<<

Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society 0024-4074The Linnean Society of London, 2003? 2003 141?

Original Article

CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING AGP II

Botanical Journal of the Linnean Society, 2003, 141, 399–436. With 1 figure

An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG II

THE ANGIOSPERM PHYLOGENY GROUP*

Received June 2002; accepted for publication December 2002

A revised and updated classification for the families of the flowering plants is provided. Newly adopted orders include , , , and . Pertinent literature published since the first APG classification is included, such that many additional families are now placed in the phylogenetic scheme. Among these are Hydnoraceae (), Nartheciaceae (), Corsiaceae (), Triuridaceae (Pan- danales), Hanguanaceae (), Bromeliacae, Mayacaceae and Rapateaceae (all ), Barbeuiaceae and Gisekiaceae (both ), Geissolomataceae, and (unplaced to , but included in the ), (unplaced to order, but included in eurosids I), , Ctenolopho- naceae, , , Lophopyxidaceae, (), (unplaced in euasterid II), , () and (). Several major fami- lies are recircumscribed. are expanded to include a large part of , including the of that ; another portion of former Flacourtiaceae is assigned to an expanded circumscription of . are restricted to the uniovulate ; Phyllanthoideae are recognized as and Oldfieldioideae as . are recircumscribed to include Buddlejaceae and Myoporaceae and exclude several former members; these are assigned to Calceolariaceae, and Plantaginaceae. We expand the use of bracketing families that could be included optionally in broader circumscriptions with other related families; these include Agapanthaceae and Amaryllidaceae in Alliaceae s.l., Agavaceae, Hyacinthaceae and Ruscaceae (among many other ) in Asparagaceae s.l., in , Turner- aceae in Passifloraceae, in , and Diervillaceae, , Linnaeaceae, Mori- naceae and in s.l. © 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436.

ADDITIONAL KEYWORDS: angiosperms – sequences – .

INTRODUCTION lating DNA sequences, in particular from the plastid gene rbcL (e.g. Chase et al., 1993), provided new and During the 1990s, reconstruction of flowering informative sets of data. Cladistic analysis of these phylogeny took a great step forward. Rapidly accumu- data sets was also much improved, especially through

*Corresponding author. Mark Chase. E-mail: [email protected] Recommended citation abbreviated as ‘APG II 2003.’ This paper was compiled by Birgitta Bremer, Kåre Bremer, Mark W. Chase, James L. Reveal, Douglas E. Soltis, Pamela S. Soltis and Peter F. Stevens, who were equally responsible and listed here in alphabetical order only, with contributions from Arne A. Anderberg, Michael F. Fay, Peter Goldblatt, Walter S. Judd, Mari Källersjö, Jesper Kårehed, Kathleen A. Kron, Johannes Lundberg, Daniel L. Nickrent, Richard G. Olmstead, Bengt Oxelman, J. Chris Pires, James E. Rodman, Paula J. Rudall, Vincent Savolainen, Kenneth J. Sytsma, Michelle van der Bank, Kenneth Wurdack, Jenny Q.-Y. Xiang and Sue Zmarzty (in alphabetical order). Addresses: B. Bremer, The Bergius Foundation at the Royal Swedish Academy of Sciences, PO Box 50017, SE-104 05 Stockholm, Sweden; K. Bremer, Department of Systematic Botany, Evolutionary Biology Centre, Uppsala University, Norbyv. 18D, SE-752 36 Uppsala, Sweden; M. W. Chase, Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, Surrey, TW9 3DS, UK; J. L. Reveal, University of Maryland, 18625 Spring Canyon Road, Montrose, Colorado 81401–7906, USA; D. E. Soltis, Department of Botany, University of Florida, Gainesville, Florida 32611– 8526, USA; P. S. Soltis, Florida Museum of Natural History, Dickinson Hall, University of Florida, Gainesville, Florida, 32611– 7800, USA; and P. F. Stevens, Department of Biology, University of Missouri-St. Louis and Missouri Botanical Garden, PO Box 299, St. Louis, Missouri 63166–0299, USA.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 399

400 AGP II development of phylogenetic theory and application to non-monophyletic (e.g. Euphorbiaceae and Scrophu- analysis of large data sets (e.g. Hillis, 1996) and var- lariaceae). Reclassification of these into monophyletic ious methods for estimating the support for individual units was not possible in 1998 and required further in the phylogenetic (Felsenstein, 1985; investigation. Furthermore, of many fam- Farris et al., 1996). The outline of a phylogenetic ilies remained to be investigated with extensive sam- of all flowering plants became established, and several pling and application of molecular phylogenetic well supported major clades involving many families techniques. Thus, it was acknowledged that some of flowering plants were identified. In many cases the changes in family circumscription would be necessary new knowledge of phylogeny revealed relationships in to reflect improved understanding of phylogenetic conflict with the then widely used modern classifica- relationships. For some families already investigated tions (e.g. Cronquist, 1981; Thorne, 1992; Takhtajan, and found to be monophyletic, alternative, optional 1997), which were based on selected similarities and circumscriptions were indicated by listing the sister differences in morphology rather than cladistic anal- family or families in square brackets immediately ysis of larger data sets involving DNA sequences or after the family. For example, could be other forms of systematic data. It became clear that interpreted either to exclude or include a sister family none of the previous classifications accurately Cabombaceae. reflected phylogenetic relationships of flowering Five have now passed since the APG system plants, and communication about plant evolution was compiled. Recent advances in our knowledge of referring to the old classification schemes became flowering plant phylogeny indeed have motivated sev- increasingly difficult. To alleviate this problem, a eral changes in family circumscription and classifica- group of flowering plant systematists, calling them- tion, as well as the addition of a few new orders. We selves the Angiosperm Phylogeny Group (APG for therefore present here an updated version of the APG short), proposed a new classification for the families of system. flowering plants (APG, 1998). In general, we have adopted a conservative The initial APG (1998) system comprised 462 fami- approach and propose here changes in the APG sys- lies arranged in 40 putatively monophyletic orders tem only when there is substantial new evidence sup- and a few monophyletic higher groups. The latter were porting a revised classification. Five additional orders named informally as monocots, commelinoids (here are recognized, Austrobaileyales, Canellales, Celas- changed to to prevent confusion with trales, Crossosomatales and Gunnerales. These rep- Commelinoideae of Commelinaceae), eud- resent well-supported monophyletic groups of icots, core , rosids including eurosids I and II families unclassified to order in APG (1998). Circum- and including euasterids I and II. The focus scription of none of the APG orders has been changed was on orders and less on families. An attempt was except for the addition of a number of the families made to recognize orders well supported as monophyl- unclassified to order in APG (1998). When more etic in large jackknife analyses of molecular data recent analyses have demonstrated that such families (Källersjö et al., 1998). In general, the orders were of formerly uncertain position are well nested inside fairly widely circumscribed, especially in comparison the APG orders or well supported as sister groups to with those of Takhtajan (1997). A few monofamilial any of the APG orders, the latter have been expanded orders were recognized (Ceratophyllales, Acorales and to include these families. Thus, some APG orders ) for cases in which these families were appar- have been more widely circumscribed to include their ently sister groups of larger clades including several sister groups (e.g. being included in Dipsa- orders. Many families were not classified to order cales; cf. Bremer, 2000), except in one case in which because their positions were uncertain or unknown, the pair of and has been and these families were listed under the supraordinal established as an order Canellales rather than groups where they were known to belong or at the end included in their , Piperales (most of the system in a list of families, probably eudicots, of researchers would consider these two groups too uncertain position. APG predicted that there would be divergent to include in a single order). No APG orders little need to change the circumscription of the orders have been merged or split, and no families have been except for inclusion of families not then assigned to transferred from one order to another. Only in one order and possible transfer of occasional misplaced case has a family been removed from an APG order; families. It was also realized that new orders might be Oncothecaceae have been excluded from established if monophyletic groups of unplaced fami- and assigned to a position at the beginning of the lies were identified. euasterids I without classification to order because The APG system also involved the recognition of recent analyses have not supported any clear (i.e. strictly monophyletic groups at all levels, but it was bootstrap- or jackknife-supported) ordinal position for acknowledged that there were families known to be that family.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436

CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 401

Figure 1. Interrelationships of the orders and some families supported by jackknife or bootstrap frequencies above 50% in large-scale analyses of angiosperms. All except five of the clades are supported by the Soltis et al. (2000) analysis of 18S rDNA, rbcL, and atpB sequences from a wide sample of angiosperms. Three clades, Canellales+Piperales, +, and these four orders together, are supported by analyses of several different gene sequences of phylogenetically angiosperms (Qiu et al., 1999; Graham & Olmstead, 2000). One , that of all core eudicots except Gunnerales, is supported by analysis of rbcL sequences from a wide sample of eudicots (Savolainen et al., 2000). Another clade, that of all asterids except , is supported by a six-marker analysis of a wide sample of asterids (Bremer et al., 2002). Rosid and asterid families not classifed to order are not shown.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436

402 AGP II

Interrelationships among the orders and some of are aware of at least one, appropriate, additional fam- the unclassified families are now better understood ily that has yet to be formally proposed. Summarized than they were when the APG system was developed. below are the changes to APG (1998) with appropriate In Figure 1 we show interrelationships of the orders references supporting these alterations. Since 1998, and some families supported by jackknife or bootstrap five proposed systems for the angiosperms have been percentages above 50% in large-scale analyses of 18S published. Two (Judd et al., 1999; 2002; Stevens, 2001) rDNA, rbcL, and atpB sequences from a wide sample more or less follow the system presented in APG of angiosperms (Soltis et al., 2000a). Similar relation- (1998). One (Thorne, 2001, pers. comm.) approaches ships were shown based on analyses of several that of APG, whereas two others (Doweld, 2001; from phylogenetically (Qiu et al., Wu et al., 2002) basically follow that proposed by 1999; Graham & Olmstead, 2000; Zanis et al., 2002) Takhtajan (1997). and of rbcL sequences with a wide sample of eudicots (Savolainen et al., 2000b; cf. also Källersjö et al., ROOT OF THE ANGIOSPERM TREE 1998). However, relationships among the major orders AND of monocots and core eudicots, and partly among the orders of rosids and asterids, are still uncertain Relationships at the base of the angiosperms have (Fig. 1; Chase et al., 2000; Soltis et al., 2000a). been largely clarified with most analyses supporting At the family level several families have been syn- as sister to all other extant angiosperms onymised or re-circumscribed, especially in Aspar- (Qiu et al., 1999; Soltis et al., 2000a). In contrast to agales, Malpighiales and . A few families these studies, Barkman et al. (2000) found strong sup- have been re-established from synonymy to make port for Nymphaeaceae/Amborella as sister to all other them monophyletic in so far as it is possible given cur- angiosperms in an analysis from which ‘noisy data’ rent knowledge about generic interrelationships. As a were removed. Further analyses by Zanis et al. (2002) general principle, we have avoided changing circum- rejected the Nymphaeaceae/Amborella rooting; nearly scription of the families unless necessary to preserve all tests found strong support for Amborella alone as monophyly. There are, however, two exceptions to this sister to the rest, with Nymphaeaceae as the subse- general principle of stability. First, detailed work quent sister to the rest. Either one order with both within some taxa since APG (1998) has generated families or two orders might still be possible, so we much new knowledge about interrelationships, and refrain from formally proposing names for these; the when specialists have proposed a new and well sup- ordinal names Amborellales and are ported classification, it has been followed even if our available. Austrobaileyales are recognized by APG for previous classification did comprise monophyletic the first time and comprise Austrobaileyaceae, Trime- families. Second, in several cases accumulating knowl- niaceae and (optionally including edge of phylogeny has demonstrated sister-group rela- ). A clade of , and tionships involving small monogeneric families. Such received 99% jackknife support in analy- taxa represent redundancies in classification, and ses of rbcL, atpB and 18S rDNA (Soltis, Soltis & Chase, hence we have usually reduced monogeneric families 1999; Soltis et al., 2000b). Material of was to synonymy to reduce this redundancy. In some cases, not available for these multigene analyses; however, however, we have retained the existing family classi- parsimony analyses of rbcL (Renner, 1999) and 26S fication when it was judged that a monogeneric family rDNA (Soltis et al., 2000b) and a maximum likelihood is so different morphologically from its sister group analysis of rbcL, atpB and 18S rDNA (Soltis et al., that merging the two would create a morphologically 2000b) for fewer taxa placed Trimenia in this clade. unrecognizable entity. We recognize that decisions Bootstrap support for this clade in 5-, 6- and 11-gene using the argument ‘too divergent morphologically’ analyses was 100% (Qiu et al., 1999; Zanis et al., 2003). are likely to be highly subjective and largely intuitive, The magnoliids, a superordinal group, comprise but these arguments are a long established tradition. Laurales, Magnoliales, Piperales and a new APG We generally accept the opinion of specialists in such order, Canellales, with two families, Canellaceae and cases, but we also recognize that specialists nearly Winteraceae. This larger magnoliid clade did not always favour splitting of groups they view as ‘too het- receive jackknife support greater than 50% in the erogeneous’. In several cases, we have listed families three-gene analyses of Soltis et al. (1999) and Soltis in brackets, indicating the possibility of alternative et al. (2000a), but with the addition of more genes circumscriptions as described in the introduction to bootstrap support for this clade increased to 64% the APG system above. With the changes introduced (Zanis et al., 2003) and 67% (Qiu et al., 1999) for five here, the number of orders has increased from 40 to 45 genes and 100% in a compartmentalized analysis of and the number of families decreased from 462 to 457. six genes (Zanis et al., 2002) and 11 genes (Zanis et al., Of this number, 55 families are listed in brackets. We 2003). Within the magnoliids, Laurales and Magno-

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436

CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 403 liales are sisters (71% bootstrap support, Qiu et al., between Acoraceae (Acorales) and the rest continues 1999; 100%, Zanis et al., 2003), and Piperales and to be supported. The Chase et al. (2000) and Soltis Canellales are sisters (83% bootstrap support, Qiu et al. (2000a) analyses of three genes both agreed on et al., 1999; 100%, Zanis et al., 2003). However, anal- this placement, as did that of Fuse & Tamura (2000), ysis of 104 morphological characters for 52 which examined a relatively small number of mono- angiosperms (Doyle & Endress, 2000) resulted in dif- cots with plastid matK sequences. Of the five families ferent relationships among these clades: Magnoliales unplaced in APG (1998), we now have clear placement + Canellales were sister to Laurales, and Piperales of all but (which now also includes were distantly related in a polytomy with the mono- Japanolirion). The name Petrosaviales is available for cots, Nymphaeaceae and several clades of eudicots. the family if it is assigned to its own order. Triuri- None of these relationships received bootstrap support daceae are placed in , probably as sister to greater than 50%. Pandanaceae, and Corsiaceae are included in Liliales The sister-group relationship of Winteraceae and (Neyland, 2002). Within Dioscoreales, several changes Canellaceae has received bootstrap or jackknife sup- are made as a result of the extensive study of the order port of 99% or 100% in all recent multigene analyses by Caddick et al. (2000, 2002a,b), which used an anal- (e.g. Soltis et al., 1999; Qiu et al., 1999; Soltis et al., ysis of three genes, rbcL, atpB and 18S rDNA, and 1999; Zanis et al., 2002, 2003). Doyle & Endress’ morphology to examine relationships of nearly all gen- (2000) morphological analysis also found this sister era of the order. Thismiaceae are sister to Burmanni- group (bootstrap support <50%). Their sister group, aceae, which makes it reasonable to include them Piperales, consists of Aristolochiaceae, Lactoridaceae, together. Trichopus (formerly Trichopodaceae) is sister Piperaceae and Saururaceae (APG, 1998), to which to Avetra (Dioscoreaceae), and this pair is sister to we now add Hydnoraceae (Nickrent et al., 2001). Tacca (Taccaceae). All other genera of Dioscoreaceae Although the exact placement of Hydnoraceae within (Rajania, Nonarapenta, Tamus, etc.) are embedded in Piperales is uncertain, it clearly falls within this clade Dioscorea, so a simplified of Dioscoreaceae (Nickrent & Duff, 1996; Nickrent et al., 1998, 2001). In would be to include these in Dioscorea and eliminate recent analyses, Lactoris appears within a clade of Taccaceae and Trichopodaceae (both monogeneric) by Aristolochiaceae, as sister to Aristolochia + Thottea including them in an expanded Dioscoreaceae. (Qiu et al., 1999; Zanis et al., 2003) or Aristolochia Although bootstrap support is not exceptionally high, alone (Soltis et al., 2000a). Thottea was not included in a position for Nartheciaceae in Dioscoreales is congru- the last analysis, but support for the embedded posi- ent with the non-DNA analyses of Caddick et al. tion of Lactoris was weak (66% or less), even with five (2000). genes. Morphological analyses likewise recognize a Continued work on Asparagales (Fay et al., 2000b) clade of Piperaceae, Saururaceae, Aristolochiaceae clarified relationships within the order. In recent and Lactoris. Given the uncertain position of Lactoris years, new families were published to accommodate in both molecular and morphological trees, we recom- genera that fell as sister taxa to clades composed of mend that Lactoridaceae be retained until more con- several families Dahlgren, Clifford & Yeo (1985), vincing evidence of placement is obtained. but this process has led to both a rearrangement of The position of also requires further family limits and an increased recognition of monoge- study. It is sister to the magnoliids + eudicots in the neric and small families. Specialists in these families six-gene compartmentalized analysis (84% bootstrap have hoped to take a broader view of family limits in support; Zanis et al., 2003), but this is the only anal- Asparagales, which is now possible because the pat- ysis that has provided support for the placement of this terns are relatively clear (Fay et al., 2000b). Because family. At this time, we prefer not to assign Chloran- Dahlgren and co-workers believed that broadly cir- thaceae to an order until its position becomes clearer. cumscribed concepts of Liliaceae were grossly unnat- The name Chloranthales is available should Chloran- ural, they recognized as families only those groups in thaceae require assignment of a name at that rank. which they had some confidence of monophyly. The result of this approach was circumscription of nar- rowly defined families. When molecular systematists MONOCOTS turned their attention to relationships of the lilioid Although the sister group of the monocots remains monocots (Duvall et al., 1993; Chase et al., 1995a,b), unclear, a great deal of progress has been made within they used this classification as the basis of their sam- the monocots since the last APG installment. Chase pling. Hence they retained the circumscriptions of et al. (2000) published a review of relationships and a Dahlgren et al. (1985) without further consideration of proposed revision of the APG system for the monocots, whether these units should in fact be recognized as but nonetheless we will here provide information on families. APG (1998) also used this system, and so changes since APG (1998). The rooting of the monocots Asparagales was established with 29 recognized fam-

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 404 AGP II ilies, many of them small (1–5 genera). Although this In the commelinids (we change the name here to approach seemed logical at the time, it now in retro- avoid confusion with Commelinoideae), the relation- spect appears less so because it bequeathed us ships of many of the previously unplaced families have extremely narrowly defined family limits. Only spe- been resolved (as summarized in Chase et al., 2000). cialists in this group understand this taxonomy, and it Abolbodaceae are included in Xyridaceae, in which is so difficult to teach that many instructors use Lili- most recent treatments have placed them. Bromeli- aceae s.l. rather than the APG system. We therefore aceae, Mayacaceae and Rapateaceae are all included propose here to simplify the higher Asparagales by in Poales, and Hanguanaceae are moved to Commeli- optionally reducing the number of families to two, Alli- nales. Poales are now a large order of 18 families, and aceae and Asparagaceae. These can easily be identi- some researchers have advocated splitting them into fied by the umbellate inflorescences of Alliaceae as many as three or four orders (Givnish et al., 1999; (optionally including both Agapanthaceae and Ama- Judd et al., 1999; Thorne, 2001, pers. comm.), but until ryllidaceae) vs. the racemes of Asparagaceae, except relationships are more clearly resolved such demoli- for Themidaceae with umbels, but these have many tion would be premature. We also point out that subtending and internal , whereas those of Alli- Asparagales as circumscribed here is still larger and aceae typically have just two (or if there are more they more diverse morphologically. Based on Chase et al. are not internal in the umbel; Pires & Sytsma, 2002). (2000), there is clear evidence that Poales are mono- In Asparagaceae, we optionally include Agavaceae, phyletic, but some relationships within the order Anemarrhenaceae (monogeneric), Anthericaceae, remain unclear. Bremer (2002) analysed family inter- Aphyllanthaceae (monogeneric), Behniaceae (monoge- relationships within Poales using combined rbcL/atpB neric), Herreriaceae (two genera), Hyacinthaceae, analyses and found strong support for cyperoid Laxmanniaceae, Ruscaceae and Themidaceae. In (Cyperaceae, Juncaceae and Thurniaceae) and grami- Ruscaceae, Rudall, Conran & Chase (2000a) already noid clades (Anarthriaceae, Centrolepidaceae, Ecdeio- included Convallariaceae, Dracaenaceae (three gen- coleaceae, Flagellariaceae, Joinvilleacae, Poaceae and era), Eriospermaceae (monogeneric) and Nolinaceae ). Within the latter clade, Ecdeio- (2–3 genera). We propose here to use the bracketing coleaceae rather than Joinvilleacae were found to be system to indicate that those who wish to recognize sister to Poaceae. Although the two large clades above some additional monophyletic groups may continue to are now clearly defined, their relationships to the do so and still use the ‘APG system’. However, in that other families of Poales requires further work. case we would recommend that Agavaceae should We have not adopted the new monogeneric families include Anemarrhenaceae, Anthericaeae, Behniaceae carved out of Anarthriaceae (Briggs & Johnson, 2000) and Herreriaceae (these are listed in the family syn- simply because they are monogeneric and clearly onymy in the appendix). Along the same lines, we list related to Anarthriaceae, notwithstanding the Xanthorrhoeaceae s.l. as optionally including both argument made by the authors that they share few Asphodelaceae and Hemerocallidaceae (which already morphological characters with each other and Anar- included Phormiaceae of earlier authors). We realize thriaceae. The sole remaining unplaced commelinid that some researchers may be perturbed by this fur- family is Dasypogonaceae for which the ordinal name ther re-organization of family lines within Aspar- Dasypogonales is available should recognition become agales, but we believe this modification provides a appropriate. much-needed simplification of familial taxonomy in Monocot phylogenetics have made immense strides this order. over the past 8 years due primarily to the foci provided We were prompted to make the changes to Aspar- by the two international monocot symposia held in agales taxonomy by the condensation of families that 1993 and 1998 (at the Royal Botanic Gardens, Kew, has already been made in Liliales. Relative to the sys- Rudall et al., 1995, and the Royal Botanic Gardens, tem of Dahlgren et al. (1985), APG (1998) had already Sydney, Wilson & Morrison, 2000, respectively). These reduced Calochortaceae, Petermanniaceae, Trilli- meetings have focused attention both on what was aceae, Tricyrtidaceae and Uvulariaceae, and we may known and, more importantly, on which groups yet include Philesiaceae and Rhipogonaceae in Smila- needed additional attention. As a result, we now know caceae (following previous authors on account of their more about monocots than any other major group of spinose ; Rudall et al., 2000b). At this time, the angiosperms, a situation that is a remarkable achieve- only change we make is the addition of the myco- ment given the paucity of information available in parasitic Corsiaceae on the basis of 26S rDNA data 1985 (Dahlgren et al., 1985). This model should now be (Neyland, 2002). Pandanales have the same circum- adopted for the other large groups of angiosperms so scription except for the addition of another achloro- that attention is likewise focused on integration of phyllous family, Triuridaceae, based on analyses of research programmes and gaps in the data base. Even 18S rDNA sequence data (Chase et al., 2000). the relatively well-studied asterid orders have new

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 405 members that desperately need integration into the spective of their new alignment. Within the core overall picture of eudicot evolution. group, relationships remain uncertain. Appelquist & Wallace (2000) and Cuénoud et al. (2002) found that the distinctive Madagascaran are EUDICOTS sister to Calyptrotheca of . However, Relatively few changes have been made among the Didiereaceae are not yet reduced to synonymy under families/orders forming a grade at the base of the eud- Portulacaceae. Furthermore, Cuénoud et al. (2002) icots. We have placed Didymelaceae as an optional found that there is a well supported, but internally of , and is available if Bux- unresolved group, the ‘succulent’ clade of Manhart & aceae were to be elevated to ordinal status. Sabiaceae Rettig (1994), that includes Basellacaeae, Cactaceae, and likewise remain unplaced to Didiereaceae, Halophytaceae and Portulacaceae. order, but if either or both of these changes becomes Although Portulacaceae are clearly paraphyletic as appropriate, Sabiales and Trochodendrales have pre- currently circumscribed, the composition and relation- viously been published. remain unchanged ships of the lineages within Portulacaceae need fur- except that we have indicated that option- ther study before taxonomic realignment begins ally could be included in , although many (hence the lack of change in the classification). botanists in both Northern and Southern Hemi- Within one of the other major clades of the core spheres will probably object to this change for two Caryophyllales, a similar problem to that of the taxa that have never before been associated. Ranun- apparently polyphyletic Portulacaceae is encoun- culales remain unchanged from APG (1998). tered; are grossly polyphyletic rela- Aextoxicaceae are clearly closely related to Berberi- tive to , and Sarcobataceae. dopsidaceae (Soltis et al., 2000a, among several), and We have recognized here Barbeuiaceae and Giseki- these two small families (one and two genera, respec- aceae; both are well supported as excluded from Phy- tively) as yet have no clear relationship to the other tolaccaceae and are resurrected from the list of eudicot orders, so we continue to leave them unplaced familial synonyms in APG (1998). Lophiocarpus is to order. If an ordinal name should be required (e.g. also clearly unrelated to the Phytolaccoideae/Rivi- Soltis et al., 2003), is available (see noideae clade, but it has never been recognized as a below). It is unclear on what morphological grounds a family (the name proposed by Bortenschlager, 1973, merger of these two families could be justified; these is not validly published). (usually Mol- genera are remarkably divergent considering the sim- luginaceae) is sister to Lophiocarpus, and the pair is ilarity of their DNA sequences. well removed from the rest of were consistently placed as sister to (Cuénoud et al., 2002). The third major clade of core Caryophyllales in the three-gene analysis of Soltis caryophyllids is unproblematic and includes Achato- et al. (2000a) but with jackknife support of only 60%, carpaceae, and . and on this basis we refrain from adding them to Relationships and taxonomy of the other major clade Caryophyllales. Although the name is of Caryophyllales remain as they were in APG (1998). available, it would be against the philosophy of APG to Although additional genera and new data have been create a monofamilial order for them if they were added, no new patterns for general relationships found to have a clear relationship to another recog- have emerged (Cuénoud et al., 2002). nized order, in this case Caryophyllales. Relative to APG (1998), no changes to the composi- Relationships in Caryophyllales continue to be in a tion in have been made (see Nickrent & state of flux and therefore difficult to discuss. Apart Malécot, 2001, and Nickrent, 2002, for a summary of from Rhabdodendraceae, there seem to be two major relationships). At least one of the families recognized, lineages. The first is composed of Caryophyllales in , is problematic, and ongoing studies of their long-standing restricted sense plus Simmonds- generic relationships should provide evidence of how iaceae and Asteropeiaceae + Physenaceae as succes- to realign family limits (Nickrent, 2002). In all short- sive sister groups to the core members. The second est trees produced in the combined analysis of three includes Ancistrocladaceae and their mostly carnivo- genes by Soltis et al. (2000a), Santalales were the sis- rous relatives (Meimberg et al., 2000; Cuénoud et al., ter group of Dilleniaceae + Caryophyllales but with 2002), + Frankeniaceae and Plumbagi- less than 50% jackknife support. If they were in the nacae + (Källersjö et al., 1998; Soltis future to receive strong support as sister to this clade, et al., 2000a; Cuénoud et al., 2002). Unfortunately, the they would nonetheless be maintained because the new members of the first lineage (Asteropeiaceae, APG philosophy is not to alter ordinal recognition Physenaceae and ) are poorly stud- except to add additional ones as needed for groups ied, and some features that make the core families demonstrated to be sister to clades composed of sev- appear distinctive need re-evaluating from the per- eral orders.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 406 AGP II

The composition of is one of the major rosids. Vitaceae may be sister to the rest of the rosids surprises of molecular phylogenetic analyses of the (Soltis et al., 2000a), but jackknife support for this angiosperms (Chase et al., 1993; Morgan & Soltis, position was only moderate. Crossosomatales, newly 1993; Soltis et al., 1997; Soltis & Soltis, 1997; Qiu circumscribed and recognized here, include Crossoso- et al., 1998; Hoot, Magallon-Puebla & Crane, 1999; mataceae (Sosa & Chase, 2003), Stachyuraceae and Savolainen et al., 2000a; Soltis et al., 2000a). This , all previously unplaced rosids (Soltis eclectic assemblage comprises taxa placed in three et al., 1999, 2000a; Nandi, Chase & Endress, 1998; subclasses in modern classifications (e.g. Cronquist, Savolainen et al., 2000a). Crossosomatales share a 1981; Takhtajan, 1997). Several changes are sug- character in which the cell walls of the many- gested here compared to APG (1998). layered testa are all or mostly lignified. Seed anatomy Phylogenetic analyses of a five-gene data set for continues to be a valuable source of new systematic Saxifragales (c. 9000 bp/) (Fishbein, Hufford & information that is highly congruent with phyloge- Soltis, 2003) have identified several major, well- netic relationships inferred from analyses of molecu- supported clades. There is strong support for a clade of lar data (see Doweld, 2001). Circumscription of this and several woody members of the order is conservative; other unassigned rosid genera former Saxifragaceae sensu Engler (1930; i.e. the cur- often recognized as families (e.g. Geissoloma, rently recognized families Grossulariaceae, and Strasburgeria) have similar testa anatomy and and Pterostemonaceae). Within this clade, the sister- may be added to this order if support for this broader group relationship between Iteaceae and Pterostemo- circumscription strengthens. naceae is strongly supported. Consideration should be In , there is abundant morphological and given to reducing Pterostemonaceae to Iteaceae by molecular evidence indicating that the small families adding Pterostemon (two ) to that family. A sec- , Greyiaceae and are ond, strongly supported clade includes closely related (Ronse Decraene & Smets, 1999; as sister to a clade of , Tetracarpaea Savolainen et al., 2000b). Greyiaceae are here syn- (Tetracarpaeaceae), (Penthoraceae), and onymised under Melianthaceae with Francoaceae an (formerly of ), all small optional further synonym. Likewise, Hypseocharita- genera that could be combined to form a single ceae are an optional synonym of , as in expanded family Haloragaceae (Fishbein et al., 2003). APG (1998). Although the composition of Saxifragales now In , recent work (Conti, Litt & Sytsma., appears clear, the position of the clade among the core 1996; Conti, Baum & Sytsma, 1999) confirmed family eudicots is uncertain. The placement of the order has circumscriptions. Clausing & Renner (2001) showed a varied among the broad phylogenetic analyses con- well-supported sister-group relationship between ducted to date. Initial analyses of rbcL sequences and , clarifying the (Chase et al., 1993) placed the order as sister to all circumscriptions of both families; the two have been other rosids, whereas analyses of atpB sequences combined before (e.g. Cronquist, 1981), and having placed the clade as sister to a large clade containing this option seems reasonable (they are therefore most of the core eudicots (Savolainen et al., 2000a). bracketed in the classification). None of these placements received jackknife/bootstrap Zygophyllaceae and Krameriaceae are now included support >50%. The three-gene analysis (Soltis et al., in eurosid I (Soltis et al., 2000a; Savolainen et al., 1999; Soltis et al., 2000a) placed Saxifragales as sister 2000a); Krameriaceae (monogeneric) can be included to the rosids but with only weak jackknife support in the already heterogeneous Zygophyllaceae (for the (60%). Analyses of a four-gene data set for eudicots latter, see Sheahan & Chase, 2000), but indicated placement of Saxifragales as sister to all shares few traits that could be considered synapomor- other core eudicots except Gunnerales (Soltis et al., phies with Zygophyllaceae. However, some research- 2003). ers (e.g. Sheahan and Chase, pers. comm.) see little advantage in the maintenance of a monogeneric fam- ily with a clear relationship to another, regardless of ROSIDS how divergent the genus is from the others included. If Our knowledge of the composition of and relationships Zygophyllaceae continue to be placed as sister to a among the rosid and eurosid I taxa has improved sig- clade composed of several orders and ordinal status is nificantly, particularly within Malpighiales, and we appropriate, then the name is available. provide changes to reflect these newly understood Several of the previously unplaced eurosid I families relationships. Changes to the classification elsewhere are now combined with and Celas- in the rosids are few. Geissolomataceae and Strasbur- traceae in a newly accepted order, Celastrales (Nandi geriaceae, previously unplaced, and Vitaceae, previ- et al., 1998; Savolainen et al., 2000b), although the ously an unplaced core eudicot, are added to the group is not easy to characterize morphologically.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 407

Huaceae have sometimes appeared with this clade teeth (Nandi et al., 1998), cocarcinogens and flowers in (Soltis et al., 2000a), but without enough support or which the and , if both are present, are consistency to warrant their inclusion here. Stackhou- equal in number. However, most of the taxa with cyclo- siaceae, kept separate in APG (1998), are now syn- pentenoid cyanogenic glycosides and flowers in which onymised with (Savolainen et al., 2000a; sepals and petals are not equal in number are placed Simmons et al., 2001). in the newly accepted Achariaceae. Sister to the rest of The circumscription of the nitrogen-fixing clade and Salicaceae is , although this placement is the composition of the four orders included there, only weakly supported in Chase et al. (2002; only , , and , remain rbcL) but strongly supported in a similar position with largely unchanged (see also Savolainen, Spichiger & far less taxonomic sampling but more data in Soltis Manen, 1997; Jeong, Ritchie & Myrold, 1999). Rela- et al. (2000a; three genes). Other families newly tionships within Rosales, and especially within the recognized here with genera that have been in Fla- - Cecropiaceae - Celtidaceae - - courtiaceae s.l. include and Peridis- - complex, have been problem- caceae. Somewhat unexpectedly, the poorly known atic. Celtidaceae are paraphyletic and include Achariaceae are sister to (Soltis et al., Cannabaceae, and Cecropiaceae are embedded within 2000a; Chase et al., 2002), and so the name of the fam- Urticaceae (Ueda, Kosuge & Tobe, 1997; Wiegrefe, ily becomes the conserved Achariaceae (not the older Sytsma & Guries, 1998; Sytsma et al., 2002), and it is but non-conserved Kiggelariaceae as in several recent therefore appropriate to recognize altered circum- papers). Other taxa with cyclopentenoid cyanogenic scriptions of these families within the urticalean com- glycosides are Malesherbiaceae, Turneraceae and Pas- plex. Within Fagales, monogeneric Rhoipteleaceae are sifloraceae. The three are closely related (Chase et al., strongly supported as sister to and so 2002). Turneraceae and Passifloraceae have foliar the option of combining the two is offered. However, glands and biparental or paternal transmission of the two differ considerably in their gynoecia and plastids (e.g. Shore, McQueen & Little, 1994) and . Malesherbiaceae and Passifloraceae a corona. All Changes in Malpighiales mainly reflect assignment three possess a -like structure that does to this order of six previously unplaced families and not bear the ; optional synonymization is thus the dismemberment of broadly circumscribed Flacour- appropriate. tiaceae and Euphorbiaceae. Of the families assigned No molecular evidence supports Euphorbiaceae s.l. to Malpighiales since APG (1998), Bonnetiaceae and as monophyletic, and here they are divided into three Elatinaceae have a distinctive exotegmen similar to families (as in Chase et al., 2002). Euphorbiaceae s.s. that of , and Bonnetiaceae and Clusiaceae comprise the uniovulate , Croto- share distinctive xanthones. Xanthones are also noideae and . Phyllanthaceae include reported from some Podostemaceae (in which Tris- the biovulate Phyllanthoideae, whereas Picroden- tichaceae, previously an unplaced rosid, now are draceae include the biovulate Oldfieldioideae. The included), and both tenuinucellate ovules and exudate three families have similar and distinctive and are known from Clusiaceae as well as at least some similarities in embryology, but other embryological Podostemaceae (e.g. Contreras, Scogin & Philbrick, details as well as features of , flower, pollen and 1993; Jäger-Zürn, 1997). Relationships within the seed coat anatomy are distinct within each of the three Clusiaceae-Bonnetiaceae-Podostemaceae clade are, families. however, still unclear. (Bonnetiaceae) has are extended to include Hugoniaceae, and been included in (Savolainen et al., 2000a), a close relationship of the two has long been sug- but this is likely to be based on misidentified ma- gested. , Medusagynaceae and Quiinaceae terial (M. W. Chase, pers. comm.). Nevertheless, form a distinctive and monophyletic group (Nandi Podostemaceae, for which the exact relationship with et al., 1998; Savolainen et al., 2000a), with hav- other angiosperms has long been controversial (Cusset ing the secondary and tertiary venation particularly & Cusset, 1988, and references therein), are finally well developed. Optional synonymization seems close to finding a phylogenetic home. Other families appropriate. assigned to Malpighiales include Ctenolophonaceae, Evidence provided by Litt & Chase (1999; see also Ixonanthaceae, and Lophopyxidaceae Nandi et al., 1998) strongly supports monophyly of a (Savolainen et al., 2000a). group of four, mostly small, families: , Recent work has clarified the limits of sets of genera Dichapetalaceae, Chrysobalanaceae and Euphroni- previously assigned to Flacourtiaceae (Chase et al., aceae. Optional recognition of an expanded Chrysobal- 2002; see also Judd, 1997; Nandi et al., 1998; anaceae is recommended for these. All have Savolainen et al., 2000a). Salicaceae are considerably tenuinucellate ovules, some species of each have expanded to include flacourtiaceous taxa with salicoid obliquely bisymmetric flowers and all have a single

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 408 AGP II style. The sister-group relationship of Erythroxylaceae amost all families of asterids using three genes (rbcL, and Rhizophoraceae is confirmed by numerous fea- atpB and matK) and three, non-coding, plastid regions tures such as alkaloids and sieve tube plastid type; and found Cornales to be the sister of all other the rather poorly known African of asterids, followed by Ericales sister to the rest, both Erythroxylaceae is particularly similar to some prim- with high jackknife percentages. The rbcL/atpB/18S itive Rhizophoraceae. Optional synonymization is rDNA data (Soltis et al., 2000a) indicated Cornales as appropriate. sister to Ericales whereas the ndhF data alone In , two alterations to APG (1998) have (Olmstead et al., 2000) or ndhF together with been made. Brunelliaceae have been resurrected from rbcL/atpB/18S rDNA data (Albach et al., 2001b) synonymy because including them in Cunoniaceae showed Cornales as sister to the rest of the asterids, was premature. has been shown to be but without high support percentages. Five families of related to both Cunoniaceae and uncertain position in APG (1998) have been shown to (Bradford & Barnes, 2001; Savolainen et al., 2000b). belong to the asterids: Paracryphiaceae (of uncertain (three genera from Australia) are position within the euasterid II clade as discussed embedded deeply in Elaeocarpaceae, so the name is under ), Pentaphylacaceae and Sladeni- here treated as a synonym of that family. aceae (the latter considered an optional synonym of In the eurosid II clade, several minor changes have Pentaphylacaceae of Ericales, see below), - been made relative to APG (1998). Although Brassi- ceae (included in of ; cales have remained unchanged here, resurrection of Savolainen et al., 2000a), and Cardiopteridaceae and may be appropriate in (Aquifoliales; Kårehed, 2001). Furthermore, recent the future based on the results of Hall, Sytsma & Iltis analyses support ordinal positions for several families (2002), who showed that (sensu APG, that were left unclassified to order in the APG system, 1998) comprise three strongly supported, monophyl- although listed under euasterids I or II. etic groups representing Brassicaceae in the narrow Relationships within Cornales are still unclear, but sense, Capparaceae subfamily Capparoideae and Cap- the six families are all monophyletic. In many studies, paraceae subfamily Cleomoideae. They also point out (formerly Hydrostachyaceae) has been that there are some morphological features consistent placed within (Soltis et al., 2000a; with this three-family view. Emblingiaceae are placed Albach et al., 2001a, b), although the exact position of in based on the results of Gregory, the genus within Hydrangeaceae is unclear. In other Chandler & Bayer (2000). We list Cochlospermaceae studies, it has fallen outside Hydrangeaceae (Xiang as well as Diegodendronaceae as optional synonyms of et al., 2002). It has been noted that for most genes . have likewise been Hydrostachys has a great number of unique substitu- expanded by the inclusion of Tepuianthus (Wurdack & tions, and the question of spurious attraction was Horn 2001), the type of Tepuianthaceae, which is well addressed by Albach et al. (2001a). Pending further supported as sister to Thymelaeaceae. Further work is analyses, we retain Hydrostachyaceae as a separate needed to evaluate relationships of family. appears to be sister to to and ; Dayanandan et al. (Soltis et al., 2000a) not , so Curtisiaceae (1999) did not include Cistaceae and found an ambig- are here re-instated. uous relationship of Dipterocarpaceae to Sarcolaen- Ericales comprise 23 families. Relationships within aceae. Savolainen et al. (2000b) showed with rbcL Ericales have some structure, but many relationships data that of Dipterocarpaceae is are still unclear. One well-supported monophyletic strongly supported as sister to + Helianthe- group comprises , and mum, and in all their shortest trees, (Diptero- Tetrameristaceae (Soltis et al., 2000a; Anderberg, carpaceae, the type of Monotaceae) was sister to Rydin & Källersjö, 2002; Bremer et al., 2002; Tet- (the type of Sarcolaenaceae), although this rameristaceae and the monogeneric Pellicieraceae received bootstrap support of less than 50%. In Sap- here being considered optional synonyms); it is sister indales, Peganaceae are a possible synonym of Nitrar- to the rest of the order. Another well sup-ported iaceae, both of which were at one time considered to be group, recently investigated in detail, is members of Zygophyllaceae (Sheahan & Chase, 1996, the primuloid group of families comprising the 2000). newly re-circumscribed , Myrsinaceae, Theophrastaceae and a new monogeneric family Maesaceae (Anderberg, Ståhl & Källersjö, 2000, ASTERIDS Anderberg et al., 2002; Källersjö, Bergqvist & The asterids are a strongly supported monophyletic Anderberg, 2000). A third group with robust support is group including the same 10 orders as in APG (1998). formed by , Roridulaceae, Sarraceni- Bremer et al. (2002) analysed representatives of aceae, , and

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 409

(Anderberg et al., 2002; Bremer et al., 2002; classifica- 2001), and Doweld (2001) has recently segregated tion of the last treated in Kron et al., 2002). Styrac- most of the genera as done here, but assigned Emmo- aceae are sister to (94% jackknife tum to its own order and family. Several genera in support: Anderberg et al., 2002; Bremer et al., 2002), families listed in euasterid II by APG (1998) now show and is nested within (Soltis et al., relationships to Cardiopteridaceae and Aquifoliales. 2000a; Anderberg et al., 2002; Bremer et al., 2002) so Other genera, notably Icacina () belong to Halesiaceae are here reduced to synonymy under Sty- euasterid I and have an apparent relationship racaceae. Pentaphylax appears as sister to Cardiopt- (although not well supported) to Garryales. Previously eris in the rbcL analysis of Savolainen et al., 2000a), Aquifoliales included Oncothecaceae (APG, 1998), but but analyses of sequences from five genes place Penta- that placement was premature as no internal support phylax, and Sladenia with strong support in has been found for that position. Icacinaceae and Ericales (Anderberg et al., 2002). The Savolainen et al. Oncothecaceae are now listed under euasterid I, but (2000a) rbcL sequence for Pentaphylax was produced without an order, as are Boraginaceae and Vahliaceae. from highly degraded DNA extracted from herbarium Despite several independent analyses based on multi- material and seems to be a contaminant or an artifact ple genes with broad taxon sampling, there is so far no (V. Savolainen, pers. comm.). Anderberg et al. (2002) clear placement of Boraginaceae and Vahliaceae. found that Sladenia and Ficalhoa are sister taxa (71% Garryales now consist of Eucommiaceae and Garry- jackknife support), and the two together are sister to aceae. (the type of Aucubaceae) is here Ternstroemiaceae plus Pentaphylax (68% support). included in . In all molecular analyses Ternstroemiaceae s.s. has 98% support, and Pentaphy- and Aucuba have been sister taxa with high lax together with Ternstroemiaceae s.s. has 97% sup- support, and the molecular result is supported by port (Anderberg et al., 2002). Sladenia and Ficalhoa, many morphological (pollen and embryological) and with their rather small flowers in cymose inflores- chemical characters (Bremer et al., 2001). All mem- cences, can be combined in Sladeniaceae (although bers of Garryales have unisexual flowers and apical Ficalhoa has a straight ), but Anderberg et al. , which may be morphological synapomor- (2002) proposed including them in Ternstroemiaceae phies for the order. along with Pentaphylax, which like other taxa of that still contain five families, but circum- family has a curved embryo. (the type of scription of some of these has been changed. Logani- Lissocarpaceae) is sister to (100% support), aceae were shown earlier to be polyphyletic, and and the two are usefully combined in an expanded detailed studies indicate that only 13 of the genera , Lissocarpa differing mainly in its inferior belong to the family (Backlund, Oxelman & Bremer, ( et al., 2001; Anderberg et al., 2002; 2000). Other former have been reas- Bremer et al., 2002). Other, less well supported groups signed to several other families. The inclusion of Pte- include Fouquieriaceae as sister to leocarpa, formerly Boraginaceae s.l., in (72% in Anderberg et al., 2002; 88% in Bremer et al., is likely (Olmstead & Ferguson, 2001). Molecular data 2002) and as sister to s.l. now provide further support for inclusion of Dialypeta- (60%; Anderberg et al., 2002). lanthus (formerly Dialypetalanthaceae) within Rubi- All euasterids are strongly supported as monophyl- aceae (Fay et al., 2000a). etic, and with the six DNA regions analysed by Lamiales are strongly supported as a monophyletic Bremer et al. (2002) euasterid I and II both received group of 23 families, two of which were previously high jackknife percentages (100% and 99%, respec- (APG, 1998) not classified to order. Plocospermata- tively, for which they also proposed the new informal ceae, earlier unplaced in euasterid I, are the sister names of lamiids and campanulids). In earlier analy- group to the rest of Lamiales (Oxelman, Backlund & ses, both groups have low internal support. Euasterid Bremer, 1999; Savolainen et al., 2000a; Bremer et al., I had low jackknife/bootstrap support, 53%/66% (Olm- 2002), and Carlemanniaceae have been shown to be stead et al., 2000), 56% (Soltis et al., 2000a) or 40% close to Oleaceae (Savolainen et al., 2000a). Within the (Albach et al., 2001b), and euasterid II has 68% (Olm- order, only a few interfamilial relationships received stead et al., 2000), 88% (Soltis et al., 2000a) or below support, including a few of the basal nodes; Plocosper- 33% (Albach et al., 2001b). The percentages from the mataceae are sister to the rest, followed by Oleaceae latest study (Albach et al., 2001b) are low and puz- together with Carlemanniaceae and subsequently Tet- zling because one would not expect lower scores if rachondraceae as sister to the rest (Oxelman et al., data sets are combined as was done in that study. 1999; Savolainen et al., 2000a; Olmstead et al., 2000; In euasterid I, there are some changes regarding Bremer et al., 2002). In spite of analyses involving families not classified to order. Recent investigations three and more genes, relationships among most fam- have shown that Icacinaceae are polyphyletic ilies remain unclear, and more work needs to be done. (Savolainen et al., 2000a; Soltis et al., 2000a; Kårehed, In APG (1998), Martyniaceae were listed as a syn-

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 410 AGP II onym or sister taxon to Pedaliaceae, but subsequent families and the orders, but there is support for Ere- analyses (Albach et al., 2001b) have not found any mosynaceae and as being closely support for this sister-group relationship, and Mar- related (Hibsch-Jetter, Soltis & MacFarlane, 1997; tynia is distant from Pedaliaceae in the trees. Bremer Soltis et al., 2000a; Albach et al., 2001a). The genera et al. (2002) found Avicennia to be nested in Acan- Desfontainia and Columellia are sister groups in Col- thaceae, so Avicenniaceae is here included in Acan- umelliaceae (optionally as two families; APG, 1998). thaceae. A close relationship between Buddlejaceae In the analysis by Savolainen et al. (2000a) the two and Scrophulariaceae was suggested by Dahlgren genera are unrelated. The reasons for this are unclear, (1983) based on chemical data, but probably because and the sequences of Desfontainia and Columellia of the artificial circumscription of both families involv- from GenBank fall together in other studies ing different unrelated entities they were kept sepa- (Backlund et al., 2000). rate. In later analyses based on ndhF and rbcL data, Aquifoliales are strongly supported as the sister 100% bootstrap support was found for a sister-group group to the rest of euasterid II (Soltis et al., 2000a; relationship between a restricted Buddlejaceae (Bud- Bremer et al., 2002). Cardiopteridaceae have been dleja, Emorya, Gomphostigma and Nicodemia) and expanded to include several former genera of Icaci- Scrophulariaceae s.s. (Oxelman et al., 1999), and the naceae, e.g. . have same relationship was also supported when morpho- recently been described and comprise a strongly sup- logical data were added (Bremer et al., 2001). In ported group of former genera of Icacinaceae, e.g. Irv- Olmstead et al. (2001; three genes), they also pre- ingbaileya (Kårehed, 2001). sented support for a close relationship of these two have in recent investigations received families with Myoporaceae, and they included both strong support as monophyletic (Olmstead et al., 2000; Buddlejaceae and Myoporaceae in Scrophulariaceae, a Soltis et al., 2000a; Bremer et al., 2002). The order classification followed here. The genus Androya, ear- now comprises eight families, with Pennantiaceae, lier placed in Loganiaceae, also belongs to the Myo- previously in Icacinaceae, being included (Kårehed, porum clade of the extended Scrophulariaceae. Other 2001, 2003). The relationships among the small fami- genera of the former Buddlejaceae and/or Loganiaceae lies of the order are still unclear, and there are still that now belong to other families of Lamiales uncertainties about the delimitation of Apiaceae and (Oxelman et al., 1999) are Nuxia in Stilbaceae, Peltan- Araliaceae (Plunkett & Lowry, 2001). Some of the fam- thera and Sanango in Gesneriaceae, and Polypre- ilies are monogeneric and could possibly be merged mum in Tetrachondraceae. A number of other genera when well-supported sister-group relationships have remained unplaced to family, but Mimulus appears been established. Newly proposed Mackinlayaceae closer to Phryma than any genus now assigned to and Myodocarpaceae include genera previously con- Scrophulariaceae (Beardsley & Olmstead, 2002), so sidered to be archaic members of Araliaceae (see we treat it there. Parts of the former Scrophulariaceae Plunkett, 2001; Plunkett & Lowry, 2001; Kårehed, have also been transferred to Orobanchaceae and 2003). Plantaginaceae (Olmstead et al., 2001). Cyclocheilon are strongly supported as monophyletic is nested in the expanded Orobanchaceae (Bremer and contain 12 families. Carpodetaceae are being et al., 2002), so Cyclocheilaceae (= Nesogenaceae) are merged with (Lundberg, 2001). Cyphia, here reduced to synonymy under Orobanchaceae. the type of Cyphiaceae, has appeared as sister to the Solanales consist of five families, of which three are rest of (optionally including Lobeli- small. Of these Montiniaceae, now including - aceae) in several recent rbcL analyses (e.g. Kårehed phora (the type of Kaliphoraceae; Savolainen et al. et al., 1999; Savolainen et al., 2000a; Lundberg, 2001). 2000a), contain three small genera all characterized However, it appears that the rbcL sequence of Cyphia by having unisexual flowers. That character is hitherto used is a pseudo-gene (Lundberg & Bremer, unusual in euasterids, but it occurs in a few genera in 2002), and re-analysis with a new sequence places different families and is also common in Garryales Cyphia as sister to other Lobeliaceae excluding Cam- and Aquifoliales. panulaceae s.s. (see also Haberle, 1998). Hence, the In APG (1998), euasterid II included 10 families not option of recognizing Campanulaceae and Lobeliaceae classified to order. Two of these, Icacinaceae and Car- as separate families is retained. Interrelationships lemanniaceae, are now transferred to euasterid I, and among the families of Asterales are generally still Adoxaceae are now included in Dipsacales (Bremer uncertain. Since 1998, at least seven additional com- et al., 2002). Parts of Icacinaceae remain among euas- prehensive studies have included a wide family sam- terid II, and the genera involved are now included in pling of the asterids (Kårehed et al., 1999; Olmstead Cardiopteridaceae and Stemonuraceae in Aquifoliales et al., 2000; Soltis et al., 2000a; Savolainen et al., (Kårehed, 2001). There is no clear support for relation- 2000a; Albach et al., 2001b; Bremer et al., 2002; ships among the families or between the unclassified Lundberg & Bremer, 2002). Unfortunately, interrela-

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 411 tionships among families in Asterales in these studies because biologists require names for accurate commu- are somewhat different, although in most cases the nication. Progress since the first Angiosperm Phylog- differences lack jackknife/bootstrap support greater eny Group consensus classification (APG, 1998) has than 50%. However, Asteraceae, Calyceraceae and been considerable. Well-supported hypotheses of rela- together with their sister group Men- tionships for many of the taxa that were unplaced yanthaceae form a monophyletic group that is there have since been proposed, and these ideas allow strongly supported (Kårehed et al., 1999; Olmstead their assignment to orders, of which five are newly rec- et al., 2000; Soltis et al., 2000a; Bremer et al., 2002; ognized here. Furthermore, the basic structure of Lundberg & Bremer, 2002). The relationships among angiosperm phylogeny that was the foundation for the the first three families are unclear. The rbcL and ndhF orders recognized in 1998 has been confirmed and data (Kårehed et al., 1999) and ndhF data (Olmstead strengthened. Nevertheless, our knowledge of rela- et al., 2000) support Asteraceae and Calyceraceae as tionships between many of the basal clades of sister families whereas rbcL together with atpB and angiosperms, among major eudicot lineages, and 18S rDNA (Soltis et al., 2000a) support Goodeniaceae many orders such as Malpighiales and Lamiales and Calyceraceae as sister taxa. With morphological remain to be resolved. It is clear where we should con- data, rbcL, ndhF and atpB sequences pooled, there is centrate our efforts, as only with a much more fully strong support for Asteraceae and Calyceraceae as sis- resolved tree will we have a framework adequate to ter groups (Lundberg & Bremer, 2002), a result that begin to understand the details of morphological evo- was also obtained by Bremer et al. (2002) in an anal- lution of flowering plants. Further progress in estab- ysis of six DNA regions. Another example of different lishing the relationships of clades will depend on phylogenetic patterns of support between rbcL/ndhF continued broad collaboration. (Kårehed et al., 1999) and rbcL/atpB/18S rDNA data (Soltis et al., 2000a) is the well-supported relationship between Argophyllaceae and Phellinaceae in the rbcL/ REFERENCES ndhF analysis. and Donatiaceae are close Albach DC, Soltis DE, Chase MW, Soltis PS. 2001a. (Lundberg & Bremer, 2002); the latter is placed in Phylogenetic placement of the enigmatic angiosperm optional synonymy under the former. Hydrostachys. Taxon 50: 781–805. Dipsacales as here circumscribed are expanded to Albach DC, Soltis PS, Soltis DE, Olmstead RG. 2001b. include Adoxaceae. This family was unplaced in euas- Phylogenetic analysis of the based on sequences of terid II (APG, 1998), but recent studies show support four genes. Annals of the Missouri Botanical Garden 88: for an expanded circumscription (Soltis et al., 2000a; 163–212. Albach et al., 2001b; Bell et al., 2001; Bremer et al., Anderberg AA, Rydin C, Källersjö M. 2002. Phylogenetic 2001; 2002). In some recent texts (e.g. relationships in the order Ericales s. l. analyses of molecular Judd et al., 1999; 2002), all other families of the order data from five genes from the plastid and mitochondrial were merged into a single family, Caprifoliaceae, which genomes. American Journal of Botany 89: 677–687. we have indicated here as an option, although some Anderberg AA, Ståhl B, Källersjö M. 2000. Maesaceae, a specialists do not favour this broad concept. All of the new primuloid family in the order Ericales s.l. Taxon 49: families of Dipsacales originally in APG (1998) are 183–197. monophyletic, none is monogeneric, and some (e.g. APG. 1998. An ordinal classification for the families of flower- Dipsacaceae and Valerianaceae) are well-known ing plants. Annals of the Missouri Botanical Garden 85: 531– entities with several hundred species. Savolainen et al. 553. (2000a) included four additional families in Appelquist WL, Wallace RS. 2000. Phylogeny of the Mada- Dipsacales, Desfontainiaceae (here included in gascan endemic family Didieraceae. Plant Systematics and ), Paracryphiaceae, Polyosmaceae and Evolution 221: 157–166. Backlund M, Oxelman B, Bremer B. 2000. Phylogenetic Sphenostemonaceae, but there was no bootstrap sup- relationships within the Gentianales based on ndhF and port for this expansion of Dipsacales so we retain these rbcL sequences, with particular reference to the Logani- four families as unclassified to order. Paracryphiaceae aceae. American Journal of Botany 87: 1029–1043. are transferred to the euasterid II clade from the list of Barkman TJ, Chenery G, McNeal JR, Lyons-Weiler J, families of uncertain position (Bremer et al., 2002). dePamphilis CW. 2000. Independent and combined analy- Both Paracryphiales and Desfontainiales are available ses of sequences from all three genomic compartments con- should a name at an ordinal rank be required. verge on the root of flowering plant phylogeny. Proceedings of the National Academy of Sciences, USA 97: 13166– CONCLUSION 13171. Beardsley PM, Olmstead RG. 2002. Redefining Phrymacae: We emphasize that the APG classification is proposed the placement of Mimulus, tribe Mimuleae, and Phzrma. to facilitate communication; we name organisms American Journal of Botany 89: 1093–1102.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 412 AGP II

Bell CD, Edwards EJ, Kim S-T, Donoghue MJ. 2001. Dip- Plunkett GM, Soltis PS, Swensen SM, Williams SE, sacales phylogeny based on DNA sequences. Gadek PA, Quinn CJ, Eguiarte LE, Golenberg E, Learn Harvard Papers in Botany 6: 481–489. GH, Graham SW Jr, Barrett SCH, Dayanandan S, Berry PE, Savolainen V, Sytsma KJ, Hall JC, Chase MW. Albert VA. 1993. Phylogenetics of seed plants: an analysis of 2001. Lissocarpa is sister to Diospyros (Ebenaceae). Kew nucleotide sequences from the plastid gene rbcL. Annals of Bulletin 56: 725–729. the Missouri Botanical Garden 80: 528–580. Bortenschlager S. 1973. Morphologie pollinique des Phyto- Chase MW, Soltis DE, Soltis PS, Rudall PJ, Fay MF, laccaceae. Pollen et Spores 15: 227–253. Hahn WJ, Sullivan S, Joseph J, Molvray M, Kores PJ, Bradford JC, Barnes RW. 2001. Phylogenetics and classifi- Givnish TJ, Sytsma KJ, Pires JC. 2000. Higher-level sys- cation of Cunoniaceae (Oxalidales) using chloroplast DNA tematics of the : An assessment of current sequences and morphology. Systematic Botany 26: 354– knowledge and a new classification. In: Wilson KL, Morrison 385. DA, eds. Systematics and evolution of monocots. Proceedings Bremer K. 2000. Phylogenetic nomenclature and the new of the 2nd International Monocot Symposium. Melbourne: ordinal system of the angiosperms. In: Nordenstam B, El- CSIRO, 3–16. Ghazaly G, Kassas M, Laurent TC, eds. Plant systematics for Chase MW, Stevenson WDW, Wilkin P, Rudall PJ. 1995b. the 21st century. London: Portland Press, 125–133. Monocot systematics: a combined analysis. In: Rudall PJ, Bremer K. 2002. Gondwanan evolution of the grass alliance of Cribb PJ, Cutler DF, Humphries CJ, eds. Monocotyledons: families (Poales). Evolution 56: 1374–1387. Systematics and evolution. Kew: Royal Botanic Gardens. Bremer K, Backlund A, Sennblad B, Swenson U, 685–730. Andreasen K, Hjertson M, Lundberg J, Backlund M, Chase MW, Zmartzty S, Lledó MD, Wurdack KJ, Bremer B. 2001. A phylogenetic analysis of 100+ genera Swensen SM, Fay MF. 2002. When in doubt, put it in Fla- and 50+ families of euasterids based on morphological and courtiaceae: a molecular phylogenetic analysis based on molecular data with notes on possible higher level morpho- plastid rbcL DNA sequences. 57: 141–181. logical synapomorphies. Plant Systematics and Evolution Clausing G, Renner SS. 2001. of 229: 137–169. Melastomataceae and Memecylaceae: implications for char- Bremer B, Bremer K, Heidari N, Erixon P, Anderberg acter evolution. American Journal of Botany 88: 486–498. AA, Olmstead RG, Källersjö M, Barkhordarian E. 2002. Conti E, Baum D, Sytsma K. 1999. Phylogeny of Cryptero- Phylogenetics of asterids based on three coding and three niaceae and related families: implications for morphology non-coding chloroplast DNA markers and the utility of non- and biogeography. In: XVI International Botanical Congress, coding DNA at higher taxonomic levels. Molecular Phyloge- abstracts. St. Louis: Missouri Botanical Garden, 250. netics and Evolution 24: 274–301. Conti E, Litt A, Sytsma KJ. 1996. Circumscription of Myr- Briggs BG, Johnson LAS. 2000. Hopkinsiaceae and Lygini- tales and their relationships to other rosids: evidence from aceae, two new families of Poales in western Australia, with rbcL sequence data. American Journal of Botany 83: 221–233. revisions of Hopkinsia and Lyginia. Telopea 8: 477–502. Contreras VR, Scogin R, Philbrick CT. 1993. A phytochem- Caddick LR, Rudall PJ, Wilkin P, Chase MW. 2000. Yams ical study of selected Podostemaceae: systematic implica- and their allies: systematics of Dioscoreales. In: Wilson KL, tions. Aliso 13: 513–520. Morrison DA, eds. Systematics and evolution of monocots. Cronquist A. 1981. An integrated system of classification of Proceedings of the 2nd International Monocot Symposium. flowering plants. New York: Columbia University Press. Melbourne: CSIRO, 475–487. Cuénoud P, Savolainen V, Powell M, Grayer RJ, Chase Caddick LR, Rudall PJ, Wilkin P, Hedderson TAJ, Chase MW. 2002. Molecular phylogenetics of the Caryophyllales MW. 2002a. Phylogenetics of Dioscoreales based on com- based on combined analyses of 18S rDNA and rbcL, atpB and bined analyses of morphological and molecular data. Botan- matK sequences. American Journal of Botany 89: 132–144. ical Journal of the Linnean Society 138: 123–144. Cusset C, Cusset G. 1988. Étude sur les Podostemales. 9. Caddick LR, Wilkin P, Rudall PJ, Hedderson TAJ, Chase Delimitation taxinomiques dans les Tristichaceae. Bulletin MW. 2002b. Yams reclassified: a recircumscription of du Muséum d’Histoire Naturelle, Séries 4 (10): 149–175. Dioscoreaceae and Dioscoreales. Taxon 51: 103–114. Dahlgren R. 1983. General aspects of angiosperm evolution Chase MW, Duvall MR, Hills HG, Conran JG, Cox AV, and macrosystematics. Nordic Journal of Botany 3: 119–149. Eguiarte LE, Hartwell J, Fay MF, Caddick LR, Dahlgren RMT, Clifford HT, Yeo PF. 1985. The families of Cameron KM, Hoot S. 1995a. Molecular systematics of Lil- the monocotyledons: structure, evolution, and taxonomy. ianae. In: Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ, Berlin: Spinger-Verlag. eds. Monocotyledons: Systematics and Evolution. Kew: Royal Dayanandan S, Ashton PS, Williams SM, Primack RB. Botanic Gardens. 109–137. 1999. Phylogeny of the tropical tree family Dipterocarpaceae Chase MW, Soltis DE, Olmstead RG, Morgan D, Les DH, based on nucleotide sequences of the chloroplast rbcL gene. Mishler BD, Duvall MR, Price RA, Hills HG, Qiu YL, American Journal of Botany 86: 1182–1190. Kron KA, Rettig JH, Conti E, Palmer JD, Manhart JR, Doweld AB. 2001. Tentamen Systematis Plantarum Vascular- Sytsma KJ, Michael HJ, Kress WJ, Karol KA, Clark ium (Tracheophytorum). Moscow: GEOS. WD, Hedrén M, Gaut BS, Jansen RK, Kim KJ, Wimpee Doyle JA, Endress PK. 2000. Morphological phylogenetic CF, Smith JF, Furnier GR, Strauss SH, Xiang QY, analysis of basal angiosperms: comparison and combination

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 413

with molecular data. International Journal of Plant Sciences Hibsch-Jetter C, Soltis DE, MacFarlane TD. 1997. Phylo- 161 (6 Suppl.): S121–S153. genetic analysis of Eremosyne pectinata (Saxifragaceae s.l.) Duvall MR, Clegg MT, Chase MW, Clark WD, Kress WJ, based on rbcL sequence data. Plant Systematics and Evolu- Hills HG, Eguiarte LE, Smith JF, Gaut BS, Zimmer EA, tion 204: 225–232. Learn GH. 1993. Phylogenetic hypotheses for the monocot- Hillis DM. 1996. Inferring complex phylogenies. 383: yledons constructed from rbcL sequences. Annals of the Mis- 130. souri Botanical Garden 80: 607–619. Hoot SB, Magallon-Puebla S, Crane PR. 1999. Phylogeny Engler A. 1930. Saxifragaceae. In: Engler A, Prantl K, of basal eudicots based on three molecular data sets: atpB, eds. Die natürlichen Pflanzenfamilien 18a. Leipzig: W. rbcL and 18S nuclear ribosomal DNA sequences. Annals of Engelman, 74–226. the Missouri Botanical Garden 86: 119–131. Farris JS, Albert VA, Källersjö M, Lipscomb D, Kluge AG. Jäger-Zürn I. 1997. Embryological and floral studies in Wed- 1996. Parsimony jackknifing outperforms neighbor-joining. dellina squamulosa Tul. (Podostemaceae, Tristichoideae). 12: 99–124. Aquatic Botany 57: 151–182. Fay MF, Bremer B, Prance GT, van der Bank M, Bridson Jeong SC, Ritchie NJ, Myrold DD. 1999. Molecular phylog- D, Chase MW. 2000a. Plastid rbcL sequence data show Dia- enies of plants and Frankia support multiple origins of act- lypetalanthus to be a member of . Kew Bulletin 55: inorhizal symbioses. Molecular Phylogenetics and Evolution 853–864. 13: 493–503. Fay MF, Rudall PJ, Sullivan S, Stobart KL, de Bruijn Judd WS. 1997. The Flacourtiaceae in the southeastern AY, Reeves G, Qamaruz-Zaman F, Hong W-P, United States. Harvard Papers in Botany 1: 65–79. Joseph J, Hahn WJ, Conran JG, Chase MW. 2000b. Judd WS, Campbell CS, Kellogg EA, Stevens PF. 1999. Phylogenetic studies of Asparagales based on four plastic Plant systematics – a phylogenetic approach. Sunderland, DNA loci. In: Wilson KL, Morrison DA, eds. Systematics Massachusetts: Sinauer. and evolution of monocots. Proceedings of the 2nd Inter- Judd WS, Campbell CS, Kellogg EA, Stevens PF, national Monocot Symposium. Melbourne: CSIRO, 360– Donoghue MJ. 2002. Plant systematics – a phyloge- 371. netic approach, 2nd edn. Sunderland, Massachusetts: Felsenstein J. 1985. Confidence limits on phylogenies: an Sinauer. approach using the bootstrap. Evolution 39: 783–791. Källersjö M, Bergqvist G, Anderberg A. 2000. Generic Fishbein M, Hufford L, Soltis DE. 2003. Phylogeny of Sax- realignment in primuloid families of the Ericales s. l. a phy- ifragales: patterns of floral evolution and taxonomic revision. logenetic analysis based on DNA sequences from three chlo- Systematic Botany in press. roplast genes and morphology. American Journal of Botany Fuse S, Tamura MN. 2000. A phylogenetic analysis of the 87: 1325–1341. plastid matK gene with emphasis on Melanthiaceae sensu Källersjö M, Farris JS, Chase MW, Bremer B, Fay MF, lato. Plant Biology 2: 415–427. Humphries CJ, Petersen G, Seberg O, Bremer K. 1998. Givnish TJ, Evans TM, Pires JC, Sytsma KJ. 1999. Simultaneous parsimony jacknife analysis of 2538 rbcL DNA and convergent morphological evolution in sequences reveals support for major clades of green plants, Commelinales and Commelinidae: evidence from rbcL land plants, seed plants and flowering plants. Plant System- sequence data. Molecular Phylogenetics and Evolution 12: atics and Evolution 213: 259–287. 360–385. Kårehed J. 2001. Multiple origin of the tropical tree Graham SW, Olmstead RG. 2000. Evolutionary significance family Icacinaceae. American Journal of Botany 88: 2259– of an unusual chloroplast DNA inversion found in two basal 2274. angiosperm lineages. Current Genetics 37: 183–188. Kårehed J. 2003. The family Pennantiaceae and its relation- Gregory T, Chandler GT, Bayer RJ. 2000. Phylogenetic ships to Apiales. Botanical Journal of the Linnean Society placement of the enigmatic Western Australian genus 141: 1–24. based on rbcL sequences. Plant Species Biology Kårehed J, Lundberg J, Bremer B, Bremer K. 1999. 15: 67–72. Evolution of the Australasian families , Greuter W, McNeill J, Barrie FR, Burdet HM, Demoulin Argophyllaceae, and Phellinaceae. Systematic Botany 24: V, Filgueiras TS, Nicolson DH, Silva PC, Skog JE, 660–682. Trehane P, Turland NJ, Hawksworth DL. 2000. Inter- Kron KA, Judd WS, Stevens PF, Crayn DM, Anderberg national code of botanical nomenclature (Saint Louis Code) AA, Gadek PA, Quinn CJ, Luteyn JL. 2002. Phylogenetic adopted by the Sixteenth International Botanical Congress, classification of Ericaceae: molecular and morphological evi- St. Louis, Missouri, July – August 1999. Regnum Vegetabile dence. Botanical Review 68: 335–423. 138: 1–474. Litt A, Chase MW. 1999. The systematic position of Euphro- Haberle RC. 1998. Phylogenetic systematics of Pseudonema- nia, with comments on the position of : an analysis cladus and the North American cyphioids (Campanulaceae based on rbcL sequence data. Systematic Botany 23: 401– sensu lato). MSc Thesis, Northern Arizona University. 409. Hall JC, Sytsma KJ, Iltis HH. 2002. Phylogeny of Cappar- Lundberg J. 2001. The asteralean affinity of the Mauritian aceae and Brassicaceae based on chloroplast sequence data. Roussea (Rousseaceae). Botanical Journal of the Linnean American Journal of Botany 89: 1826–1842. Society 136: 267–276.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 414 AGP II

Lundberg J, Bremer K. 2002. A phylogenetic study of the Oxelman B, Backlund M, Bremer B. 1999. Relationships of order Asterales using one large morphological and three Buddlejaceae s.l. investigated using parsimony jackknife and molecular data sets. International Journal of Plant Sciences, branch support analysis of chloroplast ndhF and rbcL in press. sequence data. Systematic Botany 24: 164–182. Manhart JR, Rettig JH. 1994. Gene sequence data. In: Pires JC, Sytsma KJ. 2002. A phylogenetic evaluation of a Behnke, H-D, Mabry, TJ, eds. Caryophyllales: evolution and biosystematic framework: Brodiaea and related petaloid systematics. Berlin: Springer Verlag, 235–246. monocots (Themidaceae). American Journal of Botany 89: Meimberg H, Dittrich P, Bringmann G, Schlauer J, 1342–1359. Heubl G. 2000. Molecular phylogeny of Caryophyllidae s.l. Plunkett GM. 2001. Relationship of the order Apiales to sub- based on matK sequences with special emphasis on carniv- Asteridae: a re-evaluation of morphological characters orous taxa. Plant Biology 2: 218–228. based on insights from molecular data. Edinburgh Journal of Morgan DR, Soltis DE. 1993. Phylogenetic relationships Botany 8: 183–200. among members of the Saxifragaceae sensu lato based on Plunkett GM, Lowry PP. 2001. Relationships among rbcL sequence data. Annals of the Missouri Botanical Gar- ‘ancient araliads’ and their significance for the systematics den 80: 631–660. of Apiales. Molecular Phylogenetics and Evolution 19: 259– Nandi O, Chase MW, Endress PK. 1998. A combined cladis- 276. tic analysis of angiosperms using rbcL and non-molecular Qiu Y-L, Chase MW, Hoot SB, Conti E, Crane PR, Sytsma data sets. Annals of the Missouri Botanical Garden 85: 137– KJ, Parks CR. 1998. Phylogenetics of Hamamelidae and 212. their allies: parsimony analyses of nucleotide sequences of Neyland R. 2002. A phylogeny inferred from large subunit the plastid gene rbcL. International Journal of Plant Sci- (26S) ribosomal DNA sequences suggests that Burmanniales ences 159: 891–905. is polyphyletic. Australian Plant Research 15: 19–28. Qiu Y-L, Lee J, Bernasconi-Quadroni F, Soltis DE, Soltis Nickrent DL. 2002. Orígenes filogenéticos de las plantas PS, Zanis M, Zimmer EA, Chen Z, Savolainen V, Chase parásitas. In: López-Sáez JA, Catalán P, Sáez L, eds. Plantas MW. 1999. The earliest angiosperms: evidence from mito- parásitas de la Península Ibérica e Islas Baleares. Madrid, chondrial, plastid and nuclear genomes. Nature 402: 404–407. : Mundi-Prensa Libros, 29–56. Renner SS. 1999. Circumscription and phylogeny of the Lau- Nickrent DL, Blarer A, Qiu Y-L, Soltis DE, Zanis M. rales: evidence from molecular and morphological data. 2001. Paleoherb status of Hydnoraceae supported by multi- American Journal of Botany 86: 1301–1315. gene analyses. In: Botany 2001: plants and people, Reveal JL. 1998–onward. Indices nominum suprageneri- Abstracts. Columbus, Ohio: Botanical Society of America, corum plantarum vascularium. Alphabetical listing by gen- 130–131. era of validly published suprageneric names. http:// Nickrent DL, Duff RJ. 1996. Molecular studies of parasitic www.inform.umd.edu/PBIO/fam/inspvindex.html. plants using ribosomal RNA. In: Moreno MT, Cubero JI, Ronse Decraene LP, Smets EF. 1999. Similarities in floral Berner D, Joel D, Musselman LJ, Parker C, eds. Advances in ontogeny and anatomy between the genera (Fran- research. Cordoba, Spain: Junta de Andalu- coaceae) and (Greyiaceae). International Journal of cia, Direccion General de Investigacion Agraria, 28–52. Plant Sciences 160: 377–393. Nickrent DL, Duff RJ, Colwell AE, Wolfe AD, Young ND, Rudall PJ, Conran JG, Chase MW. 2000a. Systematics of Steiner KE, dePamphilis CW. 1998. Molecular phyloge- Ruscaceae/Convallariaceae: a combined morphological and netic and evolutionary studies of parasitic plants. In: Soltis molecular investigation. Botanical Journal of the Linnean DE, Soltis PS, Doyle JJ, eds. Molecular systematics of plants Society 134: 73–92. II. Boston: Kluwer, 211–241. Rudall PJ, Cribb PJ, Cutler DF, Humphries CJ. 1995. Nickrent DL, Malécot V. 2001. A molecular phylogeny of Monocotyledons: systematics and evolution. Kew: Royal Santalales. In: Fer A, Thalouarn P, Joel DM, Musselman LJ, Botanic Gardens. Parker C, Verkleij JAC, eds. Proceedings of the 7th Interna- Rudall PJ, Furness CA, Fay MF, Chase MW. 2000b. Con- tional Parasitic Weed Symposium. Nantes, : Faculté sider the lilies – systematics of Liliales. In: Wilson KL, Mor- Des Sciences, Université de Nantes, 69–74. rison DA, eds. Systematics and evolution of monocots. Olmstead RG, DePamphilis CW, Wolfe AD, Young ND, Proceedings of the 2nd International Monocot Symposium. Elisons WJ, Reeves PA. 2001. Disintegration of the Melbourne: CSIRO, 347–359. Scrophulariaceae. American Journal of Botany 88: 348– Savolainen V, Chase MW, Hoot SB, Morton CM, Soltis 361. DE, Bayer C, Fay MF, de Bruijn AY, Sullivan S, Qiu Olmstead RG, Ferguson D. 2001. A molecular phylogeny of Y-L. 2000a. Phylogenetics of flowering plants based on the Boraginaceae-Hydrophyllaceae. In: Botany 2001: plants combined analysis of plastid atpB and rbcL gene sequences. and people, Abstracts. Columbus, Ohio: Botanical Society of Systematic Biology 49: 306–362. America, 131. Savolainen V, Fay MF, Albach DC, Backlund A, van der Olmstead RG, Kim K-J, Jansen RK, Wagstaff SJ. 2000. Bank M, Cameron KM, Johnson SA, Lledó MD, The phylogeny of the Asteridae sensu lato based on chloro- Pintaud J-C, Powell M, Sheahan MC, Soltis DE, Soltis plast ndhF gene sequences. Molecular Phylogenetics and PS, Weston P, Whitten WM, Wurdack KJ, Chase MW. Evolution 16: 96–112. 2000b. Phylogeny of the eudicots: a nearly complete familial

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 415

analysis based on rbcL gene sequences. Kew Bulletin 55: Takhtajan AL. 1997. Diversity and classification of flowering 257–309. plants. New York: Columbia University Press. Savolainen V, Spichiger R, Manen JF. 1997. Polyphyletism Thorne RF. 1992. Classification and geography of the flower- of Celastrales deduced from a chloroplast non-coding DNA ing plants. Botanical Review 58: 225–348. region. Molecular Phylogenetics and Evolution 7: 145–157. Thorne RF. 2001. The classification and geography of Sheahan MC, Chase MW. 1996. A phylogenetic analysis of flowering plants: of the class Angiospermae Zygophyllaceae R. Br. based on morphological, anatomical (subclasses Magnoliidae, Ranunculidae, Caryophyllidae, and rbcL sequence data. Botanical Journal of the Linnean , , Asteridae, and Lamiidae). Botanical Society 122: 279–300. Review 66: 441–647. Sheahan MC, Chase MW. 2000. Phylogenetic relationships Ueda K, Kosuge H, Tobe H. 1997. A molecular phylogeny within Zygophyllaceae based on DNA sequences of three of Celtidaceae and Ulmaceae () based on rbcL plastid regions, with special emphasis on Zygophylloideae. nucleotide sequences. Journal of Plant Research 110: 171– Systematic Botany 25: 371–384. 178. Shore JS, McQueen KL, Little SL. 1994. Inheritance of Wiegrefe SJ, Sytsma KJ, Guries RP. 1998. The Ulmaceae, plastid DNA in the ulmifolia complex. American one family or two? Evidence from chloroplast DNA restric- Journal of Botany 81: 1636–1639. tion site mapping. Plant Systematics and Evolution 210: Simmons MP, Clevinger CC, Savolainen V, Archer RH, 249–270. Mathews S, Doyle JJ. 2001. Phylogeny of the Celastraceae Wilson KL, Morrison DA. 2000. Systematics and evolution of inferred from phytochrome B gene sequence and morphol- monocots. Proceedings of the 2nd International Monocot ogy. American Journal of Botany 88: 313–325. Symposium. Melbourne: CSIRO. Soltis DE, Senters AE, Kim S, Thompson JD, Soltis PS, Wu C-Y, Tang Y-C, Chen Z-D, Li D-Z. 2002. Synopsis of a Zanis MJ, de Craene LS, Endress PK, Farris JS, 2003. new ‘polyphyletic-polychronic-polytopic’ system of the Gunnerales are sister to other core eudicots and exhibit flo- angiosperms. Acata Phytotaxonoica Sinica 40: 289–322. ral features of early-diverging eudicots. American Journal of Wurdack KJ, Horn JW. 2001. A reevaluation of the affinities Botany 90: 461–470. of the Tepuianthaceae: molecular and morphological evi- Soltis PS, Soltis DE, Chase MW. 1999. Angiosperm phylog- dence for placement in the Malvales. In: Botany 2001: plants eny inferred from multiple genes as a tool for comparative and people, Abstracts. Columbus, Ohio: Botanical Society of biology. Nature 402: 402–404. America, 151. Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Xiang Q-Y, Moody M, Soltis DE, Fan CZ, Soltis PS. 2002. Zanis M, Savolainen V, Hahn WH, Hoot SB, Fay MF, Relationships within Cornales and circumscription of Cor- Axtell M, Swensen SM, Prince LM, Kress WJ, Nixon naceae – matK and rbcL sequence data and effects of out- KC, Farris JA. 2000a. Angiosperm phylogeny inferred from groups and long branches. Molecular Phylogenetics and 18S rDNA, rbcL, and atpB sequences. Botanical Journal of Evolution 24: 35–47. the Linnean Society 133: 381–461. Zanis MJ, Soltis DE, Soltis PS, Qiu Y-L, Mathews S, Soltis DE, Soltis PS, Nickrent DL, Johnson LA, Hahn WJ, Donoghue MJ. 2002. The root of the angiosperms revisited. Hoot SB, Sweere JA, Kuzoff RK, Kron KA, Chase MW, Proceedings of the National Academy of Sciences (USA) 99: Swensen SM, Zimmer EA, Chaw SM, Gillespie LJ, 6848–6853. Kress WJ, Sytsma KJ. 1997. Angiosperm phylogeny Zanis MJ, Soltis DE, Soltis PS, Qiu Y-L, Zimmer EA. 2003. inferred from 18S ribosomal DNA sequences. Annals of the Phylogenetic analyses and evolution in basal Missouri Botanical Garden 84: 1–49. angiosperms. Annals of the Missouri Botanical Garden in Soltis PS, Soltis DE, Zanis MJ, Kim S. 2000b. Basal lin- press. eages of angiosperms: Relationships and implications for flo- ral evolution. International Journal of Plant Sciences 161 (6, APPENDIX Suppl.): S97–S107. Soltis, DE, Soltis, PS. 1997. Phylogenetic relationships in CLASSIFICATION OF FLOWERING PLANTS Saxifragaceae sensu lato: a comparison of topologies based The state of family name and authorships currently is on 18S rDNA and rbcL sequences. American Journal of in flux. The International Code of Botanical Nomen- Botany 84: 504–522. clature (Greuter et al., 2000) provides currently for the Sosa V, Chase MW. 2003 Phylogenetics of based on rbcL DNA sequence data. Systematic Botany 27, in use of pre-1789 names. However, there is a major press. push, which in all likelihood will be successful, to Stevens, PF. 2001. Angiosperm phylogeny website. http:// establish a formal starting date for (if www.mobot.org./MOBOT/research/APweb/. not all vascular plants) family names as of 4 August Sytsma KJ, Morawetz J, Pires JC, Nepokroeff M, Conti 1789 (e.g. Jussieu’s Genera plantarum). As a result, E, Zjhra M, Hall JC, Chase MW. 2002. Urticalean rosids: this listing, in an effort to avoid the introduction of circumscription, rosid ancestry, and phylogenetics based on names and/or authorships that almost certainly will rbcL, trnLF, and ndhF sequences. American Journal of Bot- be incorrect after 2005, presumes 1789 as the start any 89: 1531–1546. date for angiosperm family names. In this way, we

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 416 AGP II believe nomenclatural stability can be achieved with- R.Br. (1810), nom. cons. out undue confusion in the future. Two names are retained (Potamogetonaceae and Cornaceae) in antic- Piperales Dumort. (1829) ipation of future superconservation proposals formally Aristolochiaceae Juss. (1789), nom. cons. establishing their continued use. Also Meerow and *Hydnoraceae C.Agardh (1821), nom. cons. others likely will make a similar proposal to maintain Lactoridaceae Engl. (1888), nom. cons. Amaryllidaceae over Alliaceae, but Alliaceae is Piperaceae Bercht. & J. Presl (1820), nom. cons. retained here. Saururaceae Martynov (1820), nom. cons. *new family placement; †newly recognized order for the APG system; §new family circumscription MONOCOTS described in the text. The list reflects a starting date for all flowering plant family names of 4 August 1789 §Petrosaviaceae Hutch. (1934), nom. cons. (Jussieu, Genera plantarum). Full citations are avail- able elsewhere (Reveal, 1998-onward). Families in Acorales Reveal (1996) square brackets are acceptable, monophyletic alterna- Acoraceae Martynov (1820) tives to the broader circumscription favoured here. Dumort. (1829) Amborellaceae Pichon (1948), nom. cons. Alismataceae Vent. (1799), nom. cons. Chloranthaceae R.Br. ex. Sims (1820), nom. cons. Aponogetonaceae J.Agardh (1858), nom. cons. Nymphaeaceae Salisb. (1805), nom. cons. Araceae Juss. (1789), nom. cons. [+Cabombaceae Rich. ex. A.Rich. (1822), nom. Butomaceae Mirb. (1804), nom. cons. cons.] Cymodoceaceae N.Taylor (1909), nom. cons. Hydrocharitaceae Juss. (1789), nom. cons. †Austrobaileyales Takht. ex. Reveal (1992) Juncaginaceae Rich. (1808), nom. cons. Austrobaileyaceae (Croizat) Croizat (1943), nom. Limnocharitaceae Takht. ex. Cronquist (1981) cons. Posidoniaceae Hutch. (1934), nom. cons. §Schisandraceae Blume (1830), nom. cons. Potamogetonaceae Rchb. (1828), nom. cons. [+Illiciaceae A.C.Sm. (1947), nom. cons.] Ruppiaceae Horan. (1834), nom. cons. L.S.Gibbs (1917), nom. cons. Scheuchzeriaceae F.Rudolphi (1830), nom. cons. Tofieldiaceae Takht. (1995) Ceratophyllales Bisch. (1839) Zosteraceae Dumort. (1829), nom. cons. Gray (1821), nom. cons. Asparagales Bromhead (1838) MAGNOLIIDS §Alliaceae Batsch ex. Borkh. (1797), nom. cons. [+Agapanthaceae F.Voigt (1850)] †Canellales Cronquist (1957) [+Amaryllidaceae J.St.-Hil. (1805), nom. cons.] Canellaceae Mart. (1832), nom. cons. §Asparagaceae Juss. (1789), nom. cons. Winteraceae R.Br. ex. Lindl. (1830), nom. cons. [+Agavaceae Dumort. (1829), nom. cons.] [+Aphyllanthaceae Burnett (1835)] Laurales Perleb (1826) [+Hesperocallidaceae Traub (1972)] Atherospermataceae R.Br. (1814) [+Hyacinthaceae Batsch ex. Borkh. (1797)] Calycanthaceae Lindl. (1819), nom. cons. [+Laxmanniaceae Bubani (1901 - 02)] Gomortegaceae Reiche (1896), nom. cons. [+Ruscaceae Spreng. (1826), nom. cons.] Hernandiaceae Bercht. & J.Presl (1820), nom. [+Themidaceae Salisb. (1866)] cons. Asteliaceae Dumort. (1829) Lauraceae Juss. (1789), nom. cons. Blandfordiaceae R.Dahlgren & Clifford (1985) Monimiaceae Juss. (1809), nom. cons. Boryaceae (Baker) M.W.Chase, Rudall & Conran Siparunaceae (A.DC.) Schodde 1970 (1997) Doryanthaceae R.Dahlgren & Clifford (1985) Magnoliales Bromhead (1838) Hypoxidaceae R.Br. (1814), nom. cons. Juss. (1789), nom. cons. Iridaceae Juss. (1789), nom. cons. Degeneriaceae I.W.Bailey & A.C.Sm. (1942), nom. Ixioliriaceae Nakai (1943) cons. Lanariaceae H.Huber ex. R.Dahlgren & A.E.van Eupomatiaceae Endl. (1841), nom. cons. Wyk (1988) Himantandraceae Diels (1917), nom. cons. Orchidaceae Juss. (1789), nom. cons. Magnoliaceae Juss. (1789), nom. cons. Tecophilaeaceae Leyb. (1862), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 417

§Xanthorrhoeaceae Dumort. (1829), nom. cons. *Mayacaceae Kunth (1842), nom. cons. [+Asphodelaceae Juss. (1789)] Poaceae (R.Br.) Barnh. 1895, nom. cons. [+Hemerocallidaceae R.Br. (1810)] *Rapateaceae Dumort. (1829), nom. cons. Xeronemataceae M.W.Chase, Rudall & M.F.Fay Restionaceae R.Br. (1810), nom. cons. (2001) Hanin (1811), nom. cons. §Thurniaceae Engl. (1907), nom. cons. Dioscoreales Hook.f. (1873) Juss. (1789), nom. cons. § Blume (1827), nom. cons. §Xyridaceae C.Agardh (1823), nom. cons. §Dioscoreaceae R.Br. (1810), nom. cons. *Nartheciaceae Fr. ex. Bjurzon (1846) Griseb. (1854) Cannaceae Juss. (1789), nom. cons. Liliales Perleb (1826) Costaceae Nakai (1941) Alstroemeriaceae Dumort. (1829), nom. cons. Heliconiaceae Nakai (1941) Dumort. (1829) Lowiaceae Ridl. (1924), nom. cons. Colchicaceae DC. (1804), nom. cons. Marantaceae R.Br. (1814), nom. cons. *Corsiaceae Becc. (1878), nom. cons. Musaceae Juss. (1789), nom. cons. Liliaceae Juss. (1789), nom. cons. Strelitziaceae Hutch. (1934), nom. cons. Luzuriagaceae Lotsy (1911) Zingiberaceae Martynov (1820), nom. cons. Melanthiaceae Batsch ex. Borkh. (1796), nom. cons. EUDICOTS Philesiaceae Dumort. (1829), nom. cons. Rhipogonaceae Conran & Clifford (1985) §Buxaceae Dumort. (1822), nom. cons. Smilacaceae Vent. (1799), nom. cons. [+Didymelaceae Leandri (1937)] Sabiaceae Blume (1851), nom. cons. Pandanales Lindl. (1833) Trochodendraceae Eichler (1865), nom. cons. Cyclanthaceae Poit. ex. A.Rich. (1824), nom. cons. [+Tetracentraceae A.C.Sm. (1945), nom. cons.] Pandanaceae R.Br. (1810), nom. cons. Stemonaceae Caruel (1878), nom. cons. Proteales Dumort. (1829) *Triuridaceae Gardner (1843), nom. cons. Bercht. & J.Presl (1820), nom. Velloziaceae Hook. (1827), nom. cons. cons. §Proteaceae Juss. (1789), nom. cons. COMMELINIDS [+ T.Lestib. (1826), nom. cons.]

Dasypogonaceae Dumort. (1829) Dumort. (1829) Juss. (1789), nom. cons. Arecales Bromhead (1840) Circaeasteraceae Hutch. (1926), nom. cons. Arecaceae Schultz Sch. (1832), nom. cons. [+Kingdoniaceae A.S.Foster ex. Airy Shaw (1964)] Eupteleaceae K.Wilh. (1910), nom. cons. Commelinales Dumort. (1829) R.Br. (1821), nom. cons. Commelinaceae Mirb. (1804), nom. cons. Juss. (1789), nom. cons. Haemodoraceae R.Br. (1810), nom. cons. Juss. (1789), nom. cons. *Hanguanaceae Airy Shaw (1964) [+Fumariaceae Bercht. & J.Presl (1820), nom. Philydraceae Link (1821), nom. cons. cons.] Pontederiaceae Kunth (1816), nom. cons. [+Pteridophyllaceae (Murb.) Nakai ex. Reveal & Hoogland (1991)] Poales Small (1903) Juss. (1789), nom. cons. Anarthriaceae D.F.Cutler & Airy Shaw (1965) *Bromeliaceae Juss. (1789), nom. cons. CORE EUDICOTS Centrolepidaceae Endl. (1836), nom. cons. Cyperaceae Juss. (1789), nom. cons. Aextoxicaceae Engl. & Gilg (1920), nom. cons. Ecdeiocoleaceae D.F.Cutler & Airy Shaw (1965) Takht. (1985) Eriocaulaceae Martynov (1820), nom. cons. Dilleniaceae Salisb. (1807), nom. cons. Flagellariaceae Dumort. (1829), nom. cons. Hydatellaceae U.Hamann (1976) †Gunnerales Takht. ex. Reveal (1992) Joinvilleaceae Toml. & A.C.Sm. (1970) § Meisn. (1842), nom. cons. Juncaceae Juss. (1789), nom. cons. [+Myrothamnaceae Nied. (1891), nom. cons.]

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 418 AGP II

Caryophyllales Perleb (1826) ROSIDS Heimerl. (1934), nom. cons. Aizoaceae Martynov (1820), nom. cons. Aphloiaceae Takht. (1985) Amaranthaceae Juss. (1789), nom. cons. *Geissolomataceae Endl. (1841) Ancistrocladaceae Planch. ex. Walp. (1851), nom. Ixerbaceae Griseb. (1854) cons. Fernando & Quinn (1995) Asteropeiaceae (Szyszyl.) Takht. ex. Reveal & *Strasburgeriaceae Soler. (1908), nom. cons. Hoogland (1990) *Vitaceae Juss. (1789), nom. cons. *Barbeuiaceae Nakai (1942) Raf. (1837), nom. cons. †Crossosomatales Takht. ex. Reveal (1993) Cactaceae Juss. (1789), nom. cons. Crossosomataceae Engl. (1897), nom. cons. Caryophyllaceae Juss. (1789), nom. cons. Stachyuraceae J.Agardh (1858), nom. cons. Didiereaceae Radlk. (1896), nom. cons. Staphyleaceae Martynov (1820), nom. cons. Airy Shaw (1952), nom. cons. Salisb. (1808), nom. cons. Geraniales Dumort. (1829) Drosophyllaceae Chrtek, Slavíková & Studnicka Geraniaceae Juss. (1789), nom. cons. (1989) [+Hypseocharitaceae Wedd. (1861)] Frankeniaceae Desv. (1817), nom. cons. Ledocarpaceae Meyen (1834) *Gisekiaceae Nakai (1942) §Melianthaceae Bercht. & J.Presl (1820), nom. Halophytaceae A.Soriano (1984) cons. Molluginaceae Bartl. (1825), nom. cons. [+Francoaceae A.Juss. (1832), nom. cons.] Nepenthaceae Bercht. & J.Presl (1820), nom. Klotzsch (1836) cons. Nyctaginaceae Juss. (1789), nom. cons. Myrtales Rchb. (1828) Physenaceae Takht. (1985) Alzateaceae S.A.Graham (1985) Phytolaccaceae R.Br. (1818), nom. cons. R.Br. (1810), nom. cons. Juss. (1789), nom. cons. A.DC. (1868), nom. cons. Polygonaceae Juss. (1789), nom. cons. Heteropyxidaceae Engl. & Gilg (1920), nom. cons. Portulacaceae Juss. (1789), nom. cons. J.St.-Hil. (1805), nom. cons. Rhabdodendraceae Prance (1968) §Melastomataceae Juss. (1789), nom. cons. Sarcobataceae Behnke (1997) [+Memecylaceae DC. (1827), nom. cons.] Simmondsiaceae Tiegh. (1899) Juss. (1789), nom. cons. Stegnospermataceae Nakai (1942) Oliniaceae Arn. (1839), nom. cons. Tamaricaceae Bercht. & J.Presl (1820), nom. cons. Juss. (1789), nom. cons. Santalales Dumort. (1829) Sweet ex. Guill. (1828), nom. cons. Olacaceae R.Br. (1818), nom. cons. Psiloxylaceae Croizat (1960) Valeton (1886), nom. cons. Rhynchocalycaceae L.A.S.Johnson & B.G.Briggs Juss. (1808), nom. cons. (1985) Misodendraceae J. Agardh (1858), nom. cons. A.St.-Hil. (1820), nom. cons. R.Br. (1810), nom. cons. EUROSIDS I Saxifragales Dumort. (1829) Horan. (1843), nom. cons. §*Zygophyllaceae R.Br. (1814), nom. cons. Aphanopetalaceae Doweld (2001) [+Krameriaceae Dumort. (1829), nom. cons.] Cercidiphyllaceae Engl. (1907), nom. cons. A.Chev. (1947) Crassulaceae J.St.-Hil. (1805), nom. cons. Daphniphyllaceae Müll.-Arg. (1869), nom. cons. †Celastrales Baskerville (1839) Grossulariaceae DC. (1805), nom. cons. §Celastraceae R.Br. (1814), nom. cons. §Haloragaceae R.Br. (1814), nom. cons. †Lepidobotryaceae J.Léonard (1950), nom. cons. [+Penthoraceae Rydb. ex. Britt. (1901), nom. cons.] Parnassiaceae Martynov (1820), nom. cons. [+Tetracarpaeaceae Nakai (1943)] [+Lepuropetalaceae Nakai (1943)] R.Br. (1818), nom. cons. §Iteaceae J.Agardh (1858), nom. cons. Cucurbitales Dumort. (1829) [+Pterostemonaceae Small (1905), nom. cons.] Ridl. (1922) Paeoniaceae Raf. (1815), nom. cons. Bercht. & J.Presl (1820), nom. cons. Saxifragaceae Juss. (1789), nom. cons. Coriariaceae DC. (1824), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 419

Corynocarpaceae Engl. (1897), nom. cons. §Phyllanthaceae Martynov (1820) Juss. (1789), nom. cons. §Picrodendraceae Small (1917), nom. cons. Datiscaceae Bercht. & J.Presl (1820), nom. cons. *Podostemaceae Rich. ex. C. Agardh (1822), nom. Airy Shaw (1964) cons. Endl. (1841) Fabales Bromhead (1838) §Rhizophoraceae Pers. (1807), nom. cons. Lindl. (1836), nom. cons. [+Erythroxylaceae Kunth (1822), nom. cons.] Hoffmanns. & Link (1809), nom. §Salicaceae Mirb. (1815), nom. cons. cons. Batsch (1802), nom. cons. D.Don (1831) Arn. (1834), nom. cons. Oxalidales Heintze (1927) §Brunelliaceae Engl. (1897), nom. cons. Fagales Engl. (1892) Cephalotaceae Dumort. (1829), nom. cons. Gray (1821), nom. cons. R.Br. (1818), nom. cons. R.Br. (1814), nom. cons. Cunoniaceae R.Br. (1814), nom. cons. Dumort. (1829), nom. cons. §Elaeocarpaceae Juss. ex. DC. (1816), nom. cons. §Juglandaceae DC. ex. Perleb (1818), nom. cons. R.Br. (1818), nom. cons. [+Rhoipteleaceae Hand.-Mazz. (1932), nom. cons.] A.Rich. ex. Kunth (1817), nom. cons. Rosales Perleb (1826) Nothofagaceae Kuprian (1962) Barbeyaceae Rendle (1916), nom. cons. Ticodendraceae Gómez-Laur. & L.D.Gómez (1991) §Cannabaceae Martynov (1820), nom. cons. Dirachmaceae Hutch. (1959) Malpighiales Mart. (1835) Juss. (1789), nom. cons. §Achariaceae Harms (1897), nom. cons. Moraceae Link (1831), nom. cons. Balanopaceae Benth. & Hook.f. (1880), nom. cons. Juss. (1789), nom. cons. *Bonnetiaceae (Bartl.) L.Beauv. ex. Nakai (1948) Juss. (1789), nom. cons. Voigt (1845), nom. cons. Ulmaceae Mirb. (1815), nom. cons. §Chrysobalanaceae R.Br. (1818), nom. cons. §Urticaceae Juss. (1789), nom. cons. [+Dichapetalaceae Baill. (1886), nom. cons.] [+Euphroniaceae Marc.-Berti (1989)] EUROSIDS II [+Trigoniaceae Endl. (1841), nom. cons.] §Clusiaceae Lindl. (1836), nom. cons. (Pax) Takht. (1987) *Ctenolophonaceae (H.Winkl.) Exell & Mendonça (1951) Brassicales Bromhead (1838) *Elatinaceae Dumort. (1829), nom. cons. Stapf (1912), nom. cons. §Euphorbiaceae Juss. (1789), nom. cons. [+Bretschneideraceae Engl. & Gilg (1924), nom. Goupiaceae Miers (1862) cons.] A.Juss. (1829), nom. cons. Bataceae Perleb (1838), nom. cons. § Juss. (1789), nom. cons. Brassicaceae Burnett (1835), nom. cons. (Engl.) Exell & Mendonça (1951), Dumort. (1829), nom. cons. nom. cons. Emblingiaceae Airy Shaw (1964) *Ixonanthaceae Planch. ex. Miq. (1858), nom. cons. Endl. (1841), nom. cons. Lacistemataceae Mart. (1826), nom. cons. Koeberliniaceae Engl. (1895), nom. cons. §Linaceae DC. ex. Perleb (1818), nom. cons. R.Br. (1833), nom. cons. *Lophopyxidaceae (Engl.) H.Pfeiff. (1951) Moringaceae Martynov (1820), nom. cons. Juss. (1789), nom. cons. Pentadiplandraceae Hutch. & Dalziel (1928) §Ochnaceae DC. (1811), nom. cons. Bercht. & J.Presl (1820), nom. cons. [+Medusagynaceae Engl. & Gilg (1924), nom. Lindl. (1836), nom. cons. cons.] Setchellanthaceae Iltis (1999) [+Quiinaceae Choisy ex. Engl. (1888), nom. cons.] Tovariaceae Pax (1891), nom. cons. Engl. & Gilg (1912–13), nom. cons. Tropaeolaceae Bercht. & J.Presl (1820), nom. §Passifloraceae Juss. ex. Roussel (1806), nom. cons. cons. [+Malesherbiaceae D.Don (1827), nom. cons.] Malvales Dumort. (1829) [+Turneraceae Kunth ex. DC. (1828), nom. cons.] §Bixaceae Kunth (1822), nom. cons. *Peridiscaceae Kuhlm. (1950), nom. cons. [+Diegodendraceae Capuron (1964)]

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 420 AGP II

[+Cochlospermaceae Planch. (1847), nom. cons.] §Primulaceae Batsch ex. Borkh. (1797), nom. Cistaceae Juss. (1789), nom. cons. cons. Dipterocarpaceae Blume (1825), nom. cons. Roridulaceae Bercht. & J.Presl (1820), nom. cons. Juss. (1789), nom. cons. Sapotaceae Juss. (1789), nom. cons. C.Bayer, M.W.Chase & M.F.Fay Dumort. (1829), nom. cons. (1998) §Styracaceae DC. & Spreng. (1821), nom. cons. Link (1831), nom. cons. Desf. (1820), nom. cons. Sarcolaenaceae Caruel (1881), nom. cons. §Tetrameristaceae Hutch. (1959) (Warb.) Tiegh. ex. Bullock [+Pellicieraceae (Triana & Planch.) L.Beauvis. ex. (1959) Bullock (1959)] §Thymelaeaceae Juss. (1789), nom. cons. Mirb. ex. Ker Gawl. (1816), nom. cons. §Theophrastaceae Link (1829), nom. cons. Dumort. (1829) R.Br. (1818), nom. cons. EUASTERIDS I Biebersteiniaceae Endl. (1841) Kunth (1824), nom. cons. Boraginaceae Juss. (1789), nom. cons. (Engl.) Takht. (1967) §*Icacinaceae (Benth.) Miers (1851), nom. cons. Juss. (1789), nom. cons. *Oncothecaceae Kobuski ex. Airy Shaw (1964) § Bercht. & J.Presl (1820), nom. Vahliaceae Dandy (1959) cons. [+Peganaceae (Engl.) Tieghm. ex. Takht. (1987)] Garryales Lindl. (1846) [+Tetradiclidaceae (Engl.) Takht. 1986) Eucommiaceae Engl. (1909), nom. cons. Juss. (1789), nom. cons. §Garryaceae Lindl. (1834), nom. cons. Juss. (1789), nom. cons. [+Aucubaceae J.Agardh (1858)] DC. (1811), nom. cons. Gentianales Lindl. (1833) ASTERIDS Juss. (1789), nom. cons. Gelsemiaceae (G.Don) Struwe & V. Albert (1995) Cornales Dumort. (1829) Juss. (1789), nom. cons. Cornaceae Dumort. (1829), nom. cons. Loganiaceae R.Br. (1814), nom. cons. [+ Juss. ex. Dumort. (1829), nom. cons.] Rubiaceae Juss. (1789), nom. cons. Curtisiaceae (Engl.) Takht. (1987) Grubbiaceae Endl. (1839), nom. cons. Lamiales Bromhead (1838) Hydrangeaceae Dumort. (1829), nom. cons. §Acanthaceae Juss. (1789), nom. cons. Hydrostachyaceae (Tul.) Engl. (1894), nom. cons. Bignoniaceae Juss. (1789), nom. cons. Juss. (1804), nom. cons. Byblidaceae (Engl. & Gilg) Domin (1922), nom. cons. Ericales Dumort. (1829) Calceolariaceae (D.Don) Olmstead (2001) Actinidiaceae Gilg & Werderm. (1825), nom. cons. *Carlemanniaceae Airy Shaw (1964) Balsaminaceae Bercht. & J.Presl (1820), nom. Gesneriaceae Rich. & Juss. ex. DC. (1816), nom. cons. cons. Clethraceae Klotzsch (1851), nom. cons. Lamiaceae Martynov (1820), nom. cons. Cyrillaceae Endl. (1841), nom. cons. Rich. (1808), nom. cons. Diapensiaceae Lindl. (1836), nom. cons. *Martyniaceae Horan. (1847), nom. cons. §Ebenaceae Gürke (1891), nom. cons. Oleaceae Hoffmanns. & Link (1809), nom. cons. Ericaceae Juss. (1789), nom. cons. See Orobanchaceae Vent. (1799), nom. cons. Fouquieriaceae DC. (1828), nom. cons. Paulowniaceae Nakai (1949) Lecythidaceae A.Rich. (1825), nom. cons. Pedaliaceae R.Br. (1810), nom. cons. Maesaceae (A.DC.) Anderb., B.Ståhl & Källersjö §Phrymaceae Schauer (1847), nom. cons. (2000) §Plantaginaceae Juss. (1789), nom. cons. Marcgraviaceae Juss. ex. DC. (1816), nom. cons. *Plocospermataceae Hutch. (1973) § Myrsinaceae R.Br. (1810), nom. cons. Schlegeliaceae (A.H.Gentry) Reveal (1996) Pentaphylacaceae Engl. (1897), nom. cons. §Scrophulariaceae Juss. (1789), nom. cons. [+Ternstroemiaceae Mirb. ex. DC. (1816)] Stilbaceae Kunth (1831), nom. cons. [+Sladeniaceae Airy Shaw (1964)] Tetrachondraceae Wettst. (1924) Polemoniaceae Juss. (1789), nom. cons. Verbenaceae J.St.-Hil. (1805), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 421

Solanales Dumort. (1829) Dipsacales Dumort. (1829) Convolvulaceae Juss. (1789), nom. cons. *Adoxaceae E.Mey. (1839), nom. cons. Hydroleaceae Bercht. & J. Presl (1820) §Caprifoliaceae Juss. (1789), nom. cons. §Montiniaceae Nakai (1943), nom. cons. [+Diervillaceae (Raf.) Pyck 1998) Solanaceae Juss. (1789), nom. cons. [+Dipsacaceae Juss. (1789), nom. cons.] Sphenocleaceae (Lindl.) Baskerville (1839), nom. [+Linnaeaceae (Raf.) Backlund 1998) cons. [+Morinaceae Raf. (1820)] [+Valerianaceae Batsch (1802), nom. cons.] EUASTERIDS II TAXA OF UNCERTAIN POSITION Bercht. & J.Presl (1820), nom. cons. If an unplaced genus is the type of a family name, that Columelliaceae D.Don (1828), nom. cons. name is given for information purposes. [+Desfontainiaceae Endl. (1841), nom. cons.] Eremosynaceae Dandy (1959) Aneulophus Benth. Escalloniaceae R.Br. ex. Dumort. (1829), nom. van Tieghem ex. Takhtajan in cons. Takhtajan (1997) [three genera] Paracryphiaceae Airy Shaw (1964) Bdallophyton Eichl. Polyosmaceae Blume (1851) Rich. (1822), nom. cons. Sphenostemonaceae P.Royen & Airy Shaw (1972) Pierre Tribelaceae Airy Shaw (1964) L. [Cynomoriaceae Lindl. (1833), nom. cons.] Apiales Nakai (1930) L. [ A.Rich. (1824)] Apiaceae Lindl. (1836), nom. cons. Dunn [ Merr. Araliaceae Juss. (1789), nom. cons. (1941), nom. cons.] Aralidiaceae Philipson & B.C.Stone (1980) Gumillea Ruiz & Pav. Griseliniaceae J.R.Forst. & G.Forst. ex. A.Cunn. Hoplestigma Pierre [Hoplestigmataceae Engl. & (1839) Gilg (1924), nom. cons.] Mackinlayaceae Doweld (2001) Benth. Melanophyllaceae Takht. ex. Airy Shaw (1972) Medusandra Brenan [Medusandraceae Brenan Myodocarpaceae Doweld (2001) (1952), nom. cons.] Pennantiaceae J.Agardh (1858) Metteniusa H.Karst. [ H.Karst. R.Br. (1814), nom. cons. ex. Schnizl. (1860–1870)] Torricelliaceae Hu (1934) Mitrastema Makino [Mitrastemonaceae Makino (1911), nom. cons.] Aquifoliales Senft (1856) Pottingeria Prain [Pottingeriaceae (Engl.) Takht. Aquifoliaceae DC. ex. A.Rich. (1828), nom. cons. 1987) *§Cardiopteridaceae Blume (1847), nom. cons. Rafflesiaceae Dumort. (1829), nom. cons. [three Helwingiaceae Decne. (1836) genera included] Phyllonomaceae Small (1905) Oliv. §Stemonuraceae (M. Roem.) Kårehed (2001) Trichostephanus Gilg

Asterales Lindl. (1833) ORDINAL NAMES AND SYNONYMS Alseuosmiaceae Airy Shaw (1964) Accepted ordinal names are in bold face; those based Argophyllaceae (Engl.) Takht. 1987 on a family not yet placed in an order are in italics. Asteraceae Martynov (1820), nom. cons. of publication is indicated. Calyceraceae R.Br. ex. Rich. (1820), nom. cons. §Campanulaceae Juss. (1789), nom. cons. Acanthales Lindl. (1833) = Lamiales [+Lobeliaceae Juss. ex. Bonpl. (1813), nom. cons.] Acerales Lindl. (1833) = Sapindales Goodeniaceae R.Br. (1810), nom. cons. Acorales Reveal (1996) Menyanthaceae Bercht. & J.Presl (1820), nom. Actinidiales Takht. ex. Reveal (1993) = Ericales cons. Adoxales Nakai (1949) = Dipsacales Pentaphragmataceae J.Agardh (1858), nom. cons. Aesculales Bromhead (1838) = Sapindales Phellinaceae (Loes.) Takht. 1967 Agavales Hutch. (1934) = Asparagales §Rousseaceae DC. (1839) Akaniales Doweld (2001) = Brassicales Stylidiaceae R.Br. (1810), nom. cons. Alismatales Dumort. (1829) [+Donatiaceae B.Chandler (1911), nom. cons.] Alliales Traub (1972) = Asparagales

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 422 AGP II

Alseuosmiales Doweld (2001) = Asterales Brexiales Lindl. (1833) = Celastrales Alstroemeriales Hutch. (1934) = Liliales Bromeliales Dumort. (1829) = Poales Altingiales Doweld (1998) = Saxifragales Dumort. (1829) – family unplaced Amaranthales Dumort. (1829) = Caryophyllales under euasterid II Amaryllidales Bromhead (1840) = Asparagales Brunoniales Lindl. (1833) = Asterales Amborellales Melikyan, A.V.Bobrov & Zaytzeva Burmanniales Heinze (1927) = Dioscoreales (1999) – family unplaced Burserales Baskerville (1839) = Sapindales Ambrosiales Dumort. (1829) = Asterales Butomales Hutch. (1934) = Alismatales Ammiales Small (1903) = Apiales Buxales Takht. ex. Reveal (1996) – family Amomales Lindl. (1835) = Zingiberales unplaced under eudicots Ancistrocladales Takht. ex. Reveal (1992) = Byblidales Nakai ex. Reveal (1993) = Lamiales Caryophyllales Cactales Dumort. (1829) = Caryophyllales Anisophylleales (Benth. & Hook.f.) Takht. ex. Callitrichales Dumort. (1829) = Lamiales Reveal & Doweld (1999) Calycanthales Mart. (1835) = Laurales Annonales Lindl. (1833) = Magnoliales Calycerales Takht. ex. Reveal (1996) = Asterales Anthobolales Dumort. (1829) = Santalales Campanulales Rchb. (1828) = Asterales Apiales Nakai (1930) Campynematales Doweld (2001) = Liliales Apocynales Bromhead (1838) = Gentianales Canellales Cronquist (1957) Aponogetonales Hutch. (1934) = Alismatales Cannales Dumort. (1829) = Zingiberales Aquifoliales Senft (1856) Capparales Hutch. (1924) = Brassicales Arales Dumort. (1829) = Alismatales Caprifoliales Lindl. (1833) = Dipsacales Araliales Reveal (1996) = Apiales Cardiopteridales Takht. (1997) = Aquifoliales Aralidiales Takht. ex. Reveal (1992) = Apiales Carduales Small (1903) = Asterales Arecales Bromhead (1840) Caricales L.D.Benson (1957) = Brassicales Dumort. (1829) = Piperales Carlemanniales Doweld (2001) = Lamiales Asarales Horan (1847) = Piperales Caryophyllales Perleb (1826) Asclepiadales Dumort. (1829) = Gentianales Cassiales Horan. (1847) = Fabales Asparagales Bromhead (1838) Casuarinales Lindl. (1833) = Fagales Asphodelales Doweld (2001) = Asparagales Celastrales Baskerville (1839) Asteliales Dumort. (1829) = Asparagales Centrolepidales R.Dahlgren ex. Takht. (1997) = Asterales Lindl. (1833) Poales Atriplicales Horan (1847) = Caryophyllales Cephalotales Nakai (1943) = Oxalidales Aucubales Takht. (1997) = Garryales Ceratophyllales Bisch. (1839) Austrobaileyales Takht. ex. Reveal (1992) Cercidiphyllales Hu ex. Reveal (1993) = Avenales Bromhead (1838) = Poales Saxifragales Balanitales C.Y.Wu (2002) – family unplaced in Chenopodiales Dumort. (1829) = Caryophyllales eurosids I = Zygophyllales Chironiales Griseb. (1854) = Gentianales Balanopales Engl. (1897) = Malpighiales Chloranthales A.C.Sm. ex. J.-F.Leroy (1983) – Balanophorales Dumort. (1829) – family unplaced family unplaced at beginning of system at end of system Chrysobalanales (DC.) Takht. ex. Reveal & Dow- Balsaminales Lindl. (1833) = Ericales eld (1999) = Malpighiales Barbeyales Takht. & Reveal (1993) = Rosales Cinchonales Lindl. (1835) = Gentianales Barclayales Doweld (2001) = Nymphaeales, family Circaeasterales Takht. (1997) = Ranunculales unplaced at beginning of system Cistales Rchb. (1828) = Malvales Batales Engl. (1907) = Brassicales Citrales Dumort. (1829) = Sapindales Begoniales Dumort. (1829) = Cucurbitales Cocosales Nakai (1930) = Arecales Berberidales Dumort. (1829) = Ranunculales Colchicales Dumort. (1829) = Liliales Berberidopsidales Doweld (2001) – family Columelliales Doweld (2001) – family unplaced in unplaced in core eudicots euasterids II Betulales Bromhead (1838) = Fagales Combretales Baskerville (1839) = Myrtales Biebersteiniales Takht. (1997) = Sapindales Commelinales Dumort. (1829) Bignoniales Lindl. (1833) = Lamiales Connarales Takht. ex. Reveal (1996) = Oxalidales Bixales Lindl. (1833) = Malvales Convolvulales Dumort. (1829) = Solanales Dumort. (1829) – family unplaced Coriariales Lindl. (1833) = Cucurbitales under euasterid I Cornales Dumort. (1829) Brassicales Bromhead (1838) Corylales Dumort. (1829) = Fagales

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 423

Corynocarpales Takht. (1997) = Cucurbitales Euryalales H.L.Li (1955) – see Nymphaeales Crassulales Lindl. (1833) = Saxifragales Fabales Bromhead (1838) Crossosomatales Takht. ex. Reveal (1993) Fagales Engl. (1892) Cucurbitales Dumort. (1829) Ficales Dumort. (1829) = Rosales Cunoniales Hutch. (1924) = Oxalidales Flacourtiales Heinze (1927) = Malpighiales Cyclanthales J.H.Schaffn. (1911) = Pandanales Flagellariales (Meisn.) Takht. ex. Reveal & Dow- Cymodoceales Nakai (1943) = Alismatales eld (1999) = Poales Cynarales Raf. (1837) = Asterales Fouquieriales Takht. ex. Reveal (1992) = Ericales Cynomoriales Burnett (1835) – type genus Francoales Takht. (1997) = Geraniales unplaced at end of system Frangulales Wirtg. (1860) = Rosales Cyperales Wettst. (1911) = Poales Galiales Bromhead (1838) = Gentianales Cyrillales Doweld (2001) = Ericales Garryales Lindl. (1846) Cytinales Dumort. (1829) – type genus unplaced Geissolomatales Takht. ex. Reveal (1992) – family at end of system unplaced under core eudicots Daphnales Lindl. (1833) = Malvales Gentianales Lindl. (1833) Daphniphyllales Pulle ex. Cronquist (1981) = Geraniales Dumort. (1829) Saxifragales Gesneriales Dumort. (1829) = Lamiales Dasypogonales Doweld (2001) – family unplaced Glaucidiales Takht. ex. Reveal (1992) = under commelinids Ranunculales Datiscales Dumort. (1829) = Cucurbitales Globulariales Dumort. (1829) = Lamiales Degeneriales C.Y.Wu (2002) = Magnoliales Goodeniales Lindl. (1833) = Asterales Desfontainiales Takht. (1997) – family unplaced Greyiales Takht. (1997) = Geraniales under euasterids II Griseliniales (J.R.Forst. & G.Forst. ex. A.Cunn.) Diapensiales Engl. & Gilg (1924) = Ericales Takht. ex. Reveal & Doweld (1999) = Apiales Didymelales Takht. (1967) – see Buxales Grossulariales Lindl. (1833) = Saxifragales Dilleniales Hutch. (1924) – family unplaced under Grubbiales Doweld (2001) = Cornales core eudicots Gunnerales Takht. ex. Reveal (1992) Dioncophyllales Takht. ex. Reveal (1993) = Gyrocarpales Dumort. (1829) = Laurales Caryophyllales Gyrostemonales Takht. (1997) = Brassicales Dioscoreales Hook.f. (1873) Haemodorales Hutch. (1934) = Commelinales Diospyrales Prantl (1874) = Ericales Haloragales Bromhead (1838) = Saxifragales Dipentodontales C.Y.Wu (2002) – type genus Griseb. (1854) = Saxifragales unplaced at end of system Hanguanales R.Dahlgren ex. Reveal (1992) = Dipsacales Dumort. (1829) Commelinales Droserales Griseb. (1854) = Caryophyllales Heisteriales Tiegh. (1899) = Santalales Ebenales Engl. (1892) = Ericales Helleborales Nakai (1949) = Ranunculales Echiales Lindl. (1838) – see Boraginales Helwingiales Takht. (1997) = Aquifoliales Elaeagnales Bromhead (1838) = Rosales Himantandrales Doweld & Shevyryova (1998) = Elaeocarpales Takht. (1997) = Oxalidales Magnoliales Elatinales Nakai (1949) = Malpighiales Hippuridales Thomé (1874) = Lamiales Elodeales Nakai (1950) = Alismatales Homaliales Bromhead (1838) = Malpighiales Emmotales Doweld (2001) = Icacinales, unplaced Hortensiales Griseb. (1854) = Cornales family under euasterids I Huales Doweld (2001) = Malpighiales Empetrales Raf. (1838) = Ericales Doweld (2001) – see Tapisciaceae, an Ericales Dumort. (1829) unplaced family in rosids Eriocaulales Nakai (1930) = Poales Hydatellales (U.Hamann) Cronquist ex. Reveal & Erythropalales Tiegh. (1899) = Santalales Doweld (1999) = Poales Escalloniales Doweld (2001) – family unplaced in Hydnorales Takht. ex. Reveal (1992) = Piperales euasterids II Hydrangeales Nakai (1943) = Cornales Eucommiales Nemejc ex. Cronquist (1981) = Hydrastidales Takht. (1997) = Ranunculales Garryales Hydrocharitales Dumort. (1829) = Alismatales Euphorbiales Lindl. (1833) = Malpighiales Hydropeltidales Spenn. (1834) – see Eupomatiales Takht. ex. Reveal (1992) = Nymphaeaceae Magnoliales Hydrostachyales Diels ex. Reveal (1993) = Eupteleales Hu ex. Reveal (1993) = Cornales Ranunculales Hypericales Dumort. (1829) = Malpighiales

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 424 AGP II

Hypoxidales Takht. ex. Reveal & Doweld (1999) = Menyanthales T.Yamaz. ex. Takht. (1997) = Asparagales Asterales Icacinales Tiegh. (1899) – family unplaced under Metteniusales Takht. (1997) – type genus euasterids I unplaced at end of system Hu ex. Cronquist (1981) = Austrobailey- Miyoshiales Nakai (1941) – see Petrosaviales, ales family unplaced under monocots Iridales Raf. (1815) = Asparagales Monimiales Dumort. (1829) = Laurales Irvingiales Doweld (2001) = Malpighiales Moringales Nakai (1943) = Brassicales Iteales Doweld (2001) = Saxifragales Musales Reveal (1997) = Zingiberales Ixerbales Doweld (2001) – family unplaced in Myricales Engl. (1897) = Fagales rosids Myristicales Thomé (1877) = Magnoliales Ixiales Lindl. (1835) = Asparagales Myrothamnales Nakai ex. Reveal (1993) = Jasminales Dumort. (1829) = Lamiales Gunnerales Juglandales Dumort. (1829) = Fagales Myrsinales Spenn. (1835) = Ericales Julianiales Engl. (1907) = Sapindales Myrtales Rchb. (1828) Juncaginales Hutch. (1934) = Alismatales Najadales Dumort. (1829) = Alismatales Juncales Dumort. (1829) = Poales Nandinales Doweld (2001) = Ranunculales Lacistematales Baskerville (1839) = Malpighiales Narcissales Dumort. (1829) = Asparagales Lactoridales Takht. ex. Reveal (1993) = Nartheciales Reveal & Zomlefer (1998) = Piperales Dioscoreales Lamiales Bromhead (1838) Nelumbonales Willk. & Lange (1861) = Proteales Lardizabalales Loconte (1995) = Ranunculales Dumort. (1829) = Caryophyllales Laurales Perleb (1826) Neuradales Doweld (2001) = Malvales Lecythidales Cronquist (1957) = Ericales Nitrariales Doweld (2001) = Sapindales Ledocarpales Doweld (2001) = Geraniales Nolanales Lindl. (1835) = Solanales Leitneriales Engl. (1897) = Sapindales Nothofagales Doweld (2001) = Fagales Lentibulariales Lindl. (1833) = Lamiales Nyctaginales Dumort. (1829) = Caryophyllales Ligustrales Bartl. ex. Bisch. (1839) = Lamiales Nymphaeales Dumort. (1829) = family unplaced Liliales Perleb (1826) at beginning of system Limnanthales Nakai (1930) = Brassicales Ochnales Hutch. ex. Reveal (1992) = Malpighiales Linales Baskerville (1839) = Malpighiales Oenotherales Bromhead (1838) = Myrtales Loasales Bessey (1907) = Cornales Olacales Benth. & Hook.f. (1862) = Santalales Lobeliales Drude (1888) = Asterales Oleales Lindl. (1833) = Lamiales Loganiales Lindl. (1833) = Gentianales Onagrales Rchb. (1828) = Myrtales Lonicerales T.Liebe (1866) = Dipsacales Oncothecales Doweld (2001) – family unplaced Loranthales Dumort. (1829) = Santalales under euasterids I Lowiales Takht. ex. Reveal & Doweld (1999) = Opuntiales Endl. ex. Willk. (1854) = Zingiberales Caryophyllales Lythrales Caruel (1881) = Myrtales Orchidales Raf. (1815) = Asparagales Magnoliales Bromhead (1838) Oxalidales Heintze (1927) Malpighiales Mart. (1835) Paeoniales Heinze (1927) = Saxifragales Malvales Dumort. (1829) Pandales Engl. & Gilg (1912–13) = Malpighiales Marathrales Dumort. (1829) = Malpighiales Pandanales Lindl. (1833) Marcgraviales Doweld (2001) = Ericales Papaverales Dumort. (1829) = Ranunculales Mayacales Nakai (1943) = Poales Paracryphiales Takht. ex Reveal (1992) – family Medusagynales Takht. ex. Reveal & Doweld unplaced under euasterid II (1999) = Malpighiales Paridales Dumort. (1829) = Liliales Medusandrales Brenan (1952) – type genus Parnassiales Nakai (1943) = Celastrales unplaced at end of system Passiflorales Dumort. (1829) = Malpighiales Melanthiales R.Dahlgren ex. Reveal (1992) = Penaeales Lindl. (1833) = Myrtales Liliales Pennantiales Doweld (2001) = Apiales Melastomatales Oliv. (1895) = Myrtales Pentaphragmatales Doweld (2001) = Asterales Meliales Lindl. (1833) = Sapindales Petiveriales Lindl. (1833) = Caryophyllales Melianthales Doweld = Geraniales Petrosaviales Takht. (1997) – family unplaced Meliosmales C.Y.Wu (2002) – see Sabiales under monocots Menispermales Bromhead (1838) = Ranunculales Phellinales Doweld (2001) = Asterales

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 425

Philydrales Dumort. (1829) = Commelinales Santalales Dumort. (1829) Phyllanthales Doweld (2001) = Malpighiales Sapindales Dumort. (1829) Physenales Takht. (1977) = Caryophyllales Sapotales Hook.f. (1868) = Ericales Phytolaccales Doweld (2001) = Caryophyllales Sarraceniales Bromhead (1838) = Ericales Picramniales Doweld (2001) – family unplaced Saxifragales Dumort. (1829) under rosids Scheuchzeriales B.Boivin (1956) = Alismatales Pinguiculales Dumort. (1829) = Lamiales Scleranthales Dumort. (1829) = Caryophyllales Piperales Dumort. (1829) Scrophulariales Lindl. (1833) = Lamiales Pittosporales Lindl. (1833) = Apiales Scyphostegiales Croizat (1994) = Malpighiales Plantaginales Lindl. (1833) = Lamiales Sedales Rchb. (1828) = Saxifragales Platanales J.H.Schaffn. (1911) = Proteales Silenales Lindl. (1833) = Caryophyllales Plumbaginales Lindl. (1833) = Caryophyllales Simmondsiales Reveal (1992) = Caryophyllales Poales Small (1903) Smilacales Lindl. (1833) = Liliales Podophyllales Dumort. (1829) = Ranunculales Solanales Dumort. (1829) Podostemales Lindl. (1833) = Malpighiales Sphenocleales Doweld (2001) = Solanales Polemoniales Bromhead (1838) = Ericales Sphenostemonales Doweld (2001) – family Polygalales Dumort. (1829) = Fabales unplaced under euasterids II Polygonales Dumort. (1829) = Caryophyllales Stellariales Dumort. (1829) = Caryophyllales Pontederiales Hook.f. (1873) = Commelinales Stemonales Takht. ex. Doweld (2001) = Portulacales Dumort. (1829) = Caryophyllales Pandanales Posidoniales Nakai (1943) = Alismatales Stilbales Doweld (2001) = Lamiales Potamogetonales Dumort. (1829) = Alismatales Stylidiales Takht. ex. Reveal (1992) = Asterales Primulales Dumort. (1829) = Ericales Styracales Bisch. (1839) = Ericales Proteales Dumort. (1829) Surianales Doweld (2001) = Fabales Quercales Burnett (1835) = Fagales Taccales Dumort. (1829) = Dioscoreales Quillajales Doweld (2001) = Fabales Tamales Dumort. (1829) = Dioscoreales Quintiniales Doweld (2001) = Sphenostemonales, Tamaricales Hutch. (1924) = Caryophyllales unplaced under euasterids II Tecophilaeales Traub ex. Reveal (1993) = Rafflesiales Oliv. (1895) – unplaced family type at Asparagales end of system Ternstroemiales Doweld (2001) = Ericales Ranunculales Dumort. (1829) Lindl. (1833) = Ericales Rapateales (Meisn.) Colella ex. Reveal & Doweld Theligonales Nakai (1942) = Gentianales = Poales Thymelaeales Willk. (1854) = Malvales Resedales Dumort. (1829) = Brassicales Tiliales Caruel (1881) = Malvales Restionales Hook.f. (1873) = Poales Tofieldiales Reveal & Zomlefer (1998) = Rhabdodendrales Doweld (2001) = Caryophyllales Alismatales Dumort. (1829) = Rosales Torricelliales Takht. ex Reveal & Doweld (1999) = Rhinanthales Dumort. (1829) = Lamiales Apiales Rhizophorales (Pers.) Reveal & Doweld (1999) = Tovariales Nakai (1943) = Brassicales Malpighiales Tribelales Doweld (2001) – family unplaced in Rhodorales Horan. (1847) = Ericales euasterids II Rhoipteleales Novák ex. Reveal (1992) = Fagales Trilliales Takht. (1997) = Liliales Roridulales Nakai (1943) = Ericales Trimeniales Doweld (2001) = Austrobaileyales Rosales Perleb (1826) Triuridales Hook.f. (1873) = Pandanales Rousseales Doweld (2001) = Asterales Trochodendrales Takht. ex. Cronquist (1981) – Rubiales Dumort. (1829) = Gentianales unplaced family under eudicots Ruppiales Nakai (1950) = Alismatales Tropaeolales Takht. ex. Reveal (1992) = Rutales Perleb (1826) = Sapindales Brassicales Sabiales Takht. (1987) = family unplaced under Turnerales Dumort. (1829) = Malpighiales eudicots Typhales Dumort. (1829) = Poales Salicales Lindl. (1833) = Malpighiales Ulmales Lindl. (1833) = Rosales Salvadorales R.Dahlgren ex. Reveal (1993) = Urticales Dumort. (1829) = Rosales Brassicales Vacciniales Dumort. (1829) = Ericales Samolales Dumort. (1829) = Ericales Vahliales Doweld (2001) – family unplaced in Samydales Dumort. (1829) = Malpighiales euasterids I Sanguisorbales Dumort. (1829) = Rosales Vallisneriales Nakai (1949) = Alismatales

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 426 AGP II

Velloziales R.Dahlgren ex. Reveal (1992) = Alliaceae Batsch ex. Borkh. (1797), nom. cons. Pandanales Aloaceae Batsch (1802) = Asphodelaceae, optional Veratrales Dumort. (1829) = Liliales synonym of Xanthorrhoeaceae Verbenales Horan. (1847) = Lamiales Alseuosmiaceae Airy Shaw (1964) Viburnales Dumort. (1829) = Dipsacales Alsinaceae Bartl. (1825), nom. cons. = Vincales Horan. (1847) = Gentianales Caryophyllaceae Perleb (1826) = Malpighiales Alstroemeriaceae Dumort. (1829), nom. cons. Viscales Tiegh. (1899) = Santalales Altingiaceae Horan. (1843), nom. cons. Vitales Reveal (1996) – family unplaced under Alzateaceae S.A.Graham (1985) core eudicots Amaranthaceae Juss. (1789), nom. cons. Vochysiales Dumort. (1829) = Myrtales Amaryllidaceae J.St.-Hil. (1805), nom. cons., Winterales (Meisn.) A.C. Sm. ex. Reveal (1993) = optional synonym of Alliaceae Canellales Amborellaceae Pichon (1948), nom. cons. Xanthorrhoeales Takht. ex. Reveal & Doweld Ambrosiaceae Martynov (1820), nom. cons. = (1999) = Asparagales Asteraceae Ximeniales Tiegh. (1899) = Santalales Amygdalaceae Marquis (1820), nom. cons. = Xyridales Lindl. (1846) = Poales Rosaceae Zingiberales Griseb. (1854) Amyridaceae Kunth (1824) = Rutaceae Zosterales Nakai (1943) = Alismatales Anacardiaceae R.Br. (1818), nom. cons. Zygophyllales Chalk (1990) – family unplaced Anarthriaceae D.F.Cutler & Airy Shaw (1965) under eurosid I Ancistrocladaceae Planch. ex. Walp. (1851), nom. cons. SELECTED FAMILIAL SYNONYMS Androstachyaceae Airy Shaw (1964) = Picrodendraceae The following names are primarily those in current Anemarrhenaceae Conran, M.W.Chase & Rudall use or listed here so as to define more clearly the (1997) = Agavaceae, optional synonym of recognized families. Accepted family names are in Asparagaceae bold face. Families included as belonging to type Anisophylleaceae Ridl. (1922) genera of an uncertain position are in italics. Annonaceae Juss. (1789), nom. cons. Anomochloaceae Nakai (1943) = Poaceae Abolbodaceae Nakai (1943) = Xyridaceae Anopteraceae Doweld (2001) = Escalloniaceae Abrophyllaceae Nakai (1943) = Rousseaceae Anthericaceae J.Agardh (1858) = Agavaceae, Acanthaceae Juss. (1789), nom. cons. optional synonym of Asparagaceae Acanthochlamydaceae P.C.Kao (1989) = Antirrhinaceae Pers. (1807) = Plantaginaceae Velloziaceae Antoniaceae Hutch. (1959) = Loganiaceae Juss. (1789), nom. cons. = Sapindaceae Aphanopetalaceae Doweld (2001) Achariaceae Harms (1897), nom. cons. Aphloiaceae Takht. (1985) Achatocarpaceae Heimerl (1934), nom. cons. Aphyllanthaceae Burnett (1835), optional syn- Achradaceae Vest (1818) = Sapotaceae onym of Asparagaceae Acoraceae Martynov (1820) Apiaceae Lindl. (1836), nom. cons. Actinidiaceae Gilg & Werderm. (1825), nom. Apocynaceae Juss. (1789), nom. cons. cons. Apodanthaceae (R.Br.) Tiegh. ex. Takht. (1987) = Adoxaceae E.Mey. (1839), nom. cons. Rafflesiaceae Aegialitidaceae Lincz. (1968) = Plumbaginaceae Aponogetonaceae J.Agardh (1858), nom. cons. Aegicerataceae Blume (1833) = Myrsinaceae Apostasiaceae Lindl. (1833), nom. cons. = Aextoxicaceae Engl. & Gilg (1920), nom. cons. Orchidaceae Agapanthaceae F.Voigt (1850), optional syn- Miers (1853) = Olacaceae onym of Alliaceae Aquifoliaceae DC. ex. A.Rich. (1828), nom. cons. Agavaceae Dumort. (1829), nom. cons., optional Aquilariaceae R.Br. ex. DC. (1825) = synonym of Asparagaceae Thymelaeaceae Agdestidaceae Nakai (1942) = Phytolaccaceae Araceae Juss. (1789), nom. cons. Aizoaceae Martynov (1820), nom. cons. Aragoaceae D.Don (1835) = Plantaginaceae Akaniaceae Stapf (1912), nom. cons. Araliaceae Juss. (1789), nom. cons. Alangiaceae DC. (1827), nom. cons. = Cornaceae Aralidiaceae Philipson & B.C.Stone (1980) Aldrovandaceae Nakai (1949) = Droseraceae Arecaceae Schultz-Sch. (1832), nom. cons. Alismataceae Vent. (1799), nom. cons. Argophyllaceae (Engl.) Takht. 1987

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 427

Aristoteliaceae Dumort. (1829) = Elaeocarpaceae Bischofiaceae Airy Shaw (1964) = Phyllanthaceae Aristolochiaceae Juss. (1789), nom. cons. Bixaceae Kunth (1822), nom. cons. Asclepiadaceae Borkh. (1797), nom. cons. = Blandfordiaceae R.Dahlgren & Clifford Apocynaceae (1985) Asparagaceae Juss. (1789), nom. cons. Blepharocaryaceae Airy Shaw (1964) = Asphodelaceae Juss. (1789), optional synonym Anacardiaceae of Xanthorrhoeaceae Boerlagellaceae H.J.Lam (1925) = Sapotaceae Aspidistraceae Endl. (1841) = Ruscaceae, optional Bombacaceae Kunth (1822), nom. cons. = Mal- synonym of Asparagaceae vaceae Asteliaceae Dumort. (1829) Bonnetiaceae (Bartl.) L.Beauv. ex. Nakai (1948) Asteraceae Martynov (1820), nom. cons. Boopidaceae Cass. (1816) = Calyceraceae Asteranthaceae R.Knuth (1939), nom. cons. = Boraginaceae Juss. (1789), nom. cons. Lecythidaceae Boryaceae (Baker) M.W.Chase, Rudall & Conran Asteropeiaceae (Szyszyl.) Takht. ex. Reveal & (1997) Hoogland (1990) Brassicaceae Burnett (1835), nom. cons. Atherospermataceae R.Br. (1814) Bretschneideraceae Engl. & Gilg (1924), nom. Aucubaceae J.Agardh (1858), optional synonym cons., optional synonym of Akaniaceae of Garryaceae Brexiaceae Loudon (1830) = Celastraceae Austrobaileyaceae (Croizat) Croizat 1943, nom. Bromeliaceae Juss. (1789), nom. cons. cons. Brunelliaceae Engl. (1897), nom. cons. Averrhoaceae Hutch. (1959) = Oxalidaceae Bruniaceae Bercht. & J.Presl (1820), nom. cons. Avetraceae Takht. (1997) = Dioscoreaceae Brunoniaceae Dumort. (1829), nom. cons. = Avicenniaceae Endl. (1841) = Acanthaceae Goodeniaceae Balanitaceae Endl. (1841), nom. cons. = Buddlejaceae K.Wilh. (1910), nom. cons. = Zygophyllaceae Scrophulariaceae Balanitaceae Endl. (1841) = Zygophyllaceae Burchardiaceae Takht. (1996) = Colchicaceae Balanopaceae Benth. & Hook.f. (1880), nom. Burmanniaceae Blume (1827), nom. cons. cons. Burseraceae Kunth (1824), nom. cons. Balanophoraceae Rich. (1822), nom. cons., Butomaceae Mirb. (1804), nom. cons. unplaced Buxaceae Dumort. (1822), nom. cons. Balsaminaceae Bercht. & J.Presl (1820), nom. Byblidaceae (Engl. & Gilg) Domin 1922, nom. cons. cons. Bambusaceae Burnett (1835) = Poaceae Byttneriaceae R.Br. (1814), nom. cons. = Barbeuiaceae Nakai (1942) Malvaceae Barbeyaceae Rendle (1916), nom. cons. Cabombaceae Rich. ex. A.Rich. (1822), nom. Barclayaceae H.L.Li (1955) = Nymphaeaceae cons., optional synonym of Nymphaeaceae Barringtoniaceae F.Rudolphi (1830), nom. cons. = Cactaceae Juss. (1789), nom. cons. Lecythidaceae Caesalpiniaceae R.Br. (1814), nom. cons. = Basellaceae Raf. (1837), nom. cons. Fabaceae Bataceae Perleb (1838), nom. cons. Calceolariaceae (D.Don) Olmstead (2001) Baueraceae Lindl. (1830) = Cunoniaceae Calectasiaceae Endl. (1838) = Dasypogonaceae Baxteriaceae Takht. (1996) = Dasypogonaceae Calligonaceae Chalk (1985) = Polygonaceae Begoniaceae Bercht. & J.Presl (1820), nom. Callitrichaceae Bercht. & J.Presl (1820), nom. cons. cons. = Plantaginaceae Behniaceae Conran, M.W.Chase & Rudall (1997) Calochortaceae Dumort. (1829) = Liliaceae = Agavaceae, optional synonym of Asparagaceae Calycanthaceae Lindl. (1819), nom. cons. Bembiciaceae R.C.Keating & Takht. (1996) = Calyceraceae R.Br. ex. Rich. (1820), nom. Salicaceae cons. Berberidaceae Juss. (1789), nom. cons. Campanulaceae Juss. (1789), nom. cons. Berberidopsidaceae Takht. (1985) Campynemataceae Dumort. (1829) Berryaceae Doweld (2001) = Malvaceae Canacomyricaceae Baum.-Bod. ex. Doweld (2001) Bersamaceae Doweld = Melianthaceae = Myricaceae Berzeliaceae Nakai (1943) = Bruniaceae Canellaceae Mart. (1832), nom. cons. Betulaceae Gray (1821), nom. cons. Cannabaceae Martynov (1820), nom. cons. Biebersteiniaceae Endl. (1841) Cannaceae Juss. (1789), nom. cons. Bignoniaceae Juss. (1789), nom. cons. Canotiaceae Airy Shaw (1964) = Celastraceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 428 AGP II

Capparaceae Juss. (1789), nom. cons. = Cornaceae Dumort. (1829), nom. cons. Brassicaceae Corokiaceae Kapil ex. Takht. (1997) = Caprifoliaceae Juss. (1789), nom. cons. Argophyllaceae Cardiopteridaceae Blume (1847), nom. cons. Corsiaceae Becc. (1878), nom. cons. Caricaceae Dumort. (1829), nom. cons. Corylaceae Mirb. (1815), nom. cons. = Betulaceae Carlemanniaceae Airy Shaw (1964) Corynocarpaceae Engl. (1897), nom. cons. Carpinaceae Vest (1818) = Betulaceae Costaceae Nakai (1941) Carpodetaceae Fenzl (1841) = Rousseaceae Crassulaceae J.St.-Hil. (1805), nom. cons. Cartonemataceae Pichon (1946) = Commelinaceae Croomiaceae Nakai (193) = Stemonaceae Caryocaraceae Voigt (1845), nom. cons. Crossosomataceae Engl. (1897), nom. cons. Caryophyllaceae Juss. (1789), nom. cons. Cruciferae Juss. (1789), nom. alt. et cons. = Cassythaceae Bartl. ex. Lindl. (1833), nom. cons. = Brassicaceae Lauraceae Crypteroniaceae A.DC. (1868), nom. cons. Casuarinaceae R.Br. (1814), nom. cons. Ctenolophonaceae (H.Winkl.) Exell & Cecropiaceae C.C.Berg (1978) = Urticacaeae Mendonça (1951) Celastraceae R.Br. (1814), nom. cons. Cucurbitaceae Juss. (1789), nom. cons. Celtidaceae Link (1831), nom. cons. = Canna- Cunoniaceae R.Br. (1814), nom. cons. baceae Curtisiaceae (Engl.) Takht. (1987) Centrolepidaceae Endl. (1836), nom. cons. Cuscutaceae Bercht. & J.Presl (1820), nom. cons. Cephalotaceae Dumort. (1829), nom. cons. = Convolvulaceae Ceratophyllaceae Gray (1821), nom. cons. Cyananthaceae J.Agardh (1858) = Cercidiphyllaceae Engl. (1907), nom. cons. Campanulaceae Chenopodiaceae Vent. (1799), nom. cons. = Cyanastraceae Engl. (1900), nom. cons. = Amaranthaceae Tecophilaeaceae Chionographidaceae Takht. (1966) = Cyclanthaceae Poit. ex. A.Rich. (1824), nom. Melanthiaceae cons. Chloanthaceae Hutch. (1959) = Lamiaceae Cyclocheilaceae Marais (1981) = Orobanchaceae Chloranthaceae R.Br. ex. Sims (1820), nom. Cymodoceaceae N.Taylor (1909), nom. cons. cons. Cynomoriaceae Lindl. (1833), nom. cons., Chrysobalanaceae R.Br. (1818), nom. cons. unplaced Cichoriaceae Juss. (1789), nom. cons. = Asteraceae Cyperaceae Juss. (1789), nom. cons. Circaeasteraceae Hutch. (1926), nom. cons. Cyphiaceae A.DC. (1839) = Lobeliaceae, optional Cistaceae Juss. (1789), nom. cons. synonym of Campanulaceae Cleomaceae Horan. (1834) = Brassicaceae Cyphocarpaceae (Miers) Reveal & Hoogl. (1996) = Clethraceae Klotzsch (1851), nom. cons. Lobeliaceae, optional synonym of Campanu- Clusiaceae Lindl. (1836), nom. cons. laceae Vest (1818), nom. cons. = Rutaceae Cypripediaceae Lindl. (1833) = Orchidaceae Cobaeaceae D.Don (1824) = Polemoniaceae Cyrillaceae Endl. (1841), nom. cons. Cochlospermaceae Planch. (1847), nom. cons., Cytinaceae A.Rich. (1824), unplaced optional synonym of Bixaceae Dactylanthaceae (Engl.) Takht. (1987) = Colchicaceae DC. (1804), nom. cons. Balanophoraceae Columelliaceae D.Don (1828), nom. cons. Daphniphyllaceae Müll.-Arg. (1869), nom. cons. Combretaceae R.Br. (1810), nom. cons. Dasypogonaceae Dumort. (1829) Commelinaceae Mirb. (1804), nom. cons. Datiscaceae Bercht. & J.Presl (1820), nom. cons. Compositae Giseke (1792), nom. alt. et cons. = Davidiaceae H.L.Li (1955) = Cornaceae Asteraceae Davidsoniaceae Bange (1952) = Cunoniaceae Connaraceae R.Br. (1818), nom. cons. Decaisneaceae (Takht. ex. H. N. Qin) Loconte Conostylidaceae (Benth.) Takht. (1987) = (1995) = Lardizabalaceae Haemodoraceae Degeneriaceae I.W.Bailey & A.C.Sm. (1942), Convallariaceae Horan. (1834) = Ruscaceae, nom. cons. optional synonym of Asparagaceae Desfontainiaceae Endl. (1841), nom. cons., Convolvulaceae Juss. (1789), nom. cons. optional synonym of Columelliacae Cordiaceae R.Br. ex. Dumort. (1829), nom. cons. = Dialypetalanthaceae Rizzini & Occhioni (1948), Boraginaceae nom. cons. = Rubiaceae Coriariaceae DC. (1824), nom. cons. Dianellaceae Salisb. (1866) = Hemerocallidaceae, Coridaceae J.Agardh (1858) = Myrsinaceae optional synonym of Xanthorrhoeaceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 429

Diapensiaceae Lindl. (1836), nom. cons. Eriospermaceae Endl. (1841) = Ruscaceae, Dichapetalaceae Baill. (1886), nom. cons., optional synonym of Asparagaceae optional synonym of Chrysobalanaceae Erycibaceae Endl. ex. Meisn. (1840) = Dichondraceae Dumort. (1829) = Convolvulaceae Convolvulaceae Diclidantheraceae J. Agardh (1858), nom. cons. = Erythropalaceae Pilg. & K.Krause (1914), nom. Polygalaceae cons. = Olacaceae Didiereaceae Radlk. (1896), nom. cons. Erythroxylaceae Kunth (1822), nom. cons. Didymelaceae Leandri (1937), optional syn- Escalloniaceae R.Br. ex. Dumort. (1829), nom. onym of Buxaceae cons. Diegodendraceae Capuron (1964), optional syn- Eschscholziaceae Ser. (1847) = Papaveraceae onym of Bixaceae Eucommiaceae Engl. (1909), nom. cons. Diervillaceae (Raf.) Pyck (1998), optional syn- Eucryphiaceae Endl. (1841), nom. cons. = onym of Caprifoliaceae Cunoniaceae Dilleniaceae Salisb. (1807), nom. cons. Euphorbiaceae Juss. (1789), nom. cons. Dionaeaceae Raf. (1837) = Droseraceae Euphroniaceae Marc.-Berti (1989), optional Dioncophyllaceae Airy Shaw (1952), nom. cons. synonym of Chrysobalanaceae Dioscoreaceae R.Br. (1810), nom. cons. Eupomatiaceae Endl. (1841), nom. cons. Dipentodontaceae Merr. (1941), nom. cons., Eupteleaceae K.Wilh. (1910), nom. cons. unplaced Euryalaceae J.Agardh (1858) = Nymphaeaceae Dipsacaceae Juss. (1789), nom. cons., optional Eustrephaceae Chupov (1994) = Laxmanniaceae, synonym of Caprifoliaceae optional synonym of Asparagaceae Dipterocarpaceae Blume (1825), nom. cons. Exbucklandiaceae Reveal & Doweld (1999) = Dirachmaceae Hutch. (1959) Hamamelidaceae Donatiaceae B.Chandler (1911), nom. cons., Exocarpaceae J.Agardh (1858) = Santalaceae optional synonym of Stylidiaceae Fabaceae Lindl. (1836), nom. cons. Doryanthaceae R.Dahlgren & Clifford (1985) Fagaceae Dumort. (1829), nom. cons. Dracaenaceae Salisb. (1866) = Ruscaceae, Flacourtiaceae Rich. (1815-1816), nom. cons. = optional synonym of Asparagaceae Salicaceae Droseraceae Salisb. (1808), nom. cons. Flagellariaceae Dumort. (1829), nom. cons. Drosophyllaceae Chrtek, Slavíková & Stud- Flindersiaceae C.T.White ex. Airy Shaw (1964) = nicka (1989) Rutaceae Duabangaceae Takht. (1986) = Lythraceae Foetidiaceae Airy Shaw (1964) = Lecythidaceae Duckeodendraceae Kuhlm. (1950) = Solanaceae Fouquieriaceae DC. (1828), nom. cons. Dysphaniaceae (Pax) Pax (1927), nom. cons. = Francoaceae A.Juss. (1832), nom. cons., optional Amaranthaceae synonym of Melianthaceae Ebenaceae Gürke (1891), nom. cons. Frangulaceae DC. (1805) = Rhamnaceae Ecdeiocoleaceae D.F.Cutler & Airy Shaw (1965) Frankeniaceae Desv. (1817), nom. cons. Ehretiaceae Mart. (1827), nom. cons. = Fumariaceae Bercht. & J.Presl (1820), nom. Boraginaceae cons., optional synonym of Papaveraceae Elaeagnaceae Juss. (1789), nom. cons. Garryaceae Lindl. (1834), nom. cons. Elaeocarpaceae Juss. ex. DC. (1816), nom. cons. Geissolomataceae Endl. (1841) Elatinaceae Dumort. (1829), nom. cons. Geitonoplesiaceae R.Dahlgren ex. Conran (1994) Ellisiophyllaceae Honda (1930) = Plantaginaceae = Hemerocallidaceae, optional synonym of Emblingiaceae Airy Shaw (1964) Xanthorrhoeaceae Emottaceae Tiegh. (1899) = Icacinaceae Gelsemiaceae (G.Don) Struwe & V.A.Albert Empetraceae Bercht. & J.Presl (1820), nom. cons. (1995) = Ericaceae Geniostomaceae Struwe & V.A.Albert (1995) = Engelhardtiaceae Reveal & Doweld (1999) = Loganiaceae Juglandaceae Gentianaceae Juss. (1789), nom. cons. Epacridaceae R.Br. (1810), nom. cons. = Ericaceae Geosiridaceae Jonker (1939), nom. cons. = Epimediaceae Menge (1839) = Berberidaceae Iridaceae Tiegh. ex. Nakai (1952) = Geraniaceae Juss. (1789), nom. cons. Santalaceae Gesneriaceae Rich. & Juss. ex. DC. (1816), nom. Eremosynaceae Dandy (1959) cons. Ericaceae Juss. (1789), nom. cons. Gisekiaceae Nakai (1942) Eriocaulaceae Martynov (1820), nom. cons. Glaucidiaceae Tamura (1972) = Ranunculaceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 430 AGP II

Globulariaceae DC. (1805), nom. cons. = Heteropyxidaceae Engl. & Gilg (1920), nom. Plantaginaceae cons. Goetzeaceae Miers ex. Airy Shaw (1964) = Himantandraceae Diels (1917), nom. cons. Solanaceae Hippocastanaceae A.Rich. (1823), nom. cons. = Gomortegaceae Reiche (1896), nom. cons. Sapindaceae Gonystylaceae Tiegh. (1896), nom. cons. = Hippocrateaceae Juss. (1811), nom. cons. = Thymelaeaceae Celastraceae Goodeniaceae R.Br. (1810), nom. cons. Hippuridaceae Vest (1818), nom. cons. = Goupiaceae Miers (1862) Plantaginaceae Gramineae Juss. (1789), nom. alt. et cons. = Hopkinsiaceae B.G.Briggs & L.A.S.Johnson Poaceae (2000) = Anarthriaceae Greyiaceae Hutch. (1926), nom. cons. = Hoplestigmataceae Gilg (1924), nom. cons., Melianthaceae unplaced Griseliniaceae J.R.Forst. & G.Forst. ex. A.Cunn. Hortoniaceae (J.R.Perkins & Gilg) A.C.Sm. (1971) (1839) = Monimiaceae Gronoviaceae Endl. (1841) = Loasaceae Hostaceae B.Mathew (1988) = Agavaceae, Grossulariaceae DC. (1805), nom. cons. optional synonym of Asparagaceae Grubbiaceae Endl. (1839), nom. cons. Huaceae A.Chev. (1947) Gunneraceae Meisn. (1842), nom. cons. Huerteaceae Doweld (2001) = Tapisciaceae Gustaviaceae Burnett (1835) = Lecythidaceae Hugoniaceae Arn. (1834) = Linaceae Guttiferae Juss. (1789), nom. alt. et cons. = Humbertiaceae Pichon (1947), nom. cons. = Clusiaceae Convolvulaceae Gyrocarpaceae Dumort. (1829) = Hernandiaceae Humiriaceae A.Juss. (1829), nom. cons. Gyrostemonaceae Endl. (1841), nom. cons. Hyacinthaceae Batsch ex. Borkh. (1797), Hachetteaceae Doweld (2001) = - optional synonym of Asparagaceae ceae Hydatellaceae U.Hamann (1976) Haemodoraceae R.Br. (1810), nom. cons. Hydnoraceae C.Agardh (1821), nom. cons. Halesiaceae D.Don (1828) = Styracaceae Hydrangeaceae Dumort. (1829), nom. cons. Halophilaceae J.Agardh (1858) = Hydrocharita- Hydrastidaceae Martynov (1820) = ceae Ranunculaceae Halophytaceae A.Soriano (1984) Hydrocharitaceae Juss. (1789), nom. cons. Haloragaceae R.Br. (1814), nom. cons. Hydrocotylaceae (Link) N.Hyl. (1945), nom. cons. Hamamelidaceae R.Br. (1818), nom. cons. = Araliaceae Hanguanaceae Airy Shaw (1964) Hydroleaceae Bercht. & J.Presl (1820) Hectorellaceae Philipson & Skipw. (1961) = Hydropeltidaceae (DC.) Dumort. (1822) = Portulacaceae Nymphaeaceae Heliamphoraceae Chrtek, Slavíková & Studnicka Hydrophyllaceae R.Br. (1817), nom. cons. = (1992) = Sarraceniaceae Boraginaceae Heliconiaceae Nakai (1941) Hydrostachyaceae (Tul.) Engl. (1894), nom. Heliotropiaceae Schrad. (1819), nom. cons. = cons. Boraginaceae Hymenocardiaceae Airy Shaw (1964) = Helleboraceae Vest (1818) = Ranunculaceae Phyllanthaceae Heloniadaceae J.Agardh (1858) = Melanthiaceae Hypecoaceae Willk. & Lange (1880) = Helosaceae (Schott & Endl.) Bromhead (1840) = Papaveraceae Balanophoraceae Hypericaceae Juss. (1789), nom. cons. Helwingiaceae Decne. (1836) Hypoxidaceae R.Br. (1814), nom. cons. Hemerocallidaceae R.Br. (1810), optional syn- Hypseocharitaceae Wedd. (1861), optional syn- onym of Xanthorrhoeaceae onym of Geraniaceae Hemimeridaceae Doweld (2001) = Plantaginaceae Icacinaceae (Benth.) Miers (1851), nom. cons. Henriqueziaceae Bremek. (1957) = Rubiaceae Idiospermaceae S.T.Blake (1972) = Hernandiaceae Bercht. & J.Presl (1820), nom. Calycanthaceae cons. Illecebraceae R.Br. (1810), nom. cons. = Herreriaceae Endl. (1841) = Agavaceae, optional Caryophyllaceae synonym of Asparagaceae Illiciaceae A.C.Sm. (1947), nom. cons., optional Hesperocallidaceae Traub (1972), optional syn- synonym of Schisandraceae onym of Asparagaceae Iridaceae Juss. (1789), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 431

Irvingiaceae (Engl.) Exell & Mendonça (1951), Leoniaceae A.DC. (1844) = Violaceae nom. cons. Leonticaceae Bercht. & J. Presl (1820) = Isophysidaceae (Hutch.) F.A.Barkley (1948) = Berberidaceae Iridaceae Lepidobotryaceae J.Léonard (1950), nom. cons. Iteaceae J.Agardh (1858), nom. cons. Lepuropetalaceae Nakai (1943), optional syn- Ixerbaceae Griseb. (1854) onym of Parnassiaceae Ixioliriaceae Nakai (1943) Lilaeaceae Dumort. (1829), nom. cons. = Ixonanthaceae Planch. ex. Miq. (1858), nom. Juncaginaceae cons. Liliaceae Juss. (1789), nom. cons. Japonoliriaceae Takht. (1996) = Petrosaviaceae Limnanthaceae R.Br. (1833), nom. cons. Johnsoniaceae Lotsy (1911) = Hemerocallidaceae, Limnocharitaceae Takht. ex. Cronquist (1981) optional synonym of Xanthorrhoeaceae Limoniaceae Ser. (1851), nom. cons. = Joinvilleaceae Toml. & A.C.Sm. (1970) Plumbaginaceae Juglandaceae DC. ex. Perleb (1818), nom. cons. Linaceae DC. ex. Perleb (1818), nom. cons. Julianiaceae Hemsl. (1906), nom. cons. = Lindenbergiaceae Doweld (2001) = Oroban- Anacardiaceae chaceae Juncaceae Juss. (1789), nom. cons. Linnaeaceae (Raf.) Backlund (1998), optional Juncaginaceae Rich. (1808), nom. cons. synonym of Caprifoliaceae Justiciaceae Raf. (1838) = Acanthaceae Liriodendraceae F.A.Barkley (1975) = Kaliphoraceae Takht. (1996) = Montiniaceae Magnoliaceae Kiggelariaceae Link (1831) = Achariaceae Lissocarpaceae Gilg (1924), nom. cons. = Kingdoniaceae A.S.Foster ex. Airy Shaw (1964), Ebenaceae optional synonym of Circaeasteraceae Loasaceae Juss. (1804), nom. cons. Kirengeshomaceae Nakai (1943) = Lobeliaceae Juss. (1813), nom. cons., optional Hydrangeaceae synonym of Campanulaceae Kirkiaceae (Engl.) Takht. (1967) Loganiaceae R.Br. (1814), nom. cons. Koeberliniaceae Engl. (1895), nom. cons. Lomandraceae Lotsy (1911) = Laxmanniaceae, Krameriaceae Dumort. (1829), nom. cons., optional synonym of Asparagaceae optional synonym of Zygophyllaceae Lophiolaceae Nakai (1943) = Nartheciaceae Labiatae Juss. (1789), nom. alt. et cons. = Lophiraceae Loud. (1830) = Ochnaceae Lamiaceae Lophophytaceae (Schott & Endl.) Bromhead Lacandoniaceae E.Martínes & Ramos (1989) = (1840) = Balanophoraceae Triuridaceae Lophopyxidaceae (Engl.) H.Pfeiff. (1951) Lacistemataceae Mart. (1826), nom. cons. Loranthaceae Juss. (1808), nom. cons. Lactoridaceae Engl. (1888), nom. cons. Lowiaceae Ridl. (1924), nom. cons. Lamiaceae Martynov (1820), nom. cons. Luxemburgiaceae Soler. (1908) = Ochnaceae Lanariaceae H.Huber ex. R.Dahlgren & Luzuriagaceae Lotsy (1911) A.E.vanWyk (1988) Lyginiaceae B.G.Briggs & L.A.S.Johnson (2000) = Langsdorffiaceae Tiegh. ex. Pilger (1914) = Anarthriaceae Balanophoraceae Lythraceae J.St.-Hil. (1805), nom. cons. Lardizabalaceae R.Br. (1821), nom. cons. Mackinlayaceae Doweld (2001) Lauraceae Juss. (1789), nom. cons. Maesaceae (A.DC.) Anderb., B.Ståhl & Källersjö Laxmanniaceae Bubani (1901-1902), optional (2000) synonym of Asparagaceae Magnoliaceae Juss. (1789), nom. cons. Lecythidaceae A.Rich. (1825), nom. cons. Malaceae Small (1903), nom. cons. = Rosaceae Ledocarpaceae Meyen (1834) Malesherbiaceae D.Don (1827), nom. cons., Leeaceae Dumort. (1829), nom. cons. = Vitaceae optional synonym of Passifloraceae Leguminosae Juss. (1789), nom. alt. et cons. = Malpighiaceae Juss. (1789), nom. cons. Fabaceae Malvaceae Juss. (1789), nom. cons. Leitneriaceae Benth. & Hook.f. (1880), nom. cons. Marantaceae R.Br. (1814), nom. cons. = Simaroubaceae Marcgraviaceae Juss. ex. DC. (1816), nom. cons. Lemnaceae Martynov (1820), nom. cons. = Martyniaceae Horan. (1847), nom. cons. Araceae Mastixiaceae Calest. (1905) = Cornaceae Lennoaceae Solms (1870), nom. cons. = Maundiaceae Nakai (1943) = Juncaginaceae Boraginaceae Mayacaceae Kunth (1842), nom. cons. Lentibulariaceae Rich. (1808), nom. cons. Medeolaceae (S.Watson) Takht. (1987) = Liliaceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 432 AGP II

Medusagynaceae Engl. & Gilg (1924), nom. Myrtaceae Juss. (1789), nom. cons. cons., optional synonym of Ochnaceae Mystropetalaceae Hook.f. (1853) = Medusandraceae Brenan (1952), nom. cons., Balanophoraceae unplaced Najadaceae Juss. (1789), nom. cons. = Melanophyllaceae Takht. ex. Airy Shaw (1972) Hydrocharitaceae Melanthiaceae Batsch ex. Borkh. (1796), nom. Nandinaceae Horan. (1834) = Berberidaceae cons. Napoleonaceae A.Rich. (1827) = Lecythidaceae Melastomataceae Juss. (1789), nom. cons. Nartheciaceae Fr. ex. Bjurzon (1846) Meliaceae Juss. (1789), nom. cons. Naucleaceae Wernh. (1911) = Rubiaceae Melianthaceae Bercht. & J.Presl (1820), nom. Nectaropetalaceae (H.Winkl.) Exell & Mendonça cons. (1951) = Erythroxylaceae Meliosmaceae Endl. (1841) = Sabiaceae Nelsoniaceae Sreem. (1977) = Acanthaceae Memecylaceae DC. (1827), nom. cons., optional Nelumbonaceae Bercht. & J.Presl (1820), nom. synonym of Melastomataceae cons. Mendonciaceae Bremek. (1954) = Acanthaceae Nemacladaceae Nutt. (1842) = Lobeliaceae, Menispermaceae Juss. (1789), nom. cons. optional synonym of Campanulaceae Menyanthaceae Bercht. & J.Presl (1820), nom. Nepenthaceae Bercht. & J.Presl (1820), nom. cons. cons. Mesembryanthemaceae Fenzl (1836), nom. cons. = Nesogenaceae Marais (1981) = Orobanchaceae Aizoaceae Neuradaceae Link (1831), nom. cons. Metteniusaceae H.Karst. ex. Schnizl. (1860-1870), Neuwiediaceae (Burns-Bal. & V.A.Funk) unplaced R.Dahlgren ex. Reveal & Hoogland (1991) = Meyeniaceae Sreem. (1977) = Acanthaceae Orchidaceae Milulaceae Traub (1972) = Alliaceae Nitrariaceae Bercht. & J.Presl (1820), nom. Mimosaceae R.Br. (1814), nom. cons. = Fabaceae cons. Misodendraceae J.Agardh (1858), nom. Nolanaceae Dumort. (1829), nom. cons. = cons. Solanaceae Mitrastemonaceae Makino (1911), nom. cons., Nolinaceae Nakai (1943) = Ruscaceae, optional unplaced synonym of Asparagaceae Molluginaceae Bartl. (1825), nom. cons. Nothofagaceae Kuprian (1962) Monimiaceae Juss. (1809), nom. cons. Nupharaceae A.Kern. (1891) = Nymphaeaceae Monotaceae Kosterm. (1989) = Dipterocarpaceae Nyctaginaceae Juss. (1789), nom. cons. Monotropaceae Nutt. (1818), nom. cons. = Nyctanthaceae J.Agardh (1858) = Oleaceae Ericaceae Nymphaeaceae Salisb. (1805), nom. cons. Montiniaceae Nakai (1943), nom. cons. Nypaceae Brongn. ex. Le Maout & Decne. (1868) = Moraceae Link (1831), nom. cons. Arecaceae Morinaceae Raf. (1820), optional synonym of Nyssaceae Juss. ex. Dumort. (1829), nom. cons., Caprifoliaceae optional synonym of Cornaceae Moringaceae Martynov (1820), nom. cons. Ochnaceae DC. (1811), nom. cons. Mouririaceae Gardner (1840) = Memecylaceae, Soler. (1908), nom. cons. = optional synonym of Melastomataceae Olacaceae Moutabeaceae Endl. (1841) = Polygalaceae Oftiaceae Takht. & Reveal (1993) = Scrophulari- Muntingiaceae C.Bayer, M.W.Chase & M.F.Fay aceae (1998) Olacaceae R.Br. (1818), nom. cons. Musaceae Juss. (1789), nom. cons. Oleaceae Hoffmanns. & Link (1809), nom. Myodocarpaceae Doweld (2001) cons. Myoporaceae R.Br. (1810), nom. cons. = Oliniaceae Arn. (1839), nom. cons. Scrophulariaceae Onagraceae Juss. (1789), nom. cons. Myricaceae A.Rich. ex. Kunth (1817), nom. Oncothecaceae Kobuski ex. Airy Shaw (1964) cons. Ophiopogonaceae Endl. (1841) = Ruscaceae, Myriophyllaceae Schultz Sch. (1832) = optional synonym of Asparagaceae Haloragaceae Opiliaceae Valeton (1886), nom. cons. Myristicaceae R.Br. (1810), nom. cons. Orchidaceae Juss. (1789), nom. cons. Myrothamnaceae Nied. (1891), nom. cons., Orobanchaceae Vent. (1799), nom. cons. optional synonym of Gunneraceae Orontiaceae Bartl. (1830) = Araceae Myrsinaceae R.Br. (1810), nom. cons. Oxalidaceae R.Br. (1818), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 433

Oxystylidaceae Hutch. (1969) = Brassicaceae Phytolaccaceae R.Br. (1818), nom. cons. Pachysandraceae J.Agardh (1858) = Buxaceae Picramniaceae Fernando & Quinn (1995) Paeoniaceae Raf. (1815), nom. cons. Picrodendraceae Small (1917), nom. cons. Paivaeusaceae A. Meeuse (1990) = Piperaceae Bercht. & J. Presl (1820), nom. cons. Picrodendraceae Pistiaceae Rich. ex. C.Agardh (1822) = Araceae Palmae Juss. (1789), nom. alt. et cons. = Arecaceae Pittosporaceae R.Br. (1814), nom. cons. Pandaceae Engl. & Gilg (1912-1913), nom. cons. Plagiopteraceae Airy Shaw (1964) = Celastraceae Pandanaceae R.Br. (1810), nom. cons. Plantaginaceae Juss. (1789), nom. cons. Pangiaceae Endl. (1841) = Achariaceae Platanaceae T.Lestib. (1826), nom. cons., Papaveraceae Juss. (1789), nom. cons. optional synonym of Proteaceae Papilionaceae Giseke (1792), nom. alt. et cons. = Platycaryaceae Nakai ex. Doweld (2001) = Fabaceae Juglandaceae Paracryphiaceae Airy Shaw (1964) Platyspermataceae Doweld (2001) = Escalloni- Parnassiaceae Martynov (1820), nom. cons. aceae Paronychiaceae Juss. (1815) = Caryophyllaceae Platystemonaceae (Spach) Lilja (1870) = Paropsiaceae Dumort. (1829) = Passifloraceae Papaveraceae Passifloraceae Juss. ex. Roussel (1806), nom. Plocospermataceae Hutch. (1973) cons. Plumbaginaceae Juss. (1789), nom. cons. Paulowniaceae Nakai (1949) Plumeriaceae Horan. (1834) = Apocynaceae Pedaliaceae R.Br. (1810), nom. cons. Poaceae (R.Br.) Barnh. (1895), nom. cons. Peganaceae (Engl.) Tieghm. ex. Takht. (1987), Podoaceae Baill. ex. Franch. (1889) = optional synonym of Nitrariaceae Anacardiaceae Pellicieraceae (Triana & Planch.) L.Beauvis. ex. Podophyllaceae DC. (1817), nom. cons. = Bullock (1959), optional synonym of Berberidaceae Tetrameristaceae Podostemaceae Kunth (1816), nom. cons. Penaeaceae Sweet ex. Guill. (1828), nom. cons. Polemoniaceae Juss. (1789), nom. cons. Pennantiaceae J.Agardh (1858) Poliothyrsidaceae (G.S.Fan) Doweld (2001) = Pentadiplandraceae Hutch. & Dalziel (1928) Salicaceae Pentaphragmataceae J.Agardh (1858), nom. Polpodaceae Nakai (1942) = Molluginaceae cons. Polygalaceae Hoffmanns. & Link (1809), nom. Pentaphylacaceae Engl. (1897), nom. cons. cons. Pentastemonaceae Duyfjes (1992) = Stemonaceae Polygonaceae Juss. (1789), nom. cons. Penthoraceae Rydb. ex. Britt. (1901), nom. Polygonanthaceae Croizat (1943) = cons., optional synonym of Haloragaceae Anisophylleaceae Peperomiaceae A.C.Sm. (1981) = Piperaceae Polyosmaceae Blume (1851) Klotzsch = Euphorbiaceae Pontederiaceae Kunth (1816), nom. cons. Peridiscaceae Kuhlm. (1950), nom. cons. Porantheraceae (Pax) Hurus. (1954) = Periplocaceae (Kostel.) Schltr. (1905), nom. cons. = Phyllanthaceae Apocynaceae Portulacaceae Juss. (1789), nom. cons. Peripterygiaceae G. King (1895) = Portulacariaceae (Fenzl) Doweld (2001) = Cardiopteridaceae Portulacaceae Petermanniaceae Hutch. (1934), nom. cons. = Posidoniaceae Hutch. (1934), nom. cons. Colchicaceae Potaliaceae Mart. (1827) = Gentianaceae C.Agardh (1824) = Phytolaccaceae Potamogetonaceae Rchb. (1828), nom. cons. Petrosaviaceae Hutch. (1934), nom. cons. Pottingeriaceae (Engl.) Takht. (1987), unplaced Phellinaceae (Loes.) Takht. (1967) Primulaceae Batsch ex. Borkh. (1797), nom. cons. Philadelphaceae Martynov (1820) = Prioniaceae S.L.Munro & H.P.Linder (1998) = Hydrangeaceae Thurniaceae Philesiaceae Dumort. (1829), nom. cons. Prionotaceae Hutch. (1969) = Ericaceae Philydraceae Link (1821), nom. cons. Proteaceae Juss. (1789), nom. cons. Phormiaceae J.Agardh (1858) = Hemerocalli- Pseudanthaceae Endl. (1839) = Picrodendraceae daceae, optional synonym of Xanthorrhoeaceae Psiloxylaceae Croizat (1960) Phrymaceae Schauer (1847), nom. cons. Ptaeroxylaceae J.-F.Leroy (1960) = Rutaceae Phyllanthaceae Martynov (1820) Pteridophyllaceae (Murb.) Nakai ex. Reveal & Phyllonomaceae Small (1905) Hoogland (1991), optional synonym of Physenaceae Takht. (1985) Papaveraceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 434 AGP II

Pterostemonaceae Small (1905), nom. cons., Samolaceae Raf. (1820) = Theophrastaceae optional synonym of Iteaceae Samydaceae Vent. (1799) = Salicaceae Punicaceae Horan. (1834), nom. cons. = Saniculaceae (Burnett) A.Löve & D.Löve (1974) = Lythraceae Apiaceae Putranjivaceae Endl. (1841) Sansevieriaceae Nakai (1936) = Ruscaceae, Pyrolaceae Lindl. (1829), nom. cons. = Ericaceae optional synonym of Asparagaceae Quiinaceae Choisy ex. Engl. (1888), nom. cons., Santalaceae R.Br. (1810), nom. cons. optional synonym of Ochnaceae Sapindaceae Juss. (1789), nom. cons. Quillajaceae D.Don (1831) Sapotaceae Juss. (1789), nom. cons. Quintiniaceae Doweld (2001) = Sphenostemo- Sarcobataceae Behnke (1997) naceae Sarcolaenaceae Caruel (1881), nom. cons. Rafflesiaceae Dumort. (1829), nom. cons., Sarcophytaceae A.Kern. (1891) = unplaced Balanophoraceae Ranunculaceae Juss. (1789), nom. cons. Sarcospermataceae H.J.Lam (1925), nom. cons. = Ranzaniaceae (Kumaz. & Terab.) Takht. (1994) = Sapotaceae Berberidaceae Sargentodoxaceae Stapf ex. Hutch. (1926), nom. Rapateaceae Dumort. (1829), nom. cons. cons. = Lardizabalaceae Reaumuriaceae Ehrenb. ex. Lindl. (1830) = Sarraceniaceae Dumort. (1829), nom. cons. Tamaricaceae Saurauiaceae Griseb. (1854), nom. cons. = Resedaceae Bercht. & J.Presl (1820), nom. cons. Actinidiaceae Restionaceae R.Br. (1810), nom. cons. Saururaceae Martynov (1820), nom. cons. Retziaceae Bartl. (1830) = Stilbaceae Sauvagesiaceae Dumort. (1829) = Ochnaceae Rhabdodendraceae Prance (1968) Saxifragaceae Juss. (1789), nom. cons. Rhamnaceae Juss. (1789), nom. cons. Scaevolaceae Lindl. (1830) = Goodeniaceae Rhinanthaceae Vent. (1799) = Orobanchaceae Scepaceae Lindl. (1836) = Phyllanthaceae Rhipogonaceae Conran & Clifford (1985) Scheuchzeriaceae F.Rudolphi (1830), nom. Rhizophoraceae Pers. (1807), nom. cons., cons. optional synonym of Erythroxylaceae Schisandraceae Blume (1830), nom. cons. Rhodoleiaceae Nakai (1943) = Hamamelidaceae Schlegeliaceae (A.H.Gentry) Reveal (1996) Rhoipteleaceae Hand.-Mazz. (1932), nom. cons., Sclerophylacaceae Miers (1848) = Solanaceae optional synonym of Juglandaceae Scoliopaceae Takht. (1996) = Liliaceae Rhopalocarpaceae Hemsl. ex. Takht. (1987) = Scrophulariaceae Juss. (1789), nom. cons. Sphaerosepalaceae Scybaliaceae A.Kern. (1891) = Balanophoraceae Rhynchocalycaceae L.A.S.Johnson & Scyphostegiaceae Hutch. (1926), nom. cons. = B.G.Briggs (1985) Salicaceae Rhynchothecaceae Endl. (1841) = Ledocarpaceae Scytopetalaceae Engl. (1897), nom. cons. = Roridulaceae Bercht. & J.Presl (1820), nom. cons. Lecythidaceae Rosaceae Juss. (1789), nom. cons. Selaginaceae Choisy (1823), nom. cons. = Rousseaceae DC. (1839) Scrophulariaceae Roxburghiaceae Wall. (1832) = Stemonaceae Sesamaceae R.Br. ex. Bercht. & J.Presl (1820) = Rubiaceae Juss. (1789), nom. cons. Pedaliaceae Ruppiaceae Horan. (1834), nom. cons. Sesuviaceae Horan. (1834) = Aizoaceae Ruscaceae Spreng. (1826), nom. cons., optional Setchellanthaceae Iltis (1999) synonym of Asparagaceae Simaroubaceae DC. (1811), nom. cons. Rutaceae Juss. (1789), nom. cons. Simmondsiaceae Tiegh. (1899) Sabiaceae Blume (1851), nom. cons. Sinofranchetiaceae Doweld (2001) = Lardiza- Saccifoliaceae Maguire & Pires (1978) = balaceae Gentianaceae Siparunaceae (A.DC.) Schodde (1970) Salazariaceae F.A.Barkley (1975) = Lamiaceae Siphonodontaceae (Croizat) Gagnep. & Tardieu Salicaceae Mirb. (1815), nom. cons. ex. Tardieu (1951), nom. cons. = Celastraceae Salicorniaceae Martynov (1820) = Amaranthaceae Sladeniaceae Airy Shaw (1964), optional Salpiglossidaceae Hutch. (1969) = Solanaceae synonym of Pentaphylacaceae Salsolaceae Menge (1839) = Amaranthaceae Smilacaceae Vent. (1799), nom. cons. Salvadoraceae Lindl. (1836), nom. cons. Solanaceae Juss. (1789), nom. cons. Sambucaceae Batsch ex. Borkh. (1797) = Engl. (1897), nom. cons. = Adoxaceae Lythraceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 CLASSIFICATION OF ORDERS AND FAMILIES OF FLOWERING PLANTS 435

Sparganiaceae Hanin (1811), nom. cons. Tetradiclidaceae (Engl.) Takht. (1986), an Spergulaceae Bartl. (1825) = Caryophyllaceae optional synonym of Nitrariaceae Sphaerosepalaceae (Warb.) Tiegh. ex. Bullock Tetragoniaceae Link (1831), nom. cons. = (1959) Aizoaceae Sphenocleaceae (Lindl.) Baskerville (1839), Tetramelaceae Airy Shaw (1964) nom. cons. Tetrameristaceae Hutch. (1959) Sphenostemonaceae P.Royen & Airy Shaw Tetrastylidiaceae Tiegh. (1899) = Olacaceae (1972) Thalassiaceae Nakai (1943) = Hydrocharitaceae Spigeliaceae Mart. (1827) = Loganiaceae Thalictraceae Raf. (1815) = Ranunculaceae Spiraeaceae Bertuch (1801) = Rosaceae Theaceae Mirb. ex. Ker Gawl. (1816), nom. cons. Stachyuraceae J.Agardh (1858), nom. cons. Theligonaceae Dumort. (1829), nom. cons. = Stackhousiaceae R.Br. (1814), nom. cons. = Rubiaceae Celastraceae Themidaceae Salisb. (1866), optional synonym Staphyleaceae Martynov (1820), nom. cons. of Asparagaceae Staticaceae Cassel (1817) = Plumbaginaceae Theophrastaceae Link (1829), nom. cons. Stegnospermataceae Nakai (1942) Thismiaceae J.Agardh (1858), nom. cons. = Stemonaceae Caruel (1878), nom. cons. Burmanniaceae Stemonuraceae (M.Roem.) Kårehed (2001) Thomandersiaceae Sreem. (1977) = Acanthaceae Stenomeridaceae J.Agardh (1858) = Thunbergiaceae (Dumort.) Lilja (1870) = Dioscoreaceae Acanthaceae Sterculiaceae Vent. ex. Salisb. (1807), nom. cons. = Thurniaceae Engl. (1907), nom. cons. Malvaceae Thymelaeaceae Juss. (1789), nom. cons. Stilaginaceae C.Agardh (1824) = Euphorbiaceae Ticodendraceae Gómez-Laur. & L.D.Gómez Stilbaceae Kunth (1831), nom. cons. (1991) Strasburgeriaceae Soler. (1908), nom. cons. Tiliaceae Juss. (1789), nom. cons. = Malvaceae Strelitziaceae Hutch. (1934), nom. cons. Tofieldiaceae Takht. (1995) Streptochaetaceae Nakai (1943) = Poaceae Torricelliaceae Hu (1934) Strychnaceae DC. ex. Perleb (1818) = Loganiaceae Tovariaceae Pax (1891), nom. cons. Stylidiaceae R.Br. (1810), nom. cons. Trapaceae Dumort. (1829), nom. cons. = Stylobasiaceae J.Agardh (1858) = Surianaceae Lythraceae Stylocerataceae (Pax) Takht. ex. Reveal & Trapellaceae Honda & Sakis. (1930) = Pedaliaceae Hoogland (1990) = Buxaceae Tremandraceae R.Br. ex. DC. (1824), nom. cons. = Styracaceae DC. & Spreng. (1821), nom. Elaeocarpaceae cons. Trewiaceae Lindl. (1836) = Euphorbiaceae Surianaceae Arn. (1834), nom. cons. Tribelaceae Airy Shaw (1964) Symphoremataceae (Meisn.) Mold. ex. Reveal & Tribulaceae Trautv. (1853) = Zygophyllaceae Hoogland (1991) = Lamiaceae Trichopodaceae Hutch. (1934), nom. cons. = Symplocaceae Desf. (1820), nom. cons. Dioscoreaceae Taccaceae Bercht. & J.Presl (1820), nom. cons. = Tricyrtidaceae Takht. (1997), nom. cons. = Dioscoreaceae Liliaceae Takhtajaniaceae (J.-F.Leroy) J.-F.Leroy (1980) = Trigoniaceae Endl. (1841), nom. cons., optional Winteraceae synonym of Chrysobalanaceae (Fenzl) Doweld (2001) = Portulacaceae Trilliaceae Chevall. (1827), nom. cons. = Tamaricaceae Bercht. & J.Presl (1820), nom. Melanthiaceae cons. Trimeniaceae L.S.Gibbs (1917), nom. cons. Tapisciaceae (Pax) Takht. (1987) Triplostegiaceae A.E. Bobrov ex. Airy Shaw (1964) Tecophilaeaceae Leyb. (1862), nom. cons. = Dipsaceaceae, optional synonym of Tepuianthaceae Maguire & Steyerm. (1981) = Caprifoliaceae Thymelaeaceae Tristichaceae Willis (1915) = Podostemaceae Ternstroemiaceae Mirb. ex. DC. (1816), Triuridaceae Gardner (1843), nom. cons. optional synonym of Pentaphylacaceae Trochodendraceae Eichler (1865), nom. cons. Tetracarpaeaceae Nakai (1943), optional syn- Tropaeolaceae Bercht. & J.Presl (1820), nom. onym of Haloragaceae cons. Tetracentraceae A.C.Sm. (1945), nom. cons., Tulbaghiaceae Salisb. (1866) = Alliaceae optional synonym of Trochodendraceae Turneraceae Kunth ex. DC. (1828), nom. cons., Tetrachondraceae Wettst. (1924) optional synonym of Passifloraceae

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436 436 AGP II

Typhaceae Juss. (1789), nom. cons. Viticaceae Juss. (1789) = Lamiaceae Uapacaceae Airy Shaw (1964) = Phyllanthaceae Vivianiaceae Klotzsch (1836) Ulmaceae Mirb. (1815), nom. cons. Vochysiaceae A.St.-Hil. (1820), nom. cons. Umbelliferae Juss. (1789), nom. alt. et cons. = Walleriaceae (R.Dahlgren) Takht. (1995), nom. Apiaceae cons. = Tecophilaeaceae Urticaceae Juss. (1789), nom. cons. Wellstediaceae (Pilg.) Novák (1943) = Uvulariaceae A.Gray ex. Kunth (1843), nom. cons. Boraginaceae = Colchicaceae Winteraceae R.Br. ex. Lindl. (1830), nom. Vacciniaceae DC. ex. Perleb (1818), nom. cons. = cons. Ericaceae Xanthophyllaceae (Baill.) Gagnep. ex. Reveal & Vahliaceae Dandy (1959) Hoogland (1990) = Polygalaceae Valerianaceae Batsch (1802), nom. cons., Xanthorrhoeaceae Dumort. (1829), nom. optional synonym of Caprifoliaceae cons. Vallisneriaceae Link (1829) = Hydrocharitaceae Xeronemataceae M.W.Chase, Rudall & M.F.Fay Velloziaceae Hook. (1827), nom. cons. (2001) Verbascaceae Raf. (1821) = Scrophulariaceae Xerophyllaceae Takht. (1996) = Melanthiaceae Verbenaceae J.St.-Hil. (1805), nom. cons. Xyridaceae C.Agardh (1823), nom. cons. Veronicaceae Cassel (1817) = Plantaginaceae Zannichelliaceae Chevall. (1827), nom. cons. = Viburnaceae Raf. (1820) = Adoxaceae Potamogetonaceae Violaceae Batsch (1802), nom. cons. Zingiberaceae Martynov (1820), nom. cons. Batsch (1802) = Santalaceae Zosteraceae Dumort. (1829), nom. cons. Vitaceae Juss. (1789), nom. cons. Zygophyllaceae R.Br. (1814), nom. cons.

© 2003 The Linnean Society of London, Botanical Journal of the Linnean Society, 2003, 141, 399–436