Species Concepts and the Evolutionary Paradigm in Modern Nematology

Total Page:16

File Type:pdf, Size:1020Kb

Species Concepts and the Evolutionary Paradigm in Modern Nematology JOURNAL OF NEMATOLOGY VOLUME 30 MARCH 1998 NUMBER 1 Journal of Nematology 30 (1) :1-21. 1998. © The Society of Nematologists 1998. Species Concepts and the Evolutionary Paradigm in Modern Nematology BYRON J. ADAMS 1 Abstract: Given the task of recovering and representing evolutionary history, nematode taxonomists can choose from among several species concepts. All species concepts have theoretical and (or) opera- tional inconsistencies that can result in failure to accurately recover and represent species. This failure not only obfuscates nematode taxonomy but hinders other research programs in hematology that are dependent upon a phylogenetically correct taxonomy, such as biodiversity, biogeography, cospeciation, coevolution, and adaptation. Three types of systematic errors inherent in different species concepts and their potential effects on these research programs are presented. These errors include overestimating and underestimating the number of species (type I and II error, respectively) and misrepresenting their phylogenetic relationships (type III error). For research programs in hematology that utilize recovered evolutionary history, type II and III errors are the most serious. Linnean, biological, evolutionary, and phylogenefic species concepts are evaluated based on their sensitivity to systematic error. Linnean and biologica[ species concepts are more prone to serious systematic error than evolutionary or phylogenetic concepts. As an alternative to the current paradigm, an amalgamation of evolutionary and phylogenetic species concepts is advocated, along with a set of discovery operations designed to minimize the risk of making systematic errors. Examples of these operations are applied to species and isolates of Heterorhab- ditis. Key words: adaptation, biodiversity, biogeography, coevolufion, comparative method, cospeciation, evolution, nematode, philosophy, species concepts, systematics, taxonomy. Ever since Mayr (1942) codified a species decisions are made by inference; it is never concept in the taxonomic literature based clear what parameters are in place during on reproductive incompatibility (the Bio- the discovery operations. We get the results logical Species Concept, or BSC), nematol- (usually that one isolate is somehow differ- ogists have had to decide, consciously or ent from others) but rarely are they accom- not, whether to use it when describing and panied by any explicit mention of method- classifying nematodes. Subsequently, an ex- ology, or what the differences mean. ~ The tensive literature has been established and extensive diversity ofundescribed nematode currently there are several well-articulated species poses substantive challenges to the species concepts available to taxonomists future of nematode taxonomy. Also, recent (see Ereshefsky, 1992). However, the vast progress in systematic biology and the com- majority of species descriptions within the parative method suggest that many research last decade make no mention of species con- programs in hematology stand to benefit from cepts. Groups of nematodes are isolated and a reevaluation of the philosophical and opera- delimited as species, but a species per se is tional tenets of alternative species concepts. 2 not defined at all. Thus, many taxonomic My intent here is not to address the merit Received for publication 1 May 1997. 1 For an example of this problem as it exists in philosophy i Department of Plant Pathology, University of Nebraska- and evolutionary biology, see Dennett (1995), who views this as Lincoln, Lincoln, NE 68583-0722. analogous to playing tennis with the net down: with no roles, no E-mail: [email protected] one can understand or play the game. Ultimately there is only The author thanks J. G. Baldwin, P. De Ley, V. Ferris, J. D. confusion and nobody has any fun. Lynch, T. O. Powers, and W. Sudhaus for their helpful com- 2 This criticism is not unique to nematology and has been ments on an early version of this paper. J. G. Baldwin, E.C. addressed in other fields including ornithology (Cracraft, Bernard, and an anonymous reviewer provided invaluable con- 1983), herpetology (Frost and Hillis, 1990), and botany (Mc- structive editorial criticism. Dade, 1995). The JOURNAL OF NEMATOLOGY for March (30:1-21) was issued 2 Journal of Nematology, Volume 30, No. 1, March 1998 of species descriptions in nematology. zen (1983) posited: "Systematics has two ob- Rather, my purpose is to show that species jectives. Firstly, the clear ordering and reg- concepts are the crux of taxonomy and that istering of species diversity to facilitate prac- a taxonomy based on irrational species con- tical work with the species. Secondly, the cepts can subvert the goals of our taxonomic formulation of a scientific theory of the evo- endeavors by misrepresenting evolutionary lutionary relationships among species and history and thereby significantly hindering groups of species; therefore, the resulting efforts to recover other types of historical system should be based on phylogenetic ar- phenomena. To mitigate these problems, I guments." advocate an alternative species concept for Few systematists will take issue with this use in nematology, and a methodology for statement. Evolutionary history has pro- its application, duced species that taxonomists hope to re- Before addressing the epistemological cover in order to facilitate practical work. It question of how we can logically recognize is also the taxonomist's objective to repre- an entity as a species (the main thrust of this sent the evolutionary relationships among paper), I need to acknowledge a nontrivial species. Without altering its intent or sub- ontological assumption, that speciation oc- stance, Lorenzen's statement could be sim- curs by cladogenesis, and that the Nemata plified to read, "The reason nematologists are a monophyletic group, s If this is true, do systematics is to recover and represent evo- then for nematode taxonomy to reflect evo- lutionary history." A clear understanding of lutionary history all nematode species must these two objectives is critical because if spe- by definition be monophyletic, 4 a require- cies concepts differ in their ability to accom- ment if species are to be given non-arbitrary plish these goals, then it is possible to recognition. For example, taxonomists use a choose a concept of species least likely to fail variety of operations when naming nema- in this regard. Other species concepts can todes, some theoretical and some prag- be rejected as those more likely to confound matic. But the central underlying premise is or hinder taxonomic endeavors. that the entities we call species are either i) In the following sections I establish crite- species, ii) part of a species, or iii) a mixture ria and evaluate four prominent species con- of two or more species. This ontological dic- cepts based on their ability to accomplish tum exhausts the taxonomic possibilities the two objectives of nematode taxonomy and lets us get on with the task of addressing (Lorenzen, 1983). I will advocate an amal- epistemological problems. The epistemo- gamation of two concepts, explain the utility logical questions I will explore involve the of this new approach in terms of its ability to logical basis for recognizing a particular en- reduce error, and provide a methodology tity as a species. for its implementation. SPECIES CONCEPTS AND THE PURPOSE OF THE SPECIES PROBLEM TAXONOMY As long as the boundaries between popu- To stimulate a more unified approach to lations and species have exhibited variation, systematic endeavors in nematology, Loren- systematists have at some point had to ratio- nalize a way of distinguishing between the two. In the absence of any objective meth- 3 Epistemology deals with the nature of knowledge, or "How do we know we have species?" Ontology deals with the nature odology within the Linnean paradigm, pro- of being, or in this case, "Do we have species?" ponents of alternative species concepts have 4 By this I mean that all individuals that comprise a species must be more closely related to each other than to members of tried to establish objective solutions to the another species. It should be pointed out that there are prob- species problem (the problem of not being lems with extending the term "monophyly" to subspecific en- tities (Plamick, 1977). However, this does not appear to be able to objectively identify just exactly what problematic as long as the phylogenetic patterns among com- is or is not a species). Yet, in every case all parable organisms (semaphoronts) within a species can be rep- resented (but see Nixon and Wheeler, 1990). current species concepts at some level fail to Species Concepts: Adams 3 satisfy the objectives of taxonomy. If repro- more species than actually exist, and type II ductive incompatibility is a requirement of error predicts fewer species than actually ex- species, how can unisexual species or fossils ist. These two errors affect the way in which be accounted for? If species are based solely we meet the first objective of taxonomy, that on the similarities and differences between of accurately recovering species as products populations, exactly how similar or different of evolutionary history. A third type of error must they be? occurs when a depiction of phylogenetic re- Realizing this problem, Myers (1952) lationships among species is incongruent pointed out that definitional species con- with recovered evolutionary history. This er- cepts will always fail because taxonomic ror is distinct in
Recommended publications
  • The Taxonomy of Primates in the Laboratory Context
    P0800261_01 7/14/05 8:00 AM Page 3 C HAPTER 1 The Taxonomy of Primates T HE T in the Laboratory Context AXONOMY OF P Colin Groves RIMATES School of Archaeology and Anthropology, Australian National University, Canberra, ACT 0200, Australia 3 What are species? D Taxonomy: EFINITION OF THE The biological Organizing nature species concept Taxonomy means classifying organisms. It is nowadays commonly used as a synonym for systematics, though Disagreement as to what precisely constitutes a species P strictly speaking systematics is a much broader sphere is to be expected, given that the concept serves so many RIMATE of interest – interrelationships, and biodiversity. At the functions (Vane-Wright, 1992). We may be interested basis of taxonomy lies that much-debated concept, the in classification as such, or in the evolutionary implica- species. tions of species; in the theory of species, or in simply M ODEL Because there is so much misunderstanding about how to recognize them; or in their reproductive, phys- what a species is, it is necessary to give some space to iological, or husbandry status. discussion of the concept. The importance of what we Most non-specialists probably have some vague mean by the word “species” goes way beyond taxonomy idea that species are defined by not interbreeding with as such: it affects such diverse fields as genetics, biogeog- each other; usually, that hybrids between different species raphy, population biology, ecology, ethology, and bio- are sterile, or that they are incapable of hybridizing at diversity; in an era in which threats to the natural all. Such an impression ultimately derives from the def- world and its biodiversity are accelerating, it affects inition by Mayr (1940), whereby species are “groups of conservation strategies (Rojas, 1992).
    [Show full text]
  • Western Tiger Salamander,Ambystoma Mavortium
    COSEWIC Assessment and Status Report on the Western Tiger Salamander Ambystoma mavortium Southern Mountain population Prairie / Boreal population in Canada Southern Mountain population – ENDANGERED Prairie / Boreal population – SPECIAL CONCERN 2012 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2012. COSEWIC assessment and status report on the Western Tiger Salamander Ambystoma mavortium in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. xv + 63 pp. (www.registrelep-sararegistry.gc.ca/default_e.cfm). Previous report(s): COSEWIC. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 33 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Schock, D.M. 2001. COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada, in COSEWIC assessment and status report on the tiger salamander Ambystoma tigrinum in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-33 pp. Production note: COSEWIC would like to acknowledge Arthur Whiting for writing the status report on the Western Tiger Salamander, Ambystoma mavortium, in Canada, prepared under contract with Environment Canada. This report was overseen and edited by Kristiina Ovaska, Co-chair of the COSEWIC Amphibians and Reptiles Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur la Salamandre tigrée de l’Ouest (Ambystoma mavortium) au Canada.
    [Show full text]
  • Loggerhead Shrike, Migrans Subspecies (Lanius Ludovicianus Migrans), in Canada
    PROPOSED Species at Risk Act Recovery Strategy Series Recovery Strategy for the Loggerhead Shrike, migrans subspecies (Lanius ludovicianus migrans), in Canada Loggerhead Shrike, migrans subspecies © Manitoba Conservation 2010 About the Species at Risk Act Recovery Strategy Series What is the Species at Risk Act (SARA)? SARA is the Act developed by the federal government as a key contribution to the common national effort to protect and conserve species at risk in Canada. SARA came into force in 2003, and one of its purposes is “to provide for the recovery of wildlife species that are extirpated, endangered or threatened as a result of human activity.” What is recovery? In the context of species at risk conservation, recovery is the process by which the decline of an endangered, threatened or extirpated species is arrested or reversed, and threats are removed or reduced to improve the likelihood of the species’ persistence in the wild. A species will be considered recovered when its long-term persistence in the wild has been secured. What is a recovery strategy? A recovery strategy is a planning document that identifies what needs to be done to arrest or reverse the decline of a species. It sets objectives and broad strategies to attain them and identifies the main areas of activities to be undertaken. Detailed planning is done at the action plan stage. Recovery strategy development is a commitment of all provinces and territories and of three federal agencies — Environment Canada, Parks Canada Agency and Fisheries and Oceans Canada — under the Accord for the Protection of Species at Risk.
    [Show full text]
  • Mecoptera: Meropeidae): Simply Dull Or Just Inscrutable?
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 8-24-2007 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma University of Florida, [email protected] James C. Dunford University of Florida, Gainesville, FL Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Entomology Commons Somma, Louis A. and Dunford, James C., "Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable?" (2007). Insecta Mundi. 65. https://digitalcommons.unl.edu/insectamundi/65 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0013 Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Louis A. Somma Department of Zoology PO Box 118525 University of Florida Gainesville, FL 32611-8525 [email protected] James C. Dunford Department of Entomology and Nematology PO Box 110620, IFAS University of Florida Gainesville, FL 32611-0620 [email protected] Date of Issue: August 24, 2007 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Louis A. Somma and James C. Dunford Etymology of the earwigfly, Merope tuber Newman (Mecoptera: Meropeidae): Simply dull or just inscrutable? Insecta Mundi 0013: 1-5 Published in 2007 by Center for Systematic Entomology, Inc. P. O. Box 147100 Gainesville, FL 32604-7100 U.
    [Show full text]
  • Towards a Global Names Architecture: the Future of Indexing Scientific Names
    A peer-reviewed open-access journal ZooKeys 550: 261–281Towards (2016) a Global Names Architecture: The future of indexing scientific names 261 doi: 10.3897/zookeys.550.10009 RESEARCH ARTICLE http://zookeys.pensoft.net Launched to accelerate biodiversity research Towards a Global Names Architecture: The future of indexing scientific names Richard L. Pyle1 1 Bernice Pauahi Bishop Museum, 1525 Bernice Street, Honolulu, HI 96817, USA Corresponding author: Richard L. Pyle (email address) Academic editor: Ellinor Michel | Received 19 May 2015 | Accepted 20 May 2015 | Published 7 January 2016 http://zoobank.org/AD5B8CE2-BCFC-4ABC-8AB0-C92DEC7D4D85 Citation: Pyle RL (2016) Towards a Global Names Architecture: The future of indexing scientific names. In: Michel E (Ed.) Anchoring Biodiversity Information: From Sherborn to the 21st century and beyond. ZooKeys 550: 261–281. doi: 10.3897/zookeys.550.10009 Abstract For more than 250 years, the taxonomic enterprise has remained almost unchanged. Certainly, the tools of the trade have improved: months-long journeys aboard sailing ships have been reduced to hours aboard jet airplanes; advanced technology allows humans to access environments that were once utterly inacces- sible; GPS has replaced crude maps; digital hi-resolution imagery provides far more accurate renderings of organisms that even the best commissioned artists of a century ago; and primitive candle-lit micro- scopes have been replaced by an array of technologies ranging from scanning electron microscopy to DNA sequencing. But the basic paradigm remains the same. Perhaps the most revolutionary change of all – which we are still in the midst of, and which has not yet been fully realized – is the means by which taxonomists manage and communicate the information of their trade.
    [Show full text]
  • Hibbett Et Al 2011 Fung Biol
    fungal biology reviews 25 (2011) 38e47 journal homepage: www.elsevier.com/locate/fbr Plenary Paper Progress in molecular and morphological taxon discovery in Fungi and options for formal classification of environmental sequences David S. HIBBETTa,*, Anders OHMANa, Dylan GLOTZERa, Mitchell NUHNa, Paul KIRKb, R. Henrik NILSSONc,d aBiology Department, Clark University, Worcester, MA 01610, USA bCABI UK, Bakeham Lane, Egham, Surrey TW20 9TY, UK cDepartment of Plant and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Goteborg,€ Sweden dDepartment of Botany, Institute of Ecology and Earth Sciences, University of Tartu, 40 Lai St., 51005 Tartu, Estonia article info abstract Article history: Fungal taxonomy seeks to discover, describe, and classify all species of Fungi and provide Received 14 December 2010 tools for their identification. About 100,000 fungal species have been described so far, but it Accepted 3 January 2011 has been estimated that there may be from 1.5 to 5.1 million extant fungal species. Over the last decade, about 1200 new species of Fungi have been described in each year. At that Keywords: rate, it may take up to 4000 y to describe all species of Fungi using current specimen-based Biodiversity approaches. At the same time, the number of molecular operational taxonomic units Classification (MOTUs) discovered in ecological surveys has been increasing dramatically. We analyzed Environmental sequences ribosomal RNA internal transcribed spacer (ITS) sequences in the GenBank nucleotide data- Molecular ecology base and classified them as “environmental” or “specimen-based”. We obtained 91,225 MOTU sequences, of which 30,217 (33 %) were of environmental origin. Clustering at an average Taxonomy 93 % identity in extracted ITS1 and ITS2 sequences yielded 16,969 clusters, including 6230 (37 %) clusters with only environmental sequences, and 2223 (13 %) clusters with both envi- ronmental and specimen-based sequences.
    [Show full text]
  • Speciation in Geographical Setting
    Speciation Speciation 2019 2019 The degree of reproductive isolation Substantial variation exists in among geographical sets of species - anagenesis populations within an actively 1859 1859 evolving species complex is often Achillea - yarrow tested by crossing experiments — as in the tidy tips of California 100K bp 100K bp back in time back in time back Rubus parviforus K = 4 mean population assignment 2 mya 2 mya ID CO WI_Door 5 mya BC_Hixton BC_MtRob WI_BruleS 5 mya BC_McLeod CA_Klamath MI_Windigo WA_Cascade WA_BridgeCr SD_BlackHills OR_Willamette MI_Drummond Speciation Speciation 2019 Reproductive isolation will ultimately stop all Although simple in concept, the recognition of species and thus the definition genetic connections among sets of populations of what are species have been controversial — more than likely due to the – cladogenesis or speciation continuum nature of the pattern resulting from the process of speciation 1859 Example: mechanical isolation via floral shape changes and pollinators between two parapatric species of California Salvia (sage) 100K bp back in time back 2 mya S. mellifera 5 mya Salvia apiana 1 Speciation Speciation Although simple in concept, the recognition of species and thus the definition Animal examples of speciation often show of what are species have been controversial — more than likely due to the clear reproductive barriers - hence zoologists continuum nature of the pattern resulting from the process of speciation preference (as opposed to botanists) for the Reproductive isolating Biological
    [Show full text]
  • American Ornithologists' Union
    m eeting PrOgrAm 129th Stated Meeting of the AmericAn OrnithOlOgists’ UniOn 24-29 July, 2011 hyatt Regency JackSonville RiveRfRont JackSonville, floRida, uSa Co-hosted by the University of Florida and the Florida Ornithological Society. Jacksonville, florida a merican ornithologists’ union Co ntents Ogi r An Zers .................................................................................................................................................................................2 meeting hOsts ...........................................................................................................................................................................2 registrAtiOn AnD generAl inFOrmAtiOn ............................................................................................................................3 Registration/information desk .................................................................................................................................................................................................3 Message/job board .....................................................................................................................................................................................................................3 Parking ..........................................................................................................................................................................................................................................3 Internet, fax,
    [Show full text]
  • When Mycologists Describe New Species, Not All Relevant
    A peer-reviewed open-access journal MycoKeys 72: 109–128 (2020) Mycological species descriptions over time 109 doi: 10.3897/mycokeys.72.56691 RESEARCH ARTICLE MycoKeys http://mycokeys.pensoft.net Launched to accelerate biodiversity research When mycologists describe new species, not all relevant information is provided (clearly enough) Louisa Durkin1, Tobias Jansson1, Marisol Sanchez2, Maryia Khomich3, Martin Ryberg4, Erik Kristiansson5, R. Henrik Nilsson1 1 Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Box 461, 405 30 Göteborg, Sweden 2 Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden 3 Nofima – Norwegian Institute of Food, Fisheries and Aquaculture Research, P.O. Box 210, 1431 Ås, Norway 4 Department of Organismal Biology, Uppsala University, Uppsala, Sweden 5 Department of Mathematical Sciences, Chalmers University of Technology and University of Gothenburg, Göteborg, Sweden Corresponding author: R. Henrik Nilsson ([email protected]) Academic editor: T. Lumbsch | Received 19 July 2020 | Accepted 24 August 2020 | Published 10 September 2020 Citation: Durkin L, Jansson T, Sanchez M, Khomich M, Ryberg M, Kristiansson E, Nilsson RH (2020) When mycologists describe new species, not all relevant information is provided (clearly enough). MycoKeys 72: 109–128. https://doi.org/10.3897/mycokeys.72.56691 Abstract Taxonomic mycology struggles with what seems to be a perpetual shortage
    [Show full text]
  • Describing Species
    DESCRIBING SPECIES Practical Taxonomic Procedure for Biologists Judith E. Winston COLUMBIA UNIVERSITY PRESS NEW YORK Columbia University Press Publishers Since 1893 New York Chichester, West Sussex Copyright © 1999 Columbia University Press All rights reserved Library of Congress Cataloging-in-Publication Data © Winston, Judith E. Describing species : practical taxonomic procedure for biologists / Judith E. Winston, p. cm. Includes bibliographical references and index. ISBN 0-231-06824-7 (alk. paper)—0-231-06825-5 (pbk.: alk. paper) 1. Biology—Classification. 2. Species. I. Title. QH83.W57 1999 570'.1'2—dc21 99-14019 Casebound editions of Columbia University Press books are printed on permanent and durable acid-free paper. Printed in the United States of America c 10 98765432 p 10 98765432 The Far Side by Gary Larson "I'm one of those species they describe as 'awkward on land." Gary Larson cartoon celebrates species description, an important and still unfinished aspect of taxonomy. THE FAR SIDE © 1988 FARWORKS, INC. Used by permission. All rights reserved. Universal Press Syndicate DESCRIBING SPECIES For my daughter, Eliza, who has grown up (andput up) with this book Contents List of Illustrations xiii List of Tables xvii Preface xix Part One: Introduction 1 CHAPTER 1. INTRODUCTION 3 Describing the Living World 3 Why Is Species Description Necessary? 4 How New Species Are Described 8 Scope and Organization of This Book 12 The Pleasures of Systematics 14 Sources CHAPTER 2. BIOLOGICAL NOMENCLATURE 19 Humans as Taxonomists 19 Biological Nomenclature 21 Folk Taxonomy 23 Binomial Nomenclature 25 Development of Codes of Nomenclature 26 The Current Codes of Nomenclature 50 Future of the Codes 36 Sources 39 Part Two: Recognizing Species 41 CHAPTER 3.
    [Show full text]
  • Is the Biological Species Concept Showing Its Age? Mohamed A.F
    Research Update TRENDS in Ecology & Evolution Vol.17 No.4 April 2002 153 Research News Is the biological species concept showing its age? Mohamed A.F. Noor A recent paper by Chung-I Wu in the Journal not been attained. Hence, such a strict and whether Wu’s proposed revision has of Evolutionary Biology questions the value definition would not match the intuition any advantages. Most of those who of the popular biological species concept of most biologists. Second, speciation responded on these issues were not (BSC) and offers an alternative ‘genic’ is usually driven by natural or sexual favorable to Wu’s proposal. concept based on possessing ‘loci of selection causing functional divergence. Wu presents examples in which the differential adaptation.’ Wu suggests that However, the BSC does not delineate the BSC delineates taxa as species that would recent empirical results from genetic studies evolutionary forces that cause divergence. not attain this designation under his genic of speciation necessitate this revision. As such, the BSC considers reproductively definition. For example, he notes that Several prominent evolutionary biologists isolated units to be species, even if taxa infected with different strains of responded in the same issue, many noting differential adaptation is not apparent. Wolbachia (hence preventing gene excitement over the recent empirical results, Wu proposes what he calls a ‘genic view exchange through cytoplasmic few agreeing with an abandonment of the of the process of speciation’. He suggests incompatibility) would be defined as BSC, and none wholeheartedly embracing that the point in divergence at which species by the BSC. Is this species the new genic concept.
    [Show full text]
  • VIEW Open Access Busting Myths About “Species” Charles H Pence
    Pence Evolution: Education and Outreach 2014, 7:21 http://www.evolution-outreach.com/content/7/1/21 BOOK REVIEW Open Access Busting myths about “species” Charles H Pence Keywords: Species; Essentialism; Aristotle; Plato; Ernst Mayr; History of biology Book details “Species” from Plato to Darwin Wilkins, John S. With regard to the development of the concept of spe- Species: A History of the Idea cies before Darwin, Wilkins rightly notes that there is an Berkeley, CA: University of California Press, 2009. accepted, standard narrative of this history, constructed, xiv + 288 pp., index, ISBN 9780520260856. as he deftly shows, by biologists during the New Synthesis (around 1958, in fact; p. xi). The “received view” goes something like this. Taking a combination of Platonist es- Species sentialism and Aristotelian logic as a basis, the “species A History of the Idea, by John S. Wilkins. Berkeley, CA: concept” of Linnaeus and all others before Darwin holds University of California Press, 2009. Pp. xiv + 288, index. that species are permanent, eternal, fixed objects consist- H/b $31.95. ing of a set of essential or typical properties, deviations It is a claim often repeated, and reinforced by the peri- from which can at best be monstrous. This is the bogey- odic publication of hefty monographs on the subject man which Mayr labeled “typological thinking” (Mayr (Coyne and Orr 2004), that there is a “species problem” 1959), and, as the story goes, one of Darwin’sgreatestac- in evolutionary biology. Ernst Mayr, in his 1942 book, complishments was its overthrow and replacement by wrote it into the ground floor of the New Synthesis.
    [Show full text]