Principles of Taxonomy and Classification: Current Procedures for Naming and Classifying Organisms
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
I Scope and Importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker System & Cronquist
Syllabus: 2020-2021 Unit – I Scope and importance of Taxonomy. Classification of Angiosperms- Bentham and Hooker system & Cronquist. Flora, revision and Monographs. Botanical nomenclature (ICBN), Taxonomic hierarchy, typification, principles of priority, publication, Keys and their types, Preparation and role of Herbarium. Importance of Botanical gardens. PLANT KINGDOM Amongst plants nearly 15,000 species belong to Mosses and Liverworts, 12,700 Ferns and their allies, 1,079 Gymnosperms and 295,383 Angiosperms (belonging to about 485 families and 13,372 genera), considered to be the most recent and vigorous group of plants that have occurred on earth. Angiosperms occupy the majority of the terrestrial space on earth, and are the major components of the world‘s vegetation. Brazil (First) and Colombia (second), both located in the tropics considered to be countries with the most diverse angiosperms floras China (Third) even though the main part of her land is not located in the tropics, the number of angiosperms still occupies the third place in the world. In INDIA there are about 18042 species of flowering plants approximately 320 families, 40 genera and 30,000 species. IUCN Red list Categories: EX –Extinct; EW- Extinct in the Wild-Threatened; CR -Critically Endangered; VU- Vulnerable Angiosperm (Flowering Plants) SPECIES RICHNESS AROUND THE WORLD PLANT CLASSIFICATION Historia Plantarum - the earliest surviving treatise on plants in which Theophrastus listed the names of over 500 plant species. Artificial system of Classification Theophrastus attempted common groupings of folklore combined with growth form such as ( Tree Shrub; Undershrub); or Herb. Or (Annual and Biennials plants) or (Cyme and Raceme inflorescences) or (Archichlamydeae and Meta chlamydeae) or (Upper or Lower ovarian ). -
Review and Updated Checklist of Freshwater Fishes of Iran: Taxonomy, Distribution and Conservation Status
Iran. J. Ichthyol. (March 2017), 4(Suppl. 1): 1–114 Received: October 18, 2016 © 2017 Iranian Society of Ichthyology Accepted: February 30, 2017 P-ISSN: 2383-1561; E-ISSN: 2383-0964 doi: 10.7508/iji.2017 http://www.ijichthyol.org Review and updated checklist of freshwater fishes of Iran: Taxonomy, distribution and conservation status Hamid Reza ESMAEILI1*, Hamidreza MEHRABAN1, Keivan ABBASI2, Yazdan KEIVANY3, Brian W. COAD4 1Ichthyology and Molecular Systematics Research Laboratory, Zoology Section, Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran 2Inland Waters Aquaculture Research Center. Iranian Fisheries Sciences Research Institute. Agricultural Research, Education and Extension Organization, Bandar Anzali, Iran 3Department of Natural Resources (Fisheries Division), Isfahan University of Technology, Isfahan 84156-83111, Iran 4Canadian Museum of Nature, Ottawa, Ontario, K1P 6P4 Canada *Email: [email protected] Abstract: This checklist aims to reviews and summarize the results of the systematic and zoogeographical research on the Iranian inland ichthyofauna that has been carried out for more than 200 years. Since the work of J.J. Heckel (1846-1849), the number of valid species has increased significantly and the systematic status of many of the species has changed, and reorganization and updating of the published information has become essential. Here we take the opportunity to provide a new and updated checklist of freshwater fishes of Iran based on literature and taxon occurrence data obtained from natural history and new fish collections. This article lists 288 species in 107 genera, 28 families, 22 orders and 3 classes reported from different Iranian basins. However, presence of 23 reported species in Iranian waters needs confirmation by specimens. -
International Code of Zoological Nomenclature
International Commission on Zoological Nomenclature INTERNATIONAL CODE OF ZOOLOGICAL NOMENCLATURE Fourth Edition adopted by the International Union of Biological Sciences The provisions of this Code supersede those of the previous editions with effect from 1 January 2000 ISBN 0 85301 006 4 The author of this Code is the International Commission on Zoological Nomenclature Editorial Committee W.D.L. Ride, Chairman H.G. Cogger C. Dupuis O. Kraus A. Minelli F. C. Thompson P.K. Tubbs All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying or otherwise), without the prior written consent of the publisher and copyright holder. Published by The International Trust for Zoological Nomenclature 1999 c/o The Natural History Museum - Cromwell Road - London SW7 5BD - UK © International Trust for Zoological Nomenclature 1999 Explanatory Note This Code has been adopted by the International Commission on Zoological Nomenclature and has been ratified by the Executive Committee of the International Union of Biological Sciences (IUBS) acting on behalf of the Union's General Assembly. The Commission may authorize official texts in any language, and all such texts are equivalent in force and meaning (Article 87). The Code proper comprises the Preamble, 90 Articles (grouped in 18 Chapters) and the Glossary. Each Article consists of one or more mandatory provisions, which are sometimes accompanied by Recommendations and/or illustrative Examples. In interpreting the Code the meaning of a word or expression is to be taken as that given in the Glossary (see Article 89). -
Species Concepts and the Evolutionary Paradigm in Modern Nematology
JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy. -
Western Tiger Salamander,Ambystoma Mavortium
COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada. -
Crestfish Lophotus Lacepede (Giorna, 1809) and Scalloped Ribbonfish Zu Cristatus (Bonelli, 1819) in the Northern Coast of Sicily, Italy
ISSN: 0001-5113 ACTA ADRIAT., ORIGINAL SCIENTIFIC PAPER AADRAY 58(1): 137 - 146, 2017 Occurrence of two rare species from order Lampriformes: Crestfish Lophotus lacepede (Giorna, 1809) and scalloped ribbonfish Zu cristatus (Bonelli, 1819) in the northern coast of Sicily, Italy Fabio FALSONE1, Michele Luca GERACI1, Danilo SCANNELLA1, Charles Odilichukwu R. OKPALA1, Giovan Battista GIUSTO1, Mar BOSCH-BELMAR2, Salvatore GANCITANO1 and Gioacchino BONO1 1Institute for the Coastal Marine Environment, IAMC‑CNR, 91026 Mazara del Vallo, Sicily, Italy 2Consorzio Nazionale Interuniversitario per le Scienze del Mare (CoNISMa), Rome, Italy Corresponding author, e‑mail: [email protected] The bony fish Lophotus lacepede (Giorna, 1809) and Zu cristatus (Bonelli, 1819) are the two species rarely recorded within the Mediterranean basin, usually reported as accidentally captured in depth (mesopelagic) fishing operations. In the current work, we present the first record of L. lacepede and Z. cristatus in fishing catches from southwestern Tyrrhenian Sea. Moreover, in order to improve existent biological/ecological knowledge, some bio-related aspects such as feeding aspect, sexual maturity and age estimate have been discussed. Key words: crestfish, scalloped ribbonfish, meristic features, vertebrae, growth ring INTRODUCTION species of Lophotidae family, the L. lacepede inhabits the epipelagic zone, although it could The target species of this study (Lophotus also be recorded in most oceans from the surface lacepede and Zu cristatus) belong to Lophotidae up to 1000 m depth (HEEMSTRA, 1986; PALMER, (Bonaparte, 1845) and Trachipteridae (Swain- 1986; OLNEY, 1999). First record of this spe- son, 1839) families respectively, including the cies in the Mediterranean Basin was from the Lampriformes order (consisted of 7 families). -
Synthesis of Phylogeny and Taxonomy Into a Comprehensive Tree of Life
Synthesis of phylogeny and taxonomy into a comprehensive tree of life Cody E. Hinchliffa,1, Stephen A. Smitha,1,2, James F. Allmanb, J. Gordon Burleighc, Ruchi Chaudharyc, Lyndon M. Coghilld, Keith A. Crandalle, Jiabin Dengc, Bryan T. Drewf, Romina Gazisg, Karl Gudeh, David S. Hibbettg, Laura A. Katzi, H. Dail Laughinghouse IVi, Emily Jane McTavishj, Peter E. Midfordd, Christopher L. Owenc, Richard H. Reed, Jonathan A. Reesk, Douglas E. Soltisc,l, Tiffani Williamsm, and Karen A. Cranstonk,2 aEcology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109; bInterrobang Corporation, Wake Forest, NC 27587; cDepartment of Biology, University of Florida, Gainesville, FL 32611; dField Museum of Natural History, Chicago, IL 60605; eComputational Biology Institute, George Washington University, Ashburn, VA 20147; fDepartment of Biology, University of Nebraska-Kearney, Kearney, NE 68849; gDepartment of Biology, Clark University, Worcester, MA 01610; hSchool of Journalism, Michigan State University, East Lansing, MI 48824; iBiological Science, Clark Science Center, Smith College, Northampton, MA 01063; jDepartment of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS 66045; kNational Evolutionary Synthesis Center, Duke University, Durham, NC 27705; lFlorida Museum of Natural History, University of Florida, Gainesville, FL 32611; and mComputer Science and Engineering, Texas A&M University, College Station, TX 77843 Edited by David M. Hillis, The University of Texas at Austin, Austin, TX, and approved July 28, 2015 (received for review December 3, 2014) Reconstructing the phylogenetic relationships that unite all line- published phylogenies are available only as journal figures, rather ages (the tree of life) is a grand challenge. The paucity of homologous than in electronic formats that can be integrated into databases and character data across disparately related lineages currently renders synthesis methods (7–9). -
Loggerhead Shrike, Migrans Subspecies (Lanius Ludovicianus Migrans), in Canada
PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Loggerhead Shrike, migrans subspecies (Lanius ludovicianus migrans), in Canada Loggerhead Shrike, migrans subspecies © Manitoba Conservation 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets objectives and broad strategies to attain them and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk. -
Biology Assessment Plan Spring 2019
Biological Sciences Department 1 Biology Assessment Plan Spring 2019 Task: Revise the Biology Program Assessment plans with the goal of developing a sustainable continuous improvement plan. In order to revise the program assessment plan, we have been asked by the university assessment committee to revise our Students Learning Outcomes (SLOs) and Program Learning Outcomes (PLOs). Proposed revisions Approach: A large community of biology educators have converged on a set of core biological concepts with five core concepts that all biology majors should master by graduation, namely 1) evolution; 2) structure and function; 3) information flow, exchange, and storage; 4) pathways and transformations of energy and matter; and (5) systems (Vision and Change, AAAS, 2011). Aligning our student learning and program goals with Vision and Change (V&C) provides many advantages. For example, the V&C community has recently published a programmatic assessment to measure student understanding of vision and change core concepts across general biology programs (Couch et al. 2019). They have also carefully outlined student learning conceptual elements (see Appendix A). Using the proposed assessment will allow us to compare our student learning profiles to those of similar institutions across the country. Revised Student Learning Objectives SLO 1. Students will demonstrate an understanding of core concepts spanning scales from molecules to ecosystems, by analyzing biological scenarios and data from scientific studies. Students will correctly identify and explain the core biological concepts involved relative to: biological evolution, structure and function, information flow, exchange, and storage, the pathways and transformations of energy and matter, and biological systems. More detailed statements of the conceptual elements students need to master are presented in appendix A. -
Principles of Plant Taxonomy Bot
PRINCIPLES OF PLANT TAXONOMY BOT 222 Dr. M. Ajmal Ali, PhD 1 What is Taxonomy / Systematics ? Animal group No. of species Amphibians 6,199 Birds 9,956 Fish 30,000 Mammals 5,416 Tundra Reptiles 8,240 Subtotal 59,811 Grassland Forest Insects 950,000 Molluscs 81,000 Q: Why we keep the stuffs of our home Crustaceans 40,000 at the fixed place or arrange into some Corals 2,175 kinds of system? Desert Others 130,200 Rain forest Total 1,203,375 • Every Human being is a Taxonomist Plants No. of species Mosses 15,000 Ferns and allies 13,025 Gymnosperms 980 Dicotyledons 199,350 Monocotyledons 59,300 Green Algae 3,715 Red Algae 5,956 Lichens 10,000 Mushrooms 16,000 Brown Algae 2,849 Subtotal 28,849 Total 1,589,361 • We have millions of different kind of plants, animals and microorganism. We need to scientifically identify, name and classify all the living organism. • Taxonomy / Systematics is the branch of science deals with classification of organism. 2 • Q. What is Plant Taxonomy / Plant systematics We study plants because: Plants convert Carbon dioxide gas into Every things we eat comes Plants produce oxygen. We breathe sugars through the process of directly or indirectly from oxygen. We cannot live without photosynthesis. plants. oxygen. Many chemicals produced by the Study of plants science helps to Study of plants science helps plants used as learn more about the natural Plants provide fibres for paper or fabric. to conserve endangered medicine. world plants. We have millions of different kind of plants, animals and microorganism. -
Systematics and Evolution of the Genus Pleurothallis R. Br
Systematics and evolution of the genus Pleurothallis R. Br. (Orchidaceae) in the Greater Antilles DISSERTATION zur Erlangung des akademischen Grades doctor rerum naturalium (Dr. rer. nat.) im Fach Biologie eingereicht an der Mathematisch-Naturwissenschaftlichen Fakultät I der Humboldt-Universität zu Berlin von Diplom-Biologe Hagen Stenzel geb. 05.10.1967 in Berlin Präsident der Humboldt-Universität zu Berlin Prof. Dr. J. Mlynek Dekan der Mathematisch-Naturwissenschaftlichen Fakultät I Prof. Dr. M. Linscheid Gutachter/in: 1. Prof. Dr. E. Köhler 2. HD Dr. H. Dietrich 3. Prof. Dr. J. Ackerman Tag der mündlichen Prüfung: 06.02.2004 Pleurothallis obliquipetala Acuña & Schweinf. Für Jakob und Julius, die nichts unversucht ließen, um das Zustandekommen dieser Arbeit zu verhindern. Zusammenfassung Die antillanische Flora ist eine der artenreichsten der Erde. Trotz jahrhundertelanger floristischer Forschung zeigen jüngere Studien, daß der Archipel noch immer weiße Flecken beherbergt. Das trifft besonders auf die Familie der Orchideen zu, deren letzte Bearbeitung für Cuba z.B. mehr als ein halbes Jahrhundert zurückliegt. Die vorliegende Arbeit basiert auf der lang ausstehenden Revision der Orchideengattung Pleurothallis R. Br. für die Flora de Cuba. Mittels weiterer morphologischer, palynologischer, molekulargenetischer, phytogeographischer und ökologischer Untersuchungen auch eines Florenteils der anderen Großen Antillen wird die Genese der antillanischen Pleurothallis-Flora rekonstruiert. Der Archipel umfaßt mehr als 70 Arten dieser Gattung, wobei die Zahlen auf den einzelnen Inseln sehr verschieden sind: Cuba besitzt 39, Jamaica 23, Hispaniola 40 und Puerto Rico 11 Spezies. Das Zentrum der Diversität liegt im montanen Dreieck Ost-Cuba – Jamaica – Hispaniola, einer Region, die 95 % der antillanischen Arten beherbergt, wovon 75% endemisch auf einer der Inseln sind. -
The Taxonomy of Human Evolved Psychological Adaptations
Evo Edu Outreach (2012) 5:312–320 DOI 10.1007/s12052-012-0428-8 EVOLUTION AND EDUCATION RESOURCES PsychTable.org: The Taxonomy of Human Evolved Psychological Adaptations Niruban Balachandran & Daniel J. Glass Published online: 8 July 2012 # Springer Science+Business Media, LLC 2012 Abstract We announce the launch of PsychTable.org,a Introduction collaborative web-based project devoted to classifying and evaluating evolved psychological adaptations The timing is right to establish a classification system for (EPAs), geared toward researchers, educators, students, human evolved psychological adaptations (EPAs). Several and the general public. The website works by aggregat- factors have coalesced to create a unique opportunity to de- ing citations which support or challenge the existence of velop a taxonomy that will facilitate the expansion of a culture each purported EPA, using a mathematical algorithm to of both synthesis and empirical rigor in the evolutionary assign an evidentiary strength score to each, and gener- behavioral sciences, including disciplines such as evolution- ating a table which represents the current but ever- ary cognitive neuroscience, behavioral ecology, “evo-devo,” changing state of the empirical evidence. Citations are primatology, evolutionary anthropology, human ethology, ge- added and assigned evaluative ratings by both general netics, and others. users and an international community of expert contrib- These aforementioned factors include: a large international utors; as such, the content of the site will represent the body of research describing hundreds of amassed EPAs; a consensus of the scientific community and new research global research community of evolutionary behavioral scien- opportunities. PsychTable has features for achieving empir- tists that recognizes the importance of both synthesis and ical meta-goals such as quality control, hypothesis testing, classification; the ascent of evolutionary psychology as a cross-disciplinary collaboration, and didactic utility.