Hawaii's Statewide Aquatic Wildlife Conservation Strategy
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Classification of Living and Fossil Genera of Decapod Crustaceans
RAFFLES BULLETIN OF ZOOLOGY 2009 Supplement No. 21: 1–109 Date of Publication: 15 Sep.2009 © National University of Singapore A CLASSIFICATION OF LIVING AND FOSSIL GENERA OF DECAPOD CRUSTACEANS Sammy De Grave1, N. Dean Pentcheff 2, Shane T. Ahyong3, Tin-Yam Chan4, Keith A. Crandall5, Peter C. Dworschak6, Darryl L. Felder7, Rodney M. Feldmann8, Charles H. J. M. Fransen9, Laura Y. D. Goulding1, Rafael Lemaitre10, Martyn E. Y. Low11, Joel W. Martin2, Peter K. L. Ng11, Carrie E. Schweitzer12, S. H. Tan11, Dale Tshudy13, Regina Wetzer2 1Oxford University Museum of Natural History, Parks Road, Oxford, OX1 3PW, United Kingdom [email protected] [email protected] 2Natural History Museum of Los Angeles County, 900 Exposition Blvd., Los Angeles, CA 90007 United States of America [email protected] [email protected] [email protected] 3Marine Biodiversity and Biosecurity, NIWA, Private Bag 14901, Kilbirnie Wellington, New Zealand [email protected] 4Institute of Marine Biology, National Taiwan Ocean University, Keelung 20224, Taiwan, Republic of China [email protected] 5Department of Biology and Monte L. Bean Life Science Museum, Brigham Young University, Provo, UT 84602 United States of America [email protected] 6Dritte Zoologische Abteilung, Naturhistorisches Museum, Wien, Austria [email protected] 7Department of Biology, University of Louisiana, Lafayette, LA 70504 United States of America [email protected] 8Department of Geology, Kent State University, Kent, OH 44242 United States of America [email protected] 9Nationaal Natuurhistorisch Museum, P. O. Box 9517, 2300 RA Leiden, The Netherlands [email protected] 10Invertebrate Zoology, Smithsonian Institution, National Museum of Natural History, 10th and Constitution Avenue, Washington, DC 20560 United States of America [email protected] 11Department of Biological Sciences, National University of Singapore, Science Drive 4, Singapore 117543 [email protected] [email protected] [email protected] 12Department of Geology, Kent State University Stark Campus, 6000 Frank Ave. -
Pacific Plate Biogeography, with Special Reference to Shorefishes
Pacific Plate Biogeography, with Special Reference to Shorefishes VICTOR G. SPRINGER m SMITHSONIAN CONTRIBUTIONS TO ZOOLOGY • NUMBER 367 SERIES PUBLICATIONS OF THE SMITHSONIAN INSTITUTION Emphasis upon publication as a means of "diffusing knowledge" was expressed by the first Secretary of the Smithsonian. In his formal plan for the Institution, Joseph Henry outlined a program that included the following statement: "It is proposed to publish a series of reports, giving an account of the new discoveries in science, and of the changes made from year to year in all branches of knowledge." This theme of basic research has been adhered to through the years by thousands of titles issued in series publications under the Smithsonian imprint, commencing with Smithsonian Contributions to Knowledge in 1848 and continuing with the following active series: Smithsonian Contributions to Anthropology Smithsonian Contributions to Astrophysics Smithsonian Contributions to Botany Smithsonian Contributions to the Earth Sciences Smithsonian Contributions to the Marine Sciences Smithsonian Contributions to Paleobiology Smithsonian Contributions to Zoo/ogy Smithsonian Studies in Air and Space Smithsonian Studies in History and Technology In these series, the Institution publishes small papers and full-scale monographs that report the research and collections of its various museums and bureaux or of professional colleagues in the world cf science and scholarship. The publications are distributed by mailing lists to libraries, universities, and similar institutions throughout the world. Papers or monographs submitted for series publication are received by the Smithsonian Institution Press, subject to its own review for format and style, only through departments of the various Smithsonian museums or bureaux, where the manuscripts are given substantive review. -
Stock Assessment of Nehu, Encrasicholina Purpurea, Using the Egg Production Method
BULLETIN OF MARINE SCIENCE 53(21: 768-777. 1993 STOCK ASSESSMENT OF NEHU, ENCRASICHOLINA PURPUREA, USING THE EGG PRODUCTION METHOD D.A. Somerton, D. R. Kobavashi and K. C.Landgraf ABSTRACT Nehu. Encrusicholina purpurea. are short lived. tropical anchovies used as baitfish for the Hawaiian pole-and-line tuna fishery. The spawnlng biomass of nehu within Pearl Harbor. Hawaii, was estimated weekly using the Daily Egg Produalon Method (DEPM). Over the 2-year studv period. spawning biomass vaned between 0.5 and 5.0 mctnc tons in response to the intensive fishery and a seasonal cyclicity In reproductive effort. Nehu, Encrasicholina purpurea. are among the smallest of anchovies. yet they are commercially valuable as the primary bait used by the Hewzii:tn pole-and- line fishery for skipjack tuna, Katsuwonw pehmis (Uchidz.. 197'7). Similar to other stolephorid baitfishes (Dalzell. 1987), nehu ?.re exrrzirdy short lived (<6 months; Struhsaker and Uchiyarna. 1976) and spawn almost continuously throughout the year (Tester. 1952: Clarke. 1987, 1989). Unlike the others, nehu occur exclusively within estuarine embayments, migrating daily between diurnal resting areas along turbid shorelines and nocturnal spawning areas in relatively clear channels. The commercial fishery exploits this unusual behavior. and is thereby unique among baitfish fisheries. by using seines to capture nehu in their shallow daytime habitat (Uchida, 1977; Dalzell and Lewis, 1989). Nehu abundance has fluctuated over time and occasionally has declined to such an extent that vessels have spent nearly as much time fishing for bait as for tuna. The economic hardships resulting from the periodic shortages of nehu precipitated early efforts at stock assessment using either egg and larva data (Tester, 1951, 1952) or commercial catch statistics (Bachman. -
Observations on Neritina Turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions
Hristov, K.K. AvailableInd. J. Pure online App. Biosci. at www.ijpab.com (2020) 8(5), 1-10 ISSN: 2582 – 2845 DOI: http://dx.doi.org/10.18782/2582-2845.8319 ISSN: 2582 – 2845 Ind. J. Pure App. Biosci. (2020) 8(5), 1-10 Research Article Peer-Reviewed, Refereed, Open Access Journal Observations on Neritina turrita (Gmelin 1791) Breeding Behaviour in Laboratory Conditions Kroum K. Hristov* Department of Chemistry and Biochemistry, Medical University - Sofia, Sofia - 1431, Bulgaria *Corresponding Author E-mail: [email protected] Received: 15.08.2020 | Revised: 22.09.2020 | Accepted: 24.09.2020 ABSTRACT Neritina turrita (Gmelin 1791) along with other Neritina, Clithon, Septaria, and other fresh- water snails are popular animals in ornamental aquarium trade. The need for laboratory-bred animals, eliminating the potential biohazard risks, for the ornamental aquarium trade and the growing demand for animal model systems for biomedical research reasons the work for optimising a successful breading protocol. The initial results demonstrate N. turrita as tough animals, surviving fluctuations in pH from 5 to 9, and shifts from a fresh-water environment to brackish (2 - 20 ppt), to sea-water (35 ppt) salinities. The females laid over 630 (at salinities 0, 2, 10 ppt and temperatures of 25 - 28oC) white oval 1 by 0.5 mm egg capsules continuously within 2 months after collecting semen from several males. Depositions of egg capsules are set apart 6 +/-3 days, and consist on average of 53 (range 3 to 192) egg capsules. Production of viable veligers was recorded under laboratory conditions. Keywords: Neritina turrita, Sea-water, Temperatures, Environment INTRODUCTION supposably different genera forming hybrids Neritininae are found in the coastal swamps of with each other, suggesting their close relation. -
Teleostei, Syngnathidae)
ZooKeys 934: 141–156 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.934.50924 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Hippocampus nalu, a new species of pygmy seahorse from South Africa, and the first record of a pygmy seahorse from the Indian Ocean (Teleostei, Syngnathidae) Graham Short1,2,3, Louw Claassens4,5,6, Richard Smith4, Maarten De Brauwer7, Healy Hamilton4,8, Michael Stat9, David Harasti4,10 1 Research Associate, Ichthyology, Australian Museum Research Institute, Sydney, Australia 2 Ichthyology, California Academy of Sciences, San Francisco, USA 3 Ichthyology, Burke Museum, Seattle, USA 4 IUCN Seahorse, Pipefish Stickleback Specialist Group, University of British Columbia, Vancouver, Canada5 Rhodes University, Grahamstown, South Africa 6 Knysna Basin Project, Knysna, South Africa 7 University of Leeds, Leeds, UK 8 NatureServe, Arlington, Virginia, USA 9 University of Newcastle, Callaghan, NSW, Australia 10 Port Stephens Fisheries Institute, NSW, Australia Corresponding author: Graham Short ([email protected]) Academic editor: Nina Bogutskaya | Received 13 February 2020 | Accepted 12 April 2020 | Published 19 May 2020 http://zoobank.org/E9104D84-BB71-4533-BB7A-2DB3BD4E4B5E Citation: Short G, Claassens L, Smith R, De Brauwer M, Hamilton H, Stat M, Harasti D (2020) Hippocampus nalu, a new species of pygmy seahorse from South Africa, and the first record of a pygmy seahorse from the Indian Ocean (Teleostei, Syngnathidae). ZooKeys 934: 141–156. https://doi.org/10.3897/zookeys.934.50924 Abstract A new species and the first confirmed record of a true pygmy seahorse from Africa,Hippocampus nalu sp. nov., is herein described on the basis of two specimens, 18.9–22 mm SL, collected from flat sandy coral reef at 14–17 meters depth from Sodwana Bay, South Africa. -
Identification of Anchovy, Encrasicholina Punctifer Stocks On
Environmental Sciences, Vol. 1, 2013, no. 2, 53 - 63 HIKARI Ltd, www.m-hikari.com Identification of Anchovy, Encrasicholina punctifer Stocks on Persian Gulf and Oman Sea Using Analysis of Otolith Morphometrics Noorolhoda Ataei Daryaei1, Ehsan Kamrani 1, Ali Reza Salarzadeh 1 and Ali Salaripour 2 1 Islamic Azad University, Bandar-Abbas Branch Department of Fishery Sciences 2 Persian Gulf and Oman Sea Ecological Research Institute Corresponding author: Noorolhoda Ataei Daryaei P.O. Box: 1194334/50-Iran [email protected] Copyright © 2013 Noorolhoda Ataei Daryaei et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Otolith morphometrics, coupled with image analysis and mathematical equations were examined to investigate stock structure of Anchovy, Encrasicholina punctifer on Persian Gulf and Oman Sea. Samples (360 Otolith) were collected during December and January 2012 from three main fisheries landing including Gheshm, Garze and Jask. The structure of transverse sagittal otolith sections were described for individual anchovy samples by using Image motic software. The measured parameters for each otolith were: length, width, weight, perimeter and area. In addition, the morphological indices of otoliths including roundness, oval and circular indices were measured by mathematical equations. Results from this study showed a similarity in morphological and morphometric parameters of Otoliths of anchovy stocks collected from Gheshm, Garze and Jask. Therefore, theses three populations could be considered as single population. Keywords: Encrasicholina punctifer, morphological, morphometric, Otolith, Persian Gulf, Oman Sea 54 Noorolhoda Ataei Daryaei et al. -
Order GASTEROSTEIFORMES PEGASIDAE Eurypegasus Draconis
click for previous page 2262 Bony Fishes Order GASTEROSTEIFORMES PEGASIDAE Seamoths (seadragons) by T.W. Pietsch and W.A. Palsson iagnostic characters: Small fishes (to 18 cm total length); body depressed, completely encased in Dfused dermal plates; tail encircled by 8 to 14 laterally articulating, or fused, bony rings. Nasal bones elongate, fused, forming a rostrum; mouth inferior. Gill opening restricted to a small hole on dorsolat- eral surface behind head. Spinous dorsal fin absent; soft dorsal and anal fins each with 5 rays, placed posteriorly on body. Caudal fin with 8 unbranched rays. Pectoral fins large, wing-like, inserted horizon- tally, composed of 9 to 19 unbranched, soft or spinous-soft rays; pectoral-fin rays interconnected by broad, transparent membranes. Pelvic fins thoracic, tentacle-like,withI spine and 2 or 3 unbranched soft rays. Colour: in life highly variable, apparently capable of rapid colour change to match substrata; head and body light to dark brown, olive-brown, reddish brown, or almost black, with dorsal and lateral surfaces usually darker than ventral surface; dorsal and lateral body surface often with fine, dark brown reticulations or mottled lines, sometimes with irregular white or yellow blotches; tail rings often encircled with dark brown bands; pectoral fins with broad white outer margin and small brown spots forming irregular, longitudinal bands; unpaired fins with small brown spots in irregular rows. dorsal view lateral view Habitat, biology, and fisheries: Benthic, found on sand, gravel, shell-rubble, or muddy bottoms. Collected incidentally by seine, trawl, dredge, or shrimp nets; postlarvae have been taken at surface lights at night. -
Mollusca, Neogastropoda) from the Mozambique Channel and New Caledonia
Bull. Mus. natn. Hist, nat., Paris, 4e ser., 3, 1981, section A, n° 4 : 985-1009. On a collection of buccinacean and mitracean Gastropods (Mollusca, Neogastropoda) from the Mozambique Channel and New Caledonia by W. 0. CERNOHORSKY Abstract. — The present paper deals with a collection of 59 species of buccinacean and mitra- cean gastropods belonging to 4 families from moderately shallow to deep water around the Mozam- bique Channel area, north of Madagascar. A total of 27 % of the species recovered are new geogra- phical range extensions. The New Caledonian material consists of 21 species belonging to 5 fami- lies, and was dredged, with one exception, in moderately deep water. A total of 38 % of the New Caledonian species represent new geographical records, and one of these is a new species : Voluto- mitra (Waimatea) vaubani n. sp. The new name Vexillum (Costellaria) duplex is proposed for the homonymous Mitra simphcissima Schepman, 1911, and its var. glabra Schepman, 1911. Résumé. — L'auteur étudie une collection de 59 espèces appartenant à 4 familles de Gasté- ropodes Buccinacea et Mitracea dragués dans le nord du canal du Mozambique, à des profondeurs diverses. L'étude montre une extension de l'aire de répartition connue pour 27 % des espèces. Le matériel néo-calédonien comprend 21 espèces appartenant à 5 familles et a été dragué, à une exception près, en eau relativement peu profonde. L'aire de répartition connue se trouve étendue pour 38 % des espèces, dont une est nouvelle : Volulomilra (Waimatea) vaubani n. sp. Le nom nouveau Vexillum (Costellaria) duplex est proposé en remplacement du nom Mitra simplicissima Schepman, 1911, et de sa variété glabra Schepman, 1911, tous deux préoccupés. -
09-A Report(0050)-컬러
Anim. Syst. Evol. Divers. Vol. 30, No. 2: 124-131, April 2014 http://dx.doi.org/10.5635/ASED.2014.30.2.124 Short communication A Report on Five New Records of Nudibranch Molluscs from Korea Daewui Jung1,†, Jongrak Lee2, Chang-Bae Kim1,* 1Department of Life Science, Sangmyung University, Seoul 110-743, Korea 2Marine Biodiversity Research Institute, INTHESEA KOREA Inc., Jeju 697-110, Korea ABSTRACT The Korean nudibranch faunal study has been conducted since 2011 and five species including Dermatobran- chus otome Baba, 1992, Mexichromis festiva (Angas, 1864), Noumea nivalis Baba, 1937, Hoplodoris armata (Baba, 1993), and Okenia hiroi (Baba, 1938) were newly reported with re-descriptions and figures. Also, Noumea purpurea Baba, 1949 was re-described with illustrations because previous records for this species were given without a description. Two congeneric species in the genus Noumea could be distinguished by ground color, dorsal markings, color of the mantle edge and gills, and mantle and dorsal marking. In addition, mitochondrial cytochrome c oxidase subunit I (COI) sequences of five species were provided for further molecular identification study. Consequently, a total of 43 species have been reported for the Korean nudi- branch fauna. Keywords: Nudibranchia, taxonomy, Dermatobranchus otome, Mexichromis festiva, Noumea nivalis, Noumea purpurea, Hoplodoris armata, Okenia hiroi, Korea INTRODUCTION They were preserved in 10% neutral buffered formalin or 97 % ethanol. A stereoscopic microscope (Olympus SZ-61 with Species in the order Nudibranchia are characterized by a lack FuzhouTucsen TCA-3; Olympus, Tokyo, Japan) was used of shell in adult stage, highly diverse body form and various to examine the specimens. -
NEWSNEWS Vol.4Vol.4 No.04: 3123 January 2002 1 4
4.05 February 2002 Dr.Dr. KikutaroKikutaro BabaBaba MemorialMemorial IssueIssue 19052001 NEWS NEWS nudibranch nudibranch Domo Arigato gozaimas (Thank you) visit www.diveoz.com.au nudibranch NEWSNEWS Vol.4Vol.4 No.04: 3123 January 2002 1 4 1. Protaeolidella japonicus Baba, 1949 Photo W. Rudman 2, 3. Babakina festiva (Roller 1972) described as 1 Babaina. Photos by Miller and A. Ono 4. Hypselodoris babai Gosliner & Behrens 2000 Photo R. Bolland. 5. Favorinus japonicus Baba, 1949 Photo W. Rudman 6. Falbellina babai Schmekel, 1973 Photo Franco de Lorenzo 7. Phyllodesium iriomotense Baba, 1991 Photo W. Rudman 8. Cyerce kikutarobabai Hamatani 1976 - Photo M. Miller 9. Eubranchus inabai Baba, 1964 Photo W. Rudman 10. Dendrodoris elongata Baba, 1936 Photo W. Rudman 2 11. Phyllidia babai Brunckhorst 1993 Photo Brunckhorst 5 3 nudibranch NEWS Vol.4 No.04: 32 January 2002 6 9 7 10 11 8 nudibranch NEWS Vol.4 No.04: 33 January 2002 The Writings of Dr Kikutaro Baba Abe, T.; Baba, K. 1952. Notes on the opisthobranch fauna of Toyama bay, western coast of middle Japan. Collecting & Breeding 14(9):260-266. [In Japanese, N] Baba, K. 1930. Studies on Japanese nudibranchs (1). Polyceridae. Venus 2(1):4-9. [In Japanese].[N] Baba, K. 1930a. Studies on Japanese nudibranchs (2). A. Polyceridae. B. Okadaia, n.g. (preliminary report). Venus 2(2):43-50, pl. 2. [In Japanese].[N] Baba, K. 1930b. Studies on Japanese nudibranchs (3). A. Phyllidiidae. B. Aeolididae. Venus 2(3):117-125, pl. 4.[N] Baba, K. 1931. A noteworthy gill-less holohepatic nudibranch Okadaia elegans Baba, with reference to its internal anatomy. -
Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1
Observations on the Shells of Some Fresh-Water Neritid Gastropods from Hawaii and Guam1 Geerat J. VERMEJJ Department of Biology, Yale University Abstract Observations on the fresh-water neritid prosobranch gastropods Neritina vespertina Sowerby 1849 and N. granosa Sowerby 1825 from Hawaii, and N. pul /igera conglobata von Martens 1879 and Septaria porce/lana (Linnaeus 1758) from Guam, have yielded a qualitative correlation between clinging ability of the animal and the degree of development of limpet-like shell characters. The hypothesis is put forth that the granular ornamentation on the shell of N. granosa, and possibly the presence of egg capsules on the shells of many fluviatile neritids (notably N. pu/ligera conglobata and S. porcellana) may create turbulence and minimize the effects of the strong current in which the animals live. Methods Shell dimensions were measured to the nearest tenth millimeter with Vernier calipers. Length was taken as the greatest distance from the apex to a point on the outer lip and usually coincides with the greatest linear dimension of the shell. Width is the greatest distance parallel to the outer edge of the parietal septum. Height is the greatest distance from a point on the dorsal surface to the plane of the opening of the shell measured perpendicular to the length and width dimensions. Attempts at quantitatively measuring the force by which the animal clings to the substratum and the resistance against shear were not successful, but the quali tative differences in these properties between the various species are striking. Names for the species discussed in this paper have been taken from Baker (1923), Kira (1962), and Rabe (1964), and have been confirmed and augmented by Drs. -
Spaceflight Imposes Numerous Adaptive Challenges for Terrestrial Life
Astrobiology Science Conference 2017 (LPI Contrib. No. 1965) 3032.pdf Transcriptomic changes in an animal-bacterial symbiosis under modeled microgravity conditions. Giorgio Casaburi1, Irina Goncharenko-Foster1 and Jamie S. Foster1, 1Department of Microbiology and Cell Science, University of Florida, Space Life Science Lab, Merritt Island, FL, USA. Introduction: Spaceflight imposes numerous adaptive challenges for terrestrial life. The reduction in gravity, or microgravity, represents a novel environ- ment that can disrupt homeostasis of many physiologi- cal processes. Additionally, it is becoming increasingly clear that an organism’s microbiome is critical for host health and examining its resiliency in microgravity represents a new frontier for space biology research. In this study, we examine the impact of microgravity on the interactions between the squid Euprymna scolopes and its beneficial symbiont Vibrio fischeri, which form a highly specific binary mutualism. First, animals in- oculated with V. fischeri aboard the space shuttle showed effective colonization of the host light organ, the site of the symbiosis, during space flight. Second, RNA-Seq analysis of squid exposed to modeled mi- crogravity conditions exhibited extensive differential gene expression in the presence and absence of the symbiotic partner. Transcriptomic analyses revealed in the absence of the symbiont during modeled micro- gravity there was an enrichment of genes and pathways associated with the innate immune and oxidative stress response. The results suggest that V. fischeri may help modulate the host stress responses under modeled mi- crogravity. This study provides a window into the adaptive responses that the host animal and its symbi- ont use during modeled microgravity. .