Observations on the Behaviour and Relationships of the White-Backed Duck and the Stiff-Tailed Ducks PAUL A

Total Page:16

File Type:pdf, Size:1020Kb

Observations on the Behaviour and Relationships of the White-Backed Duck and the Stiff-Tailed Ducks PAUL A 98 The Wildfowl Trust Observations on the behaviour and relationships of the White-backed Duck and the Stiff-tailed Ducks PAUL A. JOHNSGARD1 Summary 1. A number of behavioural and anatomical sources of evidence indicate that the White- backed Duck (Thalassornis) should be placed in the tribe Dendrocygnini and be regarded as a whistling duck rather than an aberrant Stiff-tailed Duck. 2. Behavioural evidence supports earlier views that the Black-headed Duck (Heteronetta) is the most generalized of the true stiff-tails, and it is suggested that the numerous unusual aspects of sexual behaviour found in this tribe can be traced back to a reduction of pair- forming and pair-maintaining mechanisms which can already be detected in Heteronetta. 3. The distinctive aspects of morphology and behaviour found in the Musk Duck (Biziura) can be attributed to the predictable effects of intense sexual selection resulting from the breakdown of pair bonds and the establishment of a completely polygamous or promis­ cuous breeding system in Biziura. 4. There is still too litde behavioural information concerning the Masked Duck to advo­ cate its generic separation (Nomonyx), although it is suggested that this species is probably the most isolated of the typical stiff-tails and presumably represents a less specialised evolu­ tionary line than do the other stiff-tails of the genus Oxyura. 5. Recent behavioural evidence tends to support earlier views that the remaining five species of Oxyura fall into two broad evolutionary groups; including leucocephala and jamaicensis on the one hand, and maccoa, vittata and australis on the other. The Stiff-tailed Ducks have traditionally At the species level the classification of been a relatively undisputed and well- the stiff-tails has been hampered by the defined group of species in the family considerable plumage similarities of most Anatidae, most members of which may species of Oxyura, as well as the meagre be easily distinguished from all other information available on their ranges and waterfowl by their elongated and pointed comparative anatomy. The problem has rectrices with stiffened shafts and by been especially vexing in southern South their bills having recurved nails. When America, where the affinities of the forms Eyton (1838) produced the first compre­ vittata and ferruginea to one another hensive classification of the Anatidae he have been in doubt, and their possible separated the stiff-tails as a distinct sub­ relationship to the North American Ruddy family (Erismaturinae) containing three Duck O. j. jamaicensis has also been a genera, Erismatura (Oxyura), Biziura, and problematic matter. Delacour and Mayr Thalassornis, the last genus being erected (1945) initially regarded these two South for the newly discovered White-backed American forms and the African Maccoa Duck, which Eyton first formally des­ Duck O. maccoa as races of a single cribed. He regarded this species as a “con­ southern hemisphere species that also in­ necting link between the genera Clangula cluded the Australian Blue-billed Duck and Biziura, the structure of the tail being O. australis. Boetticher (1952) later took nearly like that of the former genus, while the more extreme view that all of the the bill is like that of the latter.” Later southern hemisphere populations were systematists accepted this classification subspecies of O. jamaicensis. However, almost without modification, the only Helmayr and Conover (1948) pointed out change being that the genus Nomonyx that both South American forms breed was erected by Ridgway (1880) to distin­ together in central Chile, thus two species guish the Masked Duck from the other must be recognised. Lehmann’s descrip­ typical stiff-tails, primarily on the basis tion, in 1946, of a Colombian race of of its less recurved bill nail. This arrange­ Ruddy Duck O. jamaicensis andina sup­ ment persisted until the classic revision ported the view that the North American of the family by Delacour and Mayr Ruddy Duck is thus geographically con­ (1945), who reduced the stiff-tails to tribal nected to the South American popula­ rank (Oxyurini), merged Nomonyx with tions, and that ferruginea rather than Oxyura, and transferred the Black-headed vittata represents the southernmost repre­ Duck Heteronetta atricapilla into the sentative of this geographic series. tribe from its former position in the dab­ In an earlier review of the behaviour bling duck group, largely on the basis of patterns of the Anatidae (Johnsgard, Wetmore’s (1926) anatomical observations. 1960), I deplored the lack of behavioural 1 Contribution (No. 380) from the Department of Zoology and Physiology, University of Nebraska, Lincoln, Nebraska. Illustrated by the author. Stiff-tail Behaviour 99 information on the stiff-tails, and sug­ rushes or reeds over water and contain no gested that such knowledge might serve down. However, they are sometimes loca­ to evaluate the validity of including such ted at the edges of ponds as well (D’Eath, aberrant genera as Heteronetta and Thal- 1965). The clutch size has been variously assomis in the tribe, as well as to help reported as ranging between two and 14 establish species limits and taxonomic eggs, although the latter figure doubt­ groupings within the genus Oxyura. Since less represents “ dump-nests ” produced then it has been my good fortune to by more than one female. The eggs are observe all of the nine species of Oxyurini surprisingly large (Dr. Janet Kear in­ (Delacour, 1959) in life, and to observe formed me that the average weight of 21 sexual displays among six of them. eggs was 82.5 grams), and are of a dis­ Although it is still premature to believe tinctive pale rusty brown colouration. that an adequate knowlege of stiff-tail This colour and their very smooth surface behaviour is at hand, it is nonetheless distinguish them from typical stiff-tailed possible now to make some comparisons duck eggs. Each egg represents more than and conclusions that were impossible in ten per cent of the adult bird’s weight, 1960. Some such observations have since which ranges from 680 to 790 grams been published (Johnsgard, 1965a), but (Phillips, 1926). This surprisingly large others were obtained too late to permit size is roughly equivalent to the situation inclusion in my general survey of Anati­ in stiff-tails, since unincubated eggs of dae behaviour. Thus, special attention North American Ruddy Ducks average will be paid here to the re-evaluation and 74.7 grams (Janet Kear, pers, com.), and probable relationships of the various adults of this species range from 560 to genera included in the tribe, and to a to 680 grams (Phillips, 1926). It may be review of the available behavioural infor­ hypothesized that in both species this mation on the more typical stiff-tails large egg size is a functional adaptation (Oxyura), insofar as it may reflect and that permits the development of unusu­ further clarify their evolutionary relation­ ally precocial young that are able to forage ships. independently by diving shortly after Without question the White-backed hatching. Thus, Clark (1964) reports that Duck Thalassornis leuconotus is one of downy Maccoa Ducks may spend ten to the most inadequately studied species of fifteen seconds under water when forag­ waterfowl. The downy young were first ing. Interestingly, Johnson (1965) reports correctly described by Delacour and illus­ that unusually large eggs are also typical trated by Peter Scott in 1959, the of Torrent Ducks (Merganetta armata) tracheal anatomy remained undescribed which likewise have extremely precocial until 1961, and it also was not until then young that are able to dive and navigate that the reticulated tarsal surface condi­ swift currents with ease (Johnsgard, tion of the species was first noted (Johns­ 1966a). gard, 1961a). The unusual tracheal struc­ In 1965, the first nesting attempt by the ture, the associated whistling voices of White-backed Ducks at Slimbridge was both sexes, and the reticulated tarsal pat­ in a clump of willow herb Epilobium tern suggested to me that perhaps the and reeds within a foot or two of the White-backed Duck had been incorrectly water’s edge, perhaps because no emer­ placed in the Oxyurini, and that it might gent vegetation is present in their pond. actually be an aberrant whistling duck. Likewise, in 1966, a nest was built in a However, during my two years of study similar clump of willow herb and reeds at the Wildfowl Trust between 1959 and approximately 18 inches from the water, 1961, the species, although represented by but in this case it was also immediately nine individuals, failed to breed, and very adjacent to the gravelled public pathway few behavioural observations of taxono­ that is used by visitors to the Trust. In­ mic significance could be obtained (Johns­ deed, several large pebbles an inch or gard, 1965a). Then, during a return visit more in diameter were incorporated into to the Trust in July of 1966, I learned the nest scrape, which was lined with that, following a relatively unsuccessful grass but lacked any contour feathers or breeding attempt in 1965 (Johnstone, down. The nest was approximately one 1966), a second nesting had begun shortly foot above the level of the water, but no before my arrival. ramp led to it. Rather, the birds climbed Accounts in the literature (e.g., Mack- up on shore a foot or two to the side of worth-Praed and Grant, 1952) indicate the nest and entered it indirectly. At the that under natural conditions the nests of time I arrived on 4th July, six eggs had White-backed Ducks are usually built in already been laid at approximately daily 100 The Wildfowl Trust intervals. These eggs had been initially by the male was most surprising, since replaced with white wooden dummy eggs male stiff-tails normally take no interest until it was found that the adults were in the nest.
Recommended publications
  • Tinamiformes – Falconiformes
    LIST OF THE 2,008 BIRD SPECIES (WITH SCIENTIFIC AND ENGLISH NAMES) KNOWN FROM THE A.O.U. CHECK-LIST AREA. Notes: "(A)" = accidental/casualin A.O.U. area; "(H)" -- recordedin A.O.U. area only from Hawaii; "(I)" = introducedinto A.O.U. area; "(N)" = has not bred in A.O.U. area but occursregularly as nonbreedingvisitor; "?" precedingname = extinct. TINAMIFORMES TINAMIDAE Tinamus major Great Tinamou. Nothocercusbonapartei Highland Tinamou. Crypturellus soui Little Tinamou. Crypturelluscinnamomeus Thicket Tinamou. Crypturellusboucardi Slaty-breastedTinamou. Crypturellus kerriae Choco Tinamou. GAVIIFORMES GAVIIDAE Gavia stellata Red-throated Loon. Gavia arctica Arctic Loon. Gavia pacifica Pacific Loon. Gavia immer Common Loon. Gavia adamsii Yellow-billed Loon. PODICIPEDIFORMES PODICIPEDIDAE Tachybaptusdominicus Least Grebe. Podilymbuspodiceps Pied-billed Grebe. ?Podilymbusgigas Atitlan Grebe. Podicepsauritus Horned Grebe. Podicepsgrisegena Red-neckedGrebe. Podicepsnigricollis Eared Grebe. Aechmophorusoccidentalis Western Grebe. Aechmophorusclarkii Clark's Grebe. PROCELLARIIFORMES DIOMEDEIDAE Thalassarchechlororhynchos Yellow-nosed Albatross. (A) Thalassarchecauta Shy Albatross.(A) Thalassarchemelanophris Black-browed Albatross. (A) Phoebetriapalpebrata Light-mantled Albatross. (A) Diomedea exulans WanderingAlbatross. (A) Phoebastriaimmutabilis Laysan Albatross. Phoebastrianigripes Black-lootedAlbatross. Phoebastriaalbatrus Short-tailedAlbatross. (N) PROCELLARIIDAE Fulmarus glacialis Northern Fulmar. Pterodroma neglecta KermadecPetrel. (A) Pterodroma
    [Show full text]
  • A 2010 Supplement to Ducks, Geese, and Swans of the World
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Ducks, Geese, and Swans of the World by Paul A. Johnsgard Papers in the Biological Sciences 2010 The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard University of Nebraska-Lincoln, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/biosciducksgeeseswans Part of the Ornithology Commons Johnsgard, Paul A., "The World’s Waterfowl in the 21st Century: A 2010 Supplement to Ducks, Geese, and Swans of the World" (2010). Ducks, Geese, and Swans of the World by Paul A. Johnsgard. 20. https://digitalcommons.unl.edu/biosciducksgeeseswans/20 This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Ducks, Geese, and Swans of the World by Paul A. Johnsgard by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. The World’s Waterfowl in the 21st Century: A 200 Supplement to Ducks, Geese, and Swans of the World Paul A. Johnsgard Pages xvii–xxiii: recent taxonomic changes, I have revised sev- Introduction to the Family Anatidae eral of the range maps to conform with more current information. For these updates I have Since the 978 publication of my Ducks, Geese relied largely on Kear (2005). and Swans of the World hundreds if not thou- Other important waterfowl books published sands of publications on the Anatidae have since 978 and covering the entire waterfowl appeared, making a comprehensive literature family include an identification guide to the supplement and text updating impossible.
    [Show full text]
  • Waterfowl in Iowa, Overview
    STATE OF IOWA 1977 WATERFOWL IN IOWA By JACK W MUSGROVE Director DIVISION OF MUSEUM AND ARCHIVES STATE HISTORICAL DEPARTMENT and MARY R MUSGROVE Illustrated by MAYNARD F REECE Printed for STATE CONSERVATION COMMISSION DES MOINES, IOWA Copyright 1943 Copyright 1947 Copyright 1953 Copyright 1961 Copyright 1977 Published by the STATE OF IOWA Des Moines Fifth Edition FOREWORD Since the origin of man the migratory flight of waterfowl has fired his imagination. Undoubtedly the hungry caveman, as he watched wave after wave of ducks and geese pass overhead, felt a thrill, and his dull brain questioned, “Whither and why?” The same age - old attraction each spring and fall turns thousands of faces skyward when flocks of Canada geese fly over. In historic times Iowa was the nesting ground of countless flocks of ducks, geese, and swans. Much of the marshland that was their home has been tiled and has disappeared under the corn planter. However, this state is still the summer home of many species, and restoration of various areas is annually increasing the number. Iowa is more important as a cafeteria for the ducks on their semiannual flights than as a nesting ground, and multitudes of them stop in this state to feed and grow fat on waste grain. The interest in waterfowl may be observed each spring during the blue and snow goose flight along the Missouri River, where thousands of spectators gather to watch the flight. There are many bird study clubs in the state with large memberships, as well as hundreds of unaffiliated ornithologists who spend much of their leisure time observing birds.
    [Show full text]
  • Appendix, French Names, Supplement
    685 APPENDIX Part 1. Speciesreported from the A.O.U. Check-list area with insufficient evidencefor placementon the main list. Specieson this list havebeen reported (published) as occurring in the geographicarea coveredby this Check-list.However, their occurrenceis considered hypotheticalfor one of more of the following reasons: 1. Physicalevidence for their presence(e.g., specimen,photograph, video-tape, audio- recording)is lacking,of disputedorigin, or unknown.See the Prefacefor furtherdiscussion. 2. The naturaloccurrence (unrestrained by humans)of the speciesis disputed. 3. An introducedpopulation has failed to becomeestablished. 4. Inclusionin previouseditions of the Check-listwas basedexclusively on recordsfrom Greenland, which is now outside the A.O.U. Check-list area. Phoebastria irrorata (Salvin). Waved Albatross. Diornedeairrorata Salvin, 1883, Proc. Zool. Soc. London, p. 430. (Callao Bay, Peru.) This speciesbreeds on Hood Island in the Galapagosand on Isla de la Plata off Ecuador, and rangesat seaalong the coastsof Ecuadorand Peru. A specimenwas takenjust outside the North American area at Octavia Rocks, Colombia, near the Panama-Colombiaboundary (8 March 1941, R. C. Murphy). There are sight reportsfrom Panama,west of Pitias Bay, Dari6n, 26 February1941 (Ridgely 1976), and southwestof the Pearl Islands,27 September 1964. Also known as GalapagosAlbatross. ThalassarchechrysosWma (Forster). Gray-headed Albatross. Diornedeachrysostorna J. R. Forster,1785, M6m. Math. Phys. Acad. Sci. Paris 10: 571, pl. 14. (voisinagedu cerclepolaire antarctique & dansl'Ocean Pacifique= Isla de los Estados[= StatenIsland], off Tierra del Fuego.) This speciesbreeds on islandsoff CapeHorn, in the SouthAtlantic, in the southernIndian Ocean,and off New Zealand.Reports from Oregon(mouth of the ColumbiaRiver), California (coastnear Golden Gate), and Panama(Bay of Chiriqu0 are unsatisfactory(see A.O.U.
    [Show full text]
  • The Function and Evolution of the Supraorbital Process in Ducks
    THE FUNCTION AND EVOLUTION OF THE SUPRAORBITAL PROCESS IN DUCKS ROBERTJ. RAIKOW THE anteriormargin of the orbit in ducksis formedby the lacrimalbone, which articulateswith the anterolateralmargin of the frontal boneand the posterodorsalcorner of the maxillary processof the nasal bone. The evolu- tion of this bone in birds generally has been dealt with recently by Cracraft (Amer. Midl. Naturalist, 80: 316, 1968), whoseterminology for the parts of the lacrimal bone is followedhere. In many ducksthe postero- dorsalcorner of the lacrimal is marked by a small tubercle,which serves as the site of attachment of the anterior end of the orbital membrane,a sheetof connectivetissue that coversand protectsthe dorsalaspect of the eyeball. In some forms this tubercle has become elongated to form a stout, finger-like projection, the supraorbitalprocess. This appears to provide mechanicalprotection to the eyeball and salt gland (Figure 1). Table 1 lists the occurrenceand degree of developmentof this process in the skulls of all living generaof ducks. CORRELATION WITH FEEDING AND LOCOMOTOR HABITS In the following discussion,data on feeding habits are from Delacour (The waterfowlof the world,vols. 1-3, London,Country Life Ltd., 1954, 1956, 1959). Table 1 showsthat the supraorbital processis developed significantlyonly in certain groupsof ducks that feed underwater. It is absentor rudimentaryin the Tadornini, Cairinini, and Anatini, which are primarily surfacefeeders, but also in Merganetta arma.ta,the Torrent Duck, which feedsunderwater. In the Aythyini it is fairly well-developed in severalspecies of Aythya, which are excellentdivers, but is rudimentary in Netta peposaca,which is moreof a surfacefeeder. It is alsorudimentary in the Canvasback,Aythya valisineria,which dives for vegetation.Among the Mergini the supraorbitalprocess is highly developedin eiders (Poly- sticta, Somateria) , scoters( M elanitta) , and Long-tailed Duck ( Clangula byemalls), all of which feed mainly on invertebratestaken from the bottom.
    [Show full text]
  • Phylogeny and Comparative Ecology of Stiff-Tailed Ducks (Anatidae: Oxyurini)
    Wilson Bull., 107(2), 1995, pp. 214-234 PHYLOGENY AND COMPARATIVE ECOLOGY OF STIFF-TAILED DUCKS (ANATIDAE: OXYURINI) BRADLEY C. LIVEZEY’ ABSTRACT.-A cladistic analysis of the stiff-tailed ducks (Anatidae: Oxyurini) was con- ducted using 92 morphological characters. The analysis produced one minimum-length, completely dichotomous phylogenetic tree of high consistency (consistency index for infor- mative characters, 0.74). Monophyly of the tribe was supported by 17 unambiguous syna- pomorphies. Within the tribe, Heteronetta (1 species) is the sister-group of other members; within the latter clade (supported by 2 1 unambiguous synapomorphies), Nomonyx (1 species) is the sister-group of Oxyura (6 species) + Biziura (I species). The latter clade is supported by 10 unambiguous synapomorphies. Monophyly of Oxyuru proper is supported by three unambiguous synapomorphies. All branches in the shortest tree except that uniting Oxyuva, exclusive of jumaicensis, were conserved in a majority-rule consensus tree of 1000 boot- strapped replicates. Biziuru and (to a lesser extent) Heteronetta were highly autapomorphic. Modest evolutionary patterns in body mass, reproductive parameters, and sexual dimorphism are evident, with the most marked, correlated changes occurring in Heteronetta and (es- pecially) Biziura. The implications of these evolutionary trends for reproductive ecology and biogeographic patterns are discussed, and a phylogenetic classification of the tribe is presented. Received 27 April 1994, accepted 10 Nov. 1994. The stiff-tailed ducks (Anatidae: Oxyurini) include some of the most distinctive species of waterfowl; among its members are the only obligate nest-parasite (Black-headed Duck; Heteronetta atricapilla) and the spe- cies showing the greatest sexual size dimorphism (Musk Duck; Biziuru lob&z) in the order Anseriformes (Delacour 1959; Johnsgard 1962, 1978; Weller 1968; Livezey 1986).
    [Show full text]
  • Part B: for Private and Commercial Use
    RESTRICTED ANIMAL LIST (PART B) §4-71-6.5 PART B: FOR PRIVATE AND COMMERCIAL USE SCIENTIFIC NAME COMMON NAME INVERTEBRATES PHYLUM Annelida CLASS Oligochaeta ORDER Haplotaxida FAMILY Lumbricidae Lumbricus rubellus earthworm, red PHYLUM Arthropoda CLASS Crustacea ORDER Amphipoda FAMILY Gammaridae Gammarus (all species in genus) crustacean, freshwater; scud FAMILY Hyalellidae Hyalella azteca shrimps, imps (amphipod) ORDER Cladocera FAMILY Sididae Diaphanosoma (all species in genus) flea, water ORDER Cyclopoida FAMILY Cyclopidae Cyclops (all species in genus) copepod, freshwater ORDER Decapoda FAMILY Alpheidae Alpheus brevicristatus shrimp, Japan (pistol) FAMILY Palinuridae Panulirus gracilis lobster, green spiny Panulirus (all species in genus lobster, spiny except Panulirus argus, P. longipes femoristriga, P. pencillatus) FAMILY Pandalidae Pandalus platyceros shrimp, giant (prawn) FAMILY Penaeidae Penaeus indicus shrimp, penaeid 49 RESTRICTED ANIMAL LIST (Part B) §4-71-6.5 SCIENTIFIC NAME COMMON NAME Penaeus californiensis shrimp, penaeid Penaeus japonicus shrimp, wheel (ginger) Penaeus monodon shrimp, jumbo tiger Penaeus orientalis (chinensis) shrimp, penaeid Penaeus plebjius shrimp, penaeid Penaeus schmitti shrimp, penaeid Penaeus semisulcatus shrimp, penaeid Penaeus setiferus shrimp, white Penaeus stylirostris shrimp, penaeid Penaeus vannamei shrimp, penaeid ORDER Isopoda FAMILY Asellidae Asellus (all species in genus) crustacean, freshwater ORDER Podocopina FAMILY Cyprididae Cypris (all species in genus) ostracod, freshwater CLASS Insecta
    [Show full text]
  • NOTES on SUBFOSSIL ANAHDAE from NEW ZEALAND, INCLUDING a NEW SPECBES of PINK-EARED DUCK MALACORHYNCHUS STOR&S L. OLSON Recei
    fM NOTES ON SUBFOSSIL ANAHDAE FROM NEW ZEALAND, INCLUDING A NEW SPECBES OF PINK-EARED DUCK MALACORHYNCHUS STOR&S L. OLSON Received 3 October 1976. SUMMARY OLSON, S. L. 1977. Notes on subfossil Anatidae from New Zealand, including a new species of pink-eared duck Malacorhynchus. Emu 77: 132-135. A new species of pink-eared duck, Malacorhynchus scarletti, is described from subfossil deposits at Pyra- mid Valley, South Island, NZ, and is characterized by larger size. Preliminary observations indicate that subfossil specimens of Biziura from New Zealand are larger and differ qualitatively from B. lobata; for the present, the name Biziura delautouri Forbes, 1892, ought to be retained for the New Zealand form. An erroneous record of Mergus australis is corrected. INTRODUCTION Locality. Pyramid Valley Swamp, near Waikari, During two visits to museums in New Zealand, I North Canterbury, South Island, NZ. examined remains of numerous fossil and subfossil Age. Holocene; the bone-bearing sediments at birds, including those of several extinct species of Pyramid Valley Swamp have been determined by ducks. Of these, the form known as Euryanas finschi radio-carbon dating to be about 3,500 years old was represented by thousands of specimens and I (Gregg 1972). plan to treat its osteology and relationships in a Etymology. I take pleasure in naming this new subsequent study. Three other species are the subject species for R. J. Scarlett, osteologist at the Canter- of the present paper. bury Museum, in recognition of his significant con- tributions to New Zealand palaeornithology. MALACORHYNCHUS Diagnosis. Much larger than M, membranaceus In a report on avian remains from Pyramid Valley (see Table I).
    [Show full text]
  • Blue-Billed Duck (Oxyura Australis)
    Action Statement Flora and Fauna Guarantee Act 1988 No. 174 Blue-billed Duck Oxyura australis Description and Distribution The Blue-billed Duck Oxyura australis, also called Stiff-tail or Diving Duck, is a small, compact duck with a large round head and a short neck (Marchant & Higgins 1990). It is about 40 cm in length and has a weight of about 850 g. Blue-billed Ducks are in the tribe of stiff-tailed ducks whose tail feathers are spiny in appearance and capable of erection (Frith 1977) which includes the Musk Duck Biziura lobata. It is the only member of the genus Oxyura in Australia. This genus is cosmopolitan and contains six species, four of which (including the Blue-billed Duck) are under some threat. There are two populations of the Blue-billed Duck, one in south-east and the other in south-west Blue-billed Duck Oxyura australis Australia. These appear to be isolated from each (Photo: DSE/McCann) other; however, no subspecies are recognised (Blakers et al. 1984, Marchant & Higgins 1990). Male and female Blue-billed Ducks have different plumages. The adult breeding male has a black head with a chestnut to brown body and wings and a distinctive blue bill. Its non-breeding, or eclipse, plumage is similar to that of the adult female. The adult female is medium grey in colour with lighter barring to the head and body feathers, with the breast being lighter in colour. It has a dark bill. Immature birds are generally indistinguishable from the adult female. Species similar in appearance are the Musk Duck, Hardhead Aythya australis and Eurasian Coot Fulica atra.
    [Show full text]
  • A Molecular Phylogeny of Anseriformes Based on Mitochondrial DNA Analysis
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 23 (2002) 339–356 www.academicpress.com A molecular phylogeny of anseriformes based on mitochondrial DNA analysis Carole Donne-Goussee,a Vincent Laudet,b and Catherine Haanni€ a,* a CNRS UMR 5534, Centre de Genetique Moleculaire et Cellulaire, Universite Claude Bernard Lyon 1, 16 rue Raphael Dubois, Ba^t. Mendel, 69622 Villeurbanne Cedex, France b CNRS UMR 5665, Laboratoire de Biologie Moleculaire et Cellulaire, Ecole Normale Superieure de Lyon, 45 Allee d’Italie, 69364 Lyon Cedex 07, France Received 5 June 2001; received in revised form 4 December 2001 Abstract To study the phylogenetic relationships among Anseriformes, sequences for the complete mitochondrial control region (CR) were determined from 45 waterfowl representing 24 genera, i.e., half of the existing genera. To confirm the results based on CR analysis we also analyzed representative species based on two mitochondrial protein-coding genes, cytochrome b (cytb) and NADH dehydrogenase subunit 2 (ND2). These data allowed us to construct a robust phylogeny of the Anseriformes and to compare it with existing phylogenies based on morphological or molecular data. Chauna and Dendrocygna were identified as early offshoots of the Anseriformes. All the remaining taxa fell into two clades that correspond to the two subfamilies Anatinae and Anserinae. Within Anserinae Branta and Anser cluster together, whereas Coscoroba, Cygnus, and Cereopsis form a relatively weak clade with Cygnus diverging first. Five clades are clearly recognizable among Anatinae: (i) the Anatini with Anas and Lophonetta; (ii) the Aythyini with Aythya and Netta; (iii) the Cairinini with Cairina and Aix; (iv) the Mergini with Mergus, Bucephala, Melanitta, Callonetta, So- materia, and Clangula, and (v) the Tadornini with Tadorna, Chloephaga, and Alopochen.
    [Show full text]
  • Incubation Behavior of Ruddy and Maccoa Ducks
    INCUBATION BEHAVIOR OF RUDDY AND MACCOA DUCKS W. R. SIEGFRIED A. E. BURGER AND P. J. CALDWELL The small ducks in the genus Oxyu~a are re- peratures were obtained for 95 hr during February markable for having, proportionate to body 1975 when a total of 28 hr of visual observations was size, the largest eggs of all Anatidae, yet made. Hatching occurred on 9 February. Since egg temperatures at times undergo little clutch-sizes are large and incubation periods or no change when birds leave their nests (pers. are short (Lack 1968). Incubation is per- obs.), the use of egg temperatures alone can pro- formed solely by the female, and the clutch duce misleading results in deducing time spent on is not insulated with a layer of down (Kear or off the nest. Observations of Maccoa and Ruddv ducks and data on changes in nest-air temperature 1970). were used as often as possible in checking the ac- This paper describes the incubation be- curacy of time on or off the nest. Although the havior of the North American Ruddy Duck samples of observations are small, we have no reason (Oxyura jamaicensis) and the South African to suspect the accuracy of our data. The female Maccoa Duck responsible for nest (A) had been Maccoa Duck (0. maccoa) which were marked earlier in the season by means of a plastic studied under natural field conditions. nasal-saddle, allowing observers to recognize the bird during absences from the nest. None of the STUDY AREAS, MATERIALS other females was marked and consequently could AND METHODS not be observed continuously during periods away from the nest.
    [Show full text]
  • Targeted Fauna Assessment.Pdf
    APPENDIX H BORR North and Central Section Targeted Fauna Assessment (Biota, 2019) Bunbury Outer Ring Road Northern and Central Section Targeted Fauna Assessment Prepared for GHD December 2019 BORR Northern and Central Section Fauna © Biota Environmental Sciences Pty Ltd 2020 ABN 49 092 687 119 Level 1, 228 Carr Place Leederville Western Australia 6007 Ph: (08) 9328 1900 Fax: (08) 9328 6138 Project No.: 1463 Prepared by: V. Ford, R. Teale J. Keen, J. King Document Quality Checking History Version: Rev A Peer review: S. Ford Director review: M. Maier Format review: S. Schmidt, M. Maier Approved for issue: M. Maier This document has been prepared to the requirements of the client identified on the cover page and no representation is made to any third party. It may be cited for the purposes of scientific research or other fair use, but it may not be reproduced or distributed to any third party by any physical or electronic means without the express permission of the client for whom it was prepared or Biota Environmental Sciences Pty Ltd. This report has been designed for double-sided printing. Hard copies supplied by Biota are printed on recycled paper. Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx 3 BORR Northern and Central Section Fauna 4 Cube:Current:1463 (BORR North Central Re-survey):Documents:1463 Northern and Central Fauna ARI_Rev0.docx BORR Northern and Central Section Fauna BORR Northern and Central Section Fauna Contents 1.0 Executive Summary 9 1.1 Introduction 9 1.2 Methods
    [Show full text]