Common Structural and Health-Related Pests of Utah

Total Page:16

File Type:pdf, Size:1020Kb

Common Structural and Health-Related Pests of Utah Common Structural and Health-Related Pests of Utah Common Structural and Health-Related Pests of Utah Ryan Davis, Utah State University Deborah Young, Colorado State University Kelsie Johnson, Utah State University Roberta Armenta, Colorado State University Genevieve Berry, Colorado State University ORDERING INFORMATION A PDF version is available online on the USU School Integrated Pest Management website (http://utahpests.usu.edu/ schoolipm/). To order additional bound copies of Common Structural and Health-Related Pests of Utah, contact Utah State University Extension Publications. Website: extension.cart.usu.edu Utah State University is committed to providing an environment free from harassment and Cover and inner cover photo credits: other forms of illegal discrimination based on race, color, religion, sex, national origin, age (40 Flesh fly: Johnny N. Dell, Bugwood.org and older), disability, and veteran’s status. USU’s policy also prohibits discrimination on the Brownbanded cockroach: Kansas Department of Agriculture Archive, Bugwood.org basis of sexual orientation in employment and academic related practices and decisions. Utah Stink bug: David R. Lance, USDA APHIS-PPQ, Bugwood.org State University employees and students cannot, because of race, color, religion, sex, national Bed bug: Gary Alpert, Harvard University, Bugwood.org origin, age, disability, or veteran’s status, refuse to hire; discharge; promote; demote; terminate; Deer mouse: David Cappaert, Michigan State University, Bugwood.org discriminate in compensation; or discriminate regarding terms, privileges, or conditions of Pavement ant: Joseph Berger, Bugwood.org employment, against any person otherwise qualified. Employees and students also cannot German cockroach: Lmbuga, Wikimedia Commons discriminate in the classroom, residence halls, or in on/off campus, USU-sponsored events and activities. This publication is issued in furtherance of Cooperative Extension work, acts of May Common Structural and Health-Related Pests of Utah by Utah 8 and June 30, 1914, in cooperation with the U.S. Department of Agriculture, Kenneth L. White, State University Extension is licensed under a Creative Commons Vice President for Extension and Agriculture, Utah State University. Attribution-NonCommercial 4.0 International License. TABLE OF CONTENTS TABLE OF CONTENTS Ants House Fly ...............................................62 Argentine Ant ...........................................6 Phorid (Humpbacked) Flies. .64 Carpenter Ants ..........................................8 Stable Fly ...............................................66 Field Ants ...............................................10 Harvester Ants ..........................................12 Nuisance Pests/Occasional Invaders Odorous House Ant .....................................14 Army Cutworm/Miller Moth. 68 Pavement Ant ..........................................16 Booklice/Psocids ........................................70 Pharaoh Ant ............................................18 Box Elder Bug ...........................................72 Pyramid Ants ...........................................20 Brown Marmorated Stink Bug ...........................74 Velvety Tree Ant ........................................22 Carpet Beetles ..........................................76 Clover Mite .............................................78 Biting Insects Crickets ................................................80 Bed Bug ................................................24 Elm Leaf Beetle .........................................82 Table of Contents Table Bird Mites ..............................................26 Elm Seed Bug ...........................................84 Head Lice ...............................................28 False Chinch Bug .......................................86 Masked Hunter .........................................30 Ground Beetles .........................................88 Mosquitoes .............................................32 Isopods .................................................90 Millipedes/Centipedes ..................................92 Cockroaches Red Fire Bug ............................................94 Table of Contents Table American Cockroach ....................................34 Root Weevils ............................................96 Brown Banded Cockroach. 36 Silverfish and Firebrats. .98 German Cockroach .....................................38 Springtails .............................................100 Oriental Cockroach .....................................40 Western Conifer Seed Bug. .102 Western Leaf-footed Bug. 104 Flies Western Subterranean Termite .........................106 Black Soldier Fly ........................................42 Blow/Bottle Flies ........................................44 Stored Products Pests Cluster Flies ............................................46 Bean and Cowpea Weevils .............................108 Crane Flies ..............................................48 Cigarette Beetle .......................................110 Drain (Moth) Fly ........................................50 Dark/Yellow Mealworms ...............................112 Face Fly .................................................52 Drugstore Beetle .......................................114 Flesh Flies ..............................................54 Grain Beetles ..........................................116 Fruit Flies ...............................................56 Granary Weevil ........................................118 Fungus Gnats ...........................................58 Indian Meal Moth ......................................120 Horse and Deer Flies ....................................60 Larder Beetle ..........................................122 TABLE OF CONTENTS TABLE OF CONTENTS Rice Weevil ............................................124 Norway Rat ............................................182 Warehouse Beetle .....................................126 Pocket Gophers ........................................184 Rock Pigeon ...........................................186 Spiders Skunks ................................................188 Black Widow Spider ....................................128 Tree Squirrels ..........................................190 Cellar Spiders ..........................................130 Voles ..................................................192 Crevice Weaving Spiders ...............................132 Desert Recluse Spider ..................................134 References ............................................194 Ground Spiders ........................................136 Hacklemesh Weaver Spiders. .138 Hobo and Grass Spiders. .140 Jumping Spiders .......................................142 Orb Weaving Spiders ...................................144 Sac Spiders ............................................146 of Contents Table Wolf Spiders ...........................................148 Woodlouse Spider .....................................150 Stinging Insects Baldfaced Hornet ......................................152 Bumble Bees ..........................................154 Table of Contents Table Honey Bee .............................................156 Mason, Potter, Mud Dauber Wasps .....................158 Paper Wasps ...........................................160 Sand Wasps and Cicada Killers. .162 Scorpions .............................................164 Solitary/Ground Bees ..................................166 Western Yellowjacket ..................................168 Vertebrate Pests Bats ...................................................170 Deer Mouse ...........................................172 European Starling ......................................174 Ground Squirrels .......................................176 House/English Sparrow ................................178 House Mouse ..........................................180 FOREWORD This guide was developed to aid in the identification and control of common arthropod and vertebrate pests found in and around Utah’s urban buildings and homes as well as pests of health concern. It is not an exhaustive list of all urban pests in Utah. After using this guide to identify a pest, verify the pest’s identity using online resources or by contacting the Utah Plant Pest Diagnostic Lab. Included in this handbook are pests common to the region and those documented to be a problem in urban areas. Each spread includes: IDENTIFICATION: Brief description of the pest. NESTING HABITS: Common nesting locations, structures and nest components. Foreword DIET: Preferred food of the pest. SIGNIFICANCE: Damage or injury caused by the pest. IPM RECOMMENDATIONS: Brief suggestions on how to handle the pest problem in an effective and environmentally safe way. 4 5 Argentine Ant Linepithema humile Identification • light to dark brown • 1/8 inch long • 12-segmented antennae without a club • single node (bump between middle and rear body sections) with sharp peak distinguishes it from odorous house ant (see arrow in top image) Adult Argentine ant (Eli Sarnat, USDA APHIS, Bugwood.org) Nesting Habits • outdoors: in soil; under rocks and logs; potted plants; landscaping mulch; concrete slabs; crawl spaces; piles of wood or organic matter; exterior walls behind brick • indoors: in wall voids, under carpets and in basements, usually near moisture (sinks, tubs, leaks, etc.) • not a common pest in most of Utah Ants Ants Diet • honeydew produced by aphids and other insects • feed on a
Recommended publications
  • The Digger Wasps of Saudi Arabia: New Records and Distribution, with a Checklist of Species (Hym.: Ampulicidae, Crabronidae and Sphecidae)
    NORTH-WESTERN JOURNAL OF ZOOLOGY 9 (2): 345-364 ©NwjZ, Oradea, Romania, 2013 Article No.: 131206 http://biozoojournals.3x.ro/nwjz/index.html The digger wasps of Saudi Arabia: New records and distribution, with a checklist of species (Hym.: Ampulicidae, Crabronidae and Sphecidae) Neveen S. GADALLAH1,*, Hathal M. AL DHAFER2, Yousif N. ALDRYHIM2, Hassan H. FADL2 and Ali A. ELGHARBAWY2 1. Entomology Department, Faculty of Science, Cairo University, Giza, Egypt. 2. Plant Protection Department, College of Food and Agriculture Science, King Saud University, King Saud Museum of Arthropod (KSMA), Riyadh, Saudi Arabia. *Corresponing author, N.S. Gadalah, E-mail: [email protected] Received: 24. September 2012 / Accepted: 13. January 2013 / Available online: 02. June 2013 / Printed: December 2013 Abstract. The “sphecid’ fauna of Saudi Arabia (Hymenoptera: Apoidea) is listed. A total of 207 species in 42 genera are recorded including previous and new species records. Most Saudi Arabian species recorded up to now are more or less common and widespread mainly in the Afrotropical and Palaearctic zoogeographical zones, the exception being Bembix buettikeri Guichard, Bembix hofufensis Guichard, Bembix saudi Guichard, Cerceris constricta Guichard, Oxybelus lanceolatus Gerstaecker, Palarus arabicus Pulawski in Pulawski & Prentice, Tachytes arabicus Guichard and Tachytes fidelis Pulawski, which are presumed endemic to Saudi Arabia (3.9% of the total number of species). General distribution and ecozones, and Saudi Arabian localities are given for each species. In this study two genera (Diodontus Curtis and Dryudella Spinola) and 11 species are newly recorded from Saudi Arabia. Key words: Ampulicidae, Crabronidae, Sphecidae, faunistic list, new records, Saudi Arabia. Introduction tata boops (Schrank), Bembecinus meridionalis A.Costa, Diodontus sp.
    [Show full text]
  • SP341-I-Carpet Beetles
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Insects, Pests, Plant Diseases and Weeds UT Extension Publications 10-2006 SP341-I-Carpet Beetles The University of Tennessee Agricultural Extension Service Follow this and additional works at: https://trace.tennessee.edu/utk_agexdise Part of the Entomology Commons Recommended Citation "SP341-I-Carpet Beetles," The University of Tennessee Agricultural Extension Service, SP341-I 10/06(Rev) 07-0065, https://trace.tennessee.edu/utk_agexdise/30 The publications in this collection represent the historical publishing record of the UT Agricultural Experiment Station and do not necessarily reflect current scientific knowledge or ecommendations.r Current information about UT Ag Research can be found at the UT Ag Research website. This Household Insects and Pests is brought to you for free and open access by the UT Extension Publications at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Insects, Pests, Plant Diseases and Weeds by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. SP341-I Carpet Beetles Karen M. Vail, Associate Professor; Frank Hale, Professor; Harry E. Williams, former Professor Emeritus Entomology & Plant Pathology Carpet beetles feed on animal and plant substances gray-yellow scales. Larvae are about 1/4 inch long and are such as wool, fur, feathers, hair, hides, horns, silk and light to dark brown. The body is wide and broader at the bone, as well as cereals, cake mixes, red pepper, rye meal rear than the front. and flour. Other substances include powdered milk, dog Adult common carpet beetles are about 1/10 to 1/8 and cat food, leather, book bindings, dead insects, cot- inch long, nearly round and gray to black.
    [Show full text]
  • Contact: Sondra Katzen 708.688.8351 [email protected]
    Contact: Sondra Katzen 708.688.8351 [email protected] Amazing Arachnids Fact Sheet Opening Amazing Arachnids is open from Saturday, May 26, through Monday, September 3. It features two sections—Art and Science of Arachnids and Mission Safari Maze . Purpose ° To provide Brookfield Zoo guests with an engaging and interactive experience where they can discover the incredible attributes of arachnids and how the species has played an important role in our lives. ° To inspire guests to gain a better understanding of arachnids and other species that could then lead to a greater appreciation for them. Location Brookfield Zoo’s West Mall Art and Science of Arachnids Art and Science of Arachnids invites guests to discover the cultural connections of these eight-legged creatures that have weaved their way into a variety of genres, including music, art, folklore, medicine, conservation, film, and literature. In addition to engaging, hands-on interactives, the exhibit features 100 live arachnids found around the world, making it the largest public collection of arachnids in North America. ° Arachnid Species —the live collection is primarily composed of tarantulas and scorpions with a sampling of whip scorpions and true spiders. Species include: Blue femur beauty tarantula Mahogany tree spider Brazilian blue violet tarantula Metallic pink toe tarantula Brazilian pink bloom tarantula Mexican fireleg tarantula Burgundy goliath birdeater Mexican red knee tarantula Columbian pumpkin patch tarantula Mozambique golden baboon tarantula Chaco golden knee
    [Show full text]
  • Food Load Manipulation Ability Shapes Flight Morphology in Females Of
    Polidori et al. Frontiers in Zoology 2013, 10:36 http://www.frontiersinzoology.com/content/10/1/36 RESEARCH Open Access Food load manipulation ability shapes flight morphology in females of central-place foraging Hymenoptera Carlo Polidori1*, Angelica Crottini2, Lidia Della Venezia3,5, Jesús Selfa4, Nicola Saino5 and Diego Rubolini5 Abstract Background: Ecological constraints related to foraging are expected to affect the evolution of morphological traits relevant to food capture, manipulation and transport. Females of central-place foraging Hymenoptera vary in their food load manipulation ability. Bees and social wasps modulate the amount of food taken per foraging trip (in terms of e.g. number of pollen grains or parts of prey), while solitary wasps carry exclusively entire prey items. We hypothesized that the foraging constraints acting on females of the latter species, imposed by the upper limit to the load size they are able to transport in flight, should promote the evolution of a greater load-lifting capacity and manoeuvrability, specifically in terms of greater flight muscle to body mass ratio and lower wing loading. Results: Our comparative study of 28 species confirms that, accounting for shared ancestry, female flight muscle ratio was significantly higher and wing loading lower in species taking entire prey compared to those that are able to modulate load size. Body mass had no effect on flight muscle ratio, though it strongly and negatively co-varied with wing loading. Across species, flight muscle ratio and wing loading were negatively correlated, suggesting coevolution of these traits. Conclusions: Natural selection has led to the coevolution of resource load manipulation ability and morphological traits affecting flying ability with additional loads in females of central-place foraging Hymenoptera.
    [Show full text]
  • Pest Alert: Brown Marmorated Stink Bug Halyomorpha Halys
    OREGON DEPARTMENT OF AGRICULTURE FACT SHEETS AND PEST ALERTS Pest Alert: Brown Marmorated Stink Bug Halyomorpha halys Introduction Brown Marmorated Stink Bug The brown marmorated stink bug (BMSB), Halyomorpha adult nymph newly-hatched halys, is an Asian species first detected in North America nymphs in Pennsylvania in 1996, and in Oregon in 2004. BMSB has since been detected in 43 states. In Oregon it is es- tablished statewide, in the western region from Portland to Ashland, and in the north east to Hood River. More recently it has been found in coastal counties and is likely still expanding its range and increasing in abundance around Oregon. A threat to Oregon agriculture BMSB is a major agricultural pest in Asia, attacking many crops. It is a significant agricultural pest in the Mid-At- lantic states of the U.S., attacking tree fruits, peppers, tomatoes, corn, berries, grapes, soybeans, melons, and even damaging young trees by feeding through the bark. BMSB is known to feed on over 170 species of plants. The insect threatens an estimated $21 billion worth of crops in the United States alone. Some commercial agri- cultural damage by BMSB has been reported in Oregon. Some home gardeners have reported extensive damage to beans, cucumbers, raspberries, hops, and several species A brown marmorated stink bug feeding on a mature hazelnut. BMSB of ornamental plants. is able to feed on tree nuts through the shell using its long mouthparts. Damage to crops Stink bugs feed by inserting their long, straw-like mouth parts into plants and sucking out the liquid inside.
    [Show full text]
  • PESTS of STORED PRODUCTS a 'Pest of Stored Products' Can Refer To
    PESTS OF STORED PRODUCTS A ‘pest of stored products’ can refer to any organism that infests and damages stored food, books and documents, fabrics, leather, carpets, and any other dried or preserved item that is not used shortly after it is delivered to a location, or moved regularly. Technically, these pests can include microorganisms such as fungi and bacteria, arthropods such as insects and mites, and vertebrates such as rodents and birds. Stored product pests are responsible for the loss of millions of dollars every year in contaminated products, as well as destruction of important documents and heritage artifacts in homes, offices and museums. Many of these pests are brought indoors in items that were infested when purchased. Others originate indoors when susceptible items are stored under poor storage conditions, or when stray individual pests gain access to them. Storage pests often go unnoticed because they infest items that are not regularly used and they may be very small in size. Infestations are noticed when the pests emerge from storage, to disperse or sometimes as a result of crowding or after having exhausted a particular food source, and search for new sources of food and harborage. Unexplained occurrences of minute moths and beetles flying in large numbers near stored items, or crawling over countertops, walls and ceilings, powdery residues below and surrounding stored items, and stale odors in pantries and closets can all indicate a possible storage pest infestation. Infestations in stored whole grains or beans can also be detected when these are soaked in water, and hollowed out seeds rise to the surface, along with the adult stages of the pests, and other debris.
    [Show full text]
  • Boxelder Bug
    BOXELDER BUG Integrated Pest Management for Home Gardeners and Landscape Professionals The western boxelder bug (Boisea rubrolineata) is often a nuisance pest around and in homes. Boxelder bugs usually feed on the leaves, flowers, and seedpods of the female or seedbearing box elder tree (Acer negundo), although they may also subsist on male box elder trees and occasionally occur on maple and ash trees. They may feed on the fruits of almond, apple, cherry, peach, Figure 1. Boxelder bug adult and nymphs. Figure 2. Young nymph of western box- pear, and plum trees, and on grapes, (J. K. Clark) elder bug, Boisea rubrolineata. where their feeding punctures cause (J. K. Clark) the fruit to become deformed. Large numbers of the bug usually occur only on female box elder trees. IDENTIFICATION When full grown, the boxelder bug is about 1/2 inch long and one-third as wide. Adults are mostly black and have three red lines on the pronotum of the thorax (one down the middle and on each margin) and several fine Figure 3. Boxelder bug eggs on leaf. Figure 4. Adult squash bug. red lines on each wing (Figure 1). The (J. K. Clark) (J. K. Clark) wings lie flat on the bug’s back when it is at rest. The abdomen is red. The young nymphs are bright red (Figure 2) and when approaching adulthood, become marked with black and begin to develop black wing pads. Eggs are yellow when first laid but become red as nymphs develop inside (Figure 3). Boxelder bugs are true bugs (Order: Hemiptera) in the family Rhopalidae.
    [Show full text]
  • Biology and Biointensive Management of Acanthoscelides Obtectus (Say) (Coleoptera: Chrysomelidae) – a Pest of Kidney Beans Wordwide
    11th International Working Conference on Stored Product Protection Biology and biointensive management of Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae) – a pest of kidney beans wordwide Thakur, D.R.*#, Renuka Department of Biosciences, Himachal Pradesh University, Summerhill, Shimla 171005, India *Corresponding author, Email: [email protected], [email protected] #Presenting author, Email: [email protected] [email protected] DOI: 10.14455/DOA.res.2014.24 Abstract Insects in the family Bruchidae are commonly called “pulse weevils” and are cosmopolitan in distribution. These beetles cause serious economic loss of legume commodities both in fields and every year. Pulses constitute the main source of protein for developing countries like India where per capita consumption of animal protein is very low. Due to their high protein quantity and quality, legumes are considered as “poor man‟s meat”. A large number of non-native pulse beetles have crossed geographical boundaries and becoming cosmopolitan in distribution, thus posing major pest problem worldwide. A kidney bean pest, Acanthoscelides obtectus (Say) (Coleoptera: Chrysomelidae) native to Central and Southern America has recently infested stored kidney beans in the Indian subcontinent. The present investigations determined life cycle, behaviour, facundity, pest status, host range and developmental compatibility on diffent legumes and different cultivars of kidney beans. Acetone and alcoholic extracts of some botanicals have been tested and proved effective to suppress facundity, egg hatch and adult longivity of the pest population under laboratory conditions. Keywords: Acanthoscelides obtectus, biology, resistance, developmental compatiblity, botanical management 1. Introduction Most pulses have 17-24% protein content which are 2.3 times higher than traditional cereals. Any stored materials of plant origin are vulnerable to attack by insect pests if the pulses are dried and stored improperly.
    [Show full text]
  • ARTHROPODA Subphylum Hexapoda Protura, Springtails, Diplura, and Insects
    NINE Phylum ARTHROPODA SUBPHYLUM HEXAPODA Protura, springtails, Diplura, and insects ROD P. MACFARLANE, PETER A. MADDISON, IAN G. ANDREW, JOCELYN A. BERRY, PETER M. JOHNS, ROBERT J. B. HOARE, MARIE-CLAUDE LARIVIÈRE, PENELOPE GREENSLADE, ROSA C. HENDERSON, COURTenaY N. SMITHERS, RicarDO L. PALMA, JOHN B. WARD, ROBERT L. C. PILGRIM, DaVID R. TOWNS, IAN McLELLAN, DAVID A. J. TEULON, TERRY R. HITCHINGS, VICTOR F. EASTOP, NICHOLAS A. MARTIN, MURRAY J. FLETCHER, MARLON A. W. STUFKENS, PAMELA J. DALE, Daniel BURCKHARDT, THOMAS R. BUCKLEY, STEVEN A. TREWICK defining feature of the Hexapoda, as the name suggests, is six legs. Also, the body comprises a head, thorax, and abdomen. The number A of abdominal segments varies, however; there are only six in the Collembola (springtails), 9–12 in the Protura, and 10 in the Diplura, whereas in all other hexapods there are strictly 11. Insects are now regarded as comprising only those hexapods with 11 abdominal segments. Whereas crustaceans are the dominant group of arthropods in the sea, hexapods prevail on land, in numbers and biomass. Altogether, the Hexapoda constitutes the most diverse group of animals – the estimated number of described species worldwide is just over 900,000, with the beetles (order Coleoptera) comprising more than a third of these. Today, the Hexapoda is considered to contain four classes – the Insecta, and the Protura, Collembola, and Diplura. The latter three classes were formerly allied with the insect orders Archaeognatha (jumping bristletails) and Thysanura (silverfish) as the insect subclass Apterygota (‘wingless’). The Apterygota is now regarded as an artificial assemblage (Bitsch & Bitsch 2000).
    [Show full text]
  • File Copy 161
    FILE COPY 161 Overwintering Aggregation of Boisea rubrolineatus (Heteroptera: Rhopalidae) in Western Oregon T. D. SCHOWALTER Department of Entomology, Oregon State University, Corvallis, Oregon 97331 Environ. Entomol. 15: 1055-1056 (1986) ABSTRACT Overwintering behavior of Boisea rubrolineatus (Barber) was studied during 1984-85. Large numbers of this insect aggregated on a single, large Douglas-fir, Pseudotsuga menziesii (Mirb.) Franco, tree, with deep bark fissures, at the edge of a stand ca. 1 km from a grove of maples, Acer macrophyllum Pursh, the feeding host. Other trees near the over- wintering site were smaller and lacked deep bark fissures, or were shaded by trees along the edge of the stand. Density measurement was used to estimate number of overwintering insects at ca. 8,000. These results demonstrate the degree of aggregative behavior in this insect and suggest that aspects of stand structure influence the availability of suitable over- wintering sites. KEY WORDS Boisea rubrolineatus, population dynamics, forest structure, resource uti- lization, overwintering site selection THE SURVIVAL OF overwintering adults of several pies, Acer macrophyllum Pursh, ca. 1 km N of the forest insect species may be critical to population overwintering site. These maples are the major trends and economic impacts (Furniss Carolin feeding host of this insect (Furniss Carolin 1977) 1977, Schowalter et al. 1986). Behavioral attributes and supported large populations of B. rubrolinea- of overwintering insects can influence the survival tus during spring and summer (personal observa- of such species (Tinker 1952, Pettinger Johnson tion). These trees were exposed to solar radiation 1962), but little information exists on overwinter- but lacked deep (>1 cm) bark crevices.
    [Show full text]
  • Boxelder Bug Nuisance Management for Homeowners
    CIS 1155 Boxelder Bug Nuisance Management for Homeowners by Danielle Gunn and Edward John Bechinski Boxelder bugs are a common nuisance pest in Figure 1. Idaho homes and yards. Although not particu- Comparative larly harmful, these insects can be aggravating life-size boxelder when they are searching for places to spend the bug 1st-stage winter. nymph (left) and adult (right). This publication will help you understand both the seasonal biology of boxelder bugs in Idaho, and landscape features that increase pest prob- lems. We discuss the relative importance of these insects as pests. Practical steps you can take to reduce nuisance problems include alternatives to insecticides and safe, effective insecticide use. Identification Boxelder bugs develop through three life stages: eggs, nymphs, and adults. Figure 1 shows the actual body sizes of a newly hatched nymph and a mature adult. Adults are the most commonly encountered life Figure 2. Adult boxelder bugs, Boisea trivittata, are stage. Adult boxelder bugs are flattened, elon- distinctively marked with red lines on a slate-gray back- gate insects approximately one-half-inch long ground. (not including antennae). Overall upper body color is slate gray to black. Reddish orange lines appear behind the head and along the sides of the body (Figure 2). The rest of the body under the wings is red with two rows of black spots. Legs and antennae are black. Eggs. Small red eggs occur in clusters on box- elder and maple trees. Elongate eggs one-six- teenth-inch long are laid in groups of about ten on the bark and leaves of host trees and sur- rounding areas.
    [Show full text]
  • UF/IFAS Annual Report of Peer-Reviewed Journal Articles – 2018 Master List – Unique Titles
    UF/IFAS Annual Report of Peer-reviewed Journal Articles – 2018 Master List – Unique Titles Abbate, A., Campbell, J., Bremer, J., & Kern, W. H. (2018). The introduction and establishment of Campsomeris dorsata (Hymenoptera: Scoliidae) in Florida. Florida Entomologist, 101(3), 543- 545. Abdelbasir, S. M., El-Sheikh, S. M., Morgan, V. L., Schmidt, H., Casso-Hartmann, L. M., Vanegas, D. C., Velez-Torres, I., & McLamore, E. S. (2018). Graphene-anchored cuprous oxide nanoparticles from waste electric cables for electrochemical sensing. ACS Sustainable Chemistry & Engineering, 6(9), 12176-12186. Abdulridha, J., Ampatzidis, Y., Ehsani, R., & de Castro, A. I. (2018). Evaluating the performance of spectral features and multivariate analysis tools to detect laurel wilt disease and nutritional deficiency in avocado. Computers and Electronics in Agriculture, 155, 203-211. AbouEl Ela, N. A., El-Nesr, K. A., Ahmed, H. A., & Brooks, S. A. (2018). Molecular detection of severe combined immunodeficiency disorder in Arabian horses in Egypt. Journal of Equine Veterinary Science, 68, 55-58. Abountiolas, M., Kelly, K., Yagiz, Y., Li, Z., Mahnken, G., Borejsza-Wysocki, W., Marshall, M., Sims, C. A., Peres, N., & Nunes, M. C. D. (2018). Sensory quality, physicochemical attributes, polyphenol profiles, and residual fungicides in strawberries from different disease-control treatments. Journal of Agricultural and Food Chemistry, 66(27), 6986-6996. Abrahamian, P., Timilsina, S., Minsavage, G. V., Sushmita, K. C., Goss, E. M., Jones, J. B., & Vallad, G. E. (2018). The type III effector AvrBsT enhances Xanthomonas perforans fitness in field- grown tomato. Phytopathology, 108(12), 1355-1362. Abrahamsen, E. B., Moharamzadeh, A., Abrahamsen, H. B., Asche, F., Heide, B., & Milazzo, M.
    [Show full text]