper mills to use recyclable paper as a raw material. The list starts with six capacity additions on a list provided by Dennis Colley, CEO of the Fibre Box Association, in his presentation at the Fall 2018 NERC Conference. This information is supplemented with local news stories and company press releases. One conversion of a graphics paper mill to packaging paper was not included because of a lack of information about the raw material being used as a feedstock. The majority of new capacity increases in this list are for mills producing linerboard and corrugated medium. They will use old corrugated containers (OCC) as their feedstock. They are unlikely to use residential mixed paper (RMP) unless their stock preparation system allows for its use. However, up to half of these mills plan to use mixed paper. For the most part, mixed paper will be a minor input, but there are several mills on the list that plan to consume significant amounts of mixed paper. In addition, the price for mixed paper tracks that of OCC. Increased capacity for OCC should further increase the price paid for residential mixed paper, therefore increasing the value of mixed paper. Whether or not all of the new capacity is realized depends, among other things, on overall economic circumstances and demand for the final products.
    [Show full text]