Trade & Investment
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Morphological Description of Jogorogo Mangosteen (Garcinia Mangostana L.)
Journal of Biotechnology and Biodiversity, April 2010; 1(1): 20-25 ISSN: 2087-0183 RESEARCH Morphological description of Jogorogo Mangosteen (Garcinia mangostana L.) Endang Yuniastutia* aDepartment of Agrotechnology, Faculty of Agriculture, Sebelas Maret University, Jl. Ir. Sutami no 36A, Surakarta 57126, Indonesia Received : 14 December 2009 Accepted: 2 February 2010 Abstract This research aimed to obtain phenotypic information based on morphological character of Jogorogo Mangosteen (Garcinia mangostana L.). This research was conducted with direct observation through primary and secondary data recording, and documenting parts of Jogorogo Mangosteen plant specifically, that was, in vegetative part: stalk and leave, as well as generative part: flower, fruit and seed. Jogorogo Mangosteen may reach hundreds years of life span, it had an average height of 9 meters, stalk diameter of 1 meter and crown diameter of 6 meter. The tree crown of Jogorogo Mangosteen plant was triangular in shape, with horizontal and irregular branching pattern and various densities. The leaves of Jogorogo Mangosteen were elliptic. The tip of the leaf was pointed, the base of the leaf was blunt, and the leaf edge was flat with the smooth and shining surface. The flower of Jogorogo Mangosteen was a hermaphrodit and a perfect flower. The fruit was small with 59 grams weight/flower with 4.5 cm long and 4.45 cm wide. The fruit was purple- blackish with the continuous fruit ripening with high fruit bearing level. The Jogorogo Mangosteen fruit was sweet with a little yellow sap. 1-2 seeds were formed in every Jogorogo Mangosteen fruit with 1.6 cm long, 0.8 cm wide and 2.75 thick. -
Allowable Vs. Unallowable Items
Allowable vs. Unallowable Items ALLOWABLE UNALLOWABLE ITEMS ITEMS Processed or preserved fruits and vegetables Whole or sliced fresh fruits and vegetables (i.e., canned, frozen, vacuum-packed or Pre-sliced, pre-cut, FRESH produce dried) Condiments—lemons, limes, and/or chili powder Fruit leather or jellied fruit can be used as a condiment to be served with Dips for fruit or cottage cheese vegetables Fruit or vegetable juice Vegetable dips—are allowed if they are low-fat yogurt-based, or other low-fat or non-fat dips Smoothies All dip serving sizes cannot exceed 1–2 Grapples tablespoons Trail mixes or nuts Salsas are allowable, as a prepared item; Fruit/vegetable pizza however, they must be accompanied with Fruit that has been injected with flavorings nutrition education Carbonated fruit Fresh coconut Most non-food items, except those allowed Fresh vegetables that are cooked, must be limited under supplies and administrative/operational to service once-a-week and always as part of a costs nutrition education lesson Sending fruits and vegetables home Examples: Apples, Bananas, Apricots, Pineapple, Serving fruits and vegetables outside the Mango, Broccoli, Berries, Melons, Carrots, Grapes, normal school hours Cucumbers, Kiwi, Kumquats, Mushrooms, Onions, Popcorn Oranges, Peaches, Pears, Plums, Pomegranates, Candies or marshmallows Radishes, Beets, Leafy greens, Kale, Spinach, Sweet Potato, Jicama, Ackee, Rambutan, Durian, Mangosteen, Cherimoya, Pepino, Papaya, Artichoke, Asparagus, Green Beans, Peppers, Okra, Squash This institution is an equal opportunity provider. . -
COMPARATIVE LIFE HISTORY of COCONUT SCALE INSECT, Aspidiotus Rigidus Reyne (HEMIPTERA: DIASPIDIDAE), on COCONUT and MANGOSTEEN
J. ISSAAS Vol. 25, No. 1: 123-134 (2019) COMPARATIVE LIFE HISTORY OF COCONUT SCALE INSECT, Aspidiotus rigidus Reyne (HEMIPTERA: DIASPIDIDAE), ON COCONUT AND MANGOSTEEN Cris Q. Cortaga, Maria Luz J. Sison, Joseph P. Lagman, Edward Cedrick J. Fernandez and Hayde F. Galvez Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños, College, Laguna, Philippines 4031 Corresponding author: [email protected] (Received: October 3, 2018; Accepted: May 19, 2019) ABSTRACT The devastation of millions of coconut palms caused by outbreak infestation of the invasive Coconut Scale Insect (CSI) Aspidiotus rigidus Reyne, has posed a serious threat to the industry in the Philippines. The life history of A. rigidus on coconut and mangosteen was comparatively studied to understand the effects of host-plant species on its development, to investigate potential host-suitability factors that contributed to its outbreak infestation, and to gather baseline information on the development and characteristics of this pest. The study was conducted at the Institute of Plant Breeding, College of Agriculture and Food Science, University of the Philippines Los Baños. Insect size (body and scale) was not significantly different on both hosts during egg, crawler, white cap, pre-second and second instar stages, as well as during male pre-pupal, pupal and adult stages. The female third instars and adults, however, were bigger on mangosteen than on coconut. At the end of second instar, sexual differentiation was very visible wherein parthenogenic females further undergone two developmental stages: third instar and adults that feed permanently on the leaves. Males undergone three stages: pre- pupa, pupa and winged adults. -
The Ability of Mangosteen Farmer to Finance Mangosteen Farm in Subang District Area
ICSAFS Conference Proceedings 2nd International Conference on Sustainable Agriculture and Food Security: A Comprehensive Approach Volume 2017 Conference Paper The Ability of Mangosteen Farmer to Finance Mangosteen Farm in Subang District Area Eti Suminartika Faculty of Agriculture Universitas Padjadjaran, Bandung 45363, Indonesia Abstract The market share of mangosteen in the domestic and in the word is still large, but Indonesian export of mangosteen is less than 10% of their production because of low quality. In the reality many mangosteen farmer used low input of production in their farm such as fertilizer. The purpose of this study is to analyze the ability of mangosteen farmer to finance mangosteen farm. The study used secondary and primary data from the mangosteen farmer in Subang district by using survey method. The data was analyzed by mathematic analysis. The result shows that mangosteen farmers have low ability to finance the mangosteen farm. Corresponding Author: Eti Suminartika Keywords: mangosteen, family income, family expenditure, the ability of farmer. Received: 28 July 2017 Accepted: 14 September 2017 Published: 23 November 2017 Publishing services provided 1. Introduction by Knowledge E The contribution of horticultural commodities is second largest after food crops com- Eti Suminartika. This article is distributed under the terms modity, these commodities accounted for approximately 21.17% of GDP [1]. One of of the Creative Commons horticultural commodities that have good prospects for export and the domestic mar- Attribution License, which ket is mangosteen (Garcinia mangostona, L). Mangosteen is the first fruit export of permits unrestricted use and Indonesia. redistribution provided that the original author and source The market share of mangosteen is still large, both in the domestic market and are credited. -
Survey of Mangosteen Clones with Distinctive Morphology in Eastern of Thailand
International Journal of Agricultural Technology 2015 Vol.Fungal 11(2): Diversity 227-242 Available online http://www.ijat-aatsea.com ISSN 2630-0192 (Online) Survey of Mangosteen Clones with Distinctive Morphology in Eastern of Thailand Makhonpas, C*., Phongsamran, S. and Silasai, A. School of Crop Production Technology and Landscape, Faculty of Agro-Industial Technology, Rajamangala University of Technology, Chanthaburi Campus, Thailand. Makhonpas, C., Phongsamran, S. and Silasai, A. (2015). Survey of mangosteen clones with distinctive morphology in eastern of Thailand. International Journal of Agricultural Technology Vol. 11(2):227-242. Abstract Mangosteen clone survey in Eastern Region of Thailand as Rayong, Chanthaburi and Trat Province in 2008 and 2009 showed diferential morphology as mangosteen phenotype was different and could be distinguished in 6 characters i.e small leave and small fruits trees, oblong shape trees, thin (not prominent) persistent stigma lobe thickness fruit trees, full and partial variegated mature leave color (combination of green and white color) trees, oblong shape leave trees and greenish yellow mature fruit color trees. Generally, rather short shoot, elliptic leaf blade shape, undulate leaf blade margin and thin or cavitied persistent stigma lobe thickness fruits are dominant marker of full seedless fruits that rarely found trees. Survey of mid-sized mangosteen orchards (200-300 trees) showed that over 70% full seedless fruits trees could be found only about 1-3% of all trees. Keywords: clones, mangosteen, phenotypes Introduction Mangosteen is a tropical fruit that grows and bears good fruit in Thailand. The fruit is delicious. It is popular with consumers both in Thailand and abroad, and has been called the queen of tropical fruits. -
The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S
ABSTRACT On September 23, 1997, at the request of the House Committee on Ways and Means (Committee),1 the United States International Trade Commission (Commission) instituted investigation No. 332-384, The Changing Structure of the Global Large Civil Aircraft Industry and Market: Implications for the Competitiveness of the U.S. Industry, under section 332(g) of the Tariff Act of 1930, for the purpose of exploring recent developments in the global large civil aircraft (LCA) industry and market. As requested by the Committee, the Commission’s report on the investigation is similar in scope to the report submitted to the Senate Committee on Finance by the Commission in August 1993, initiated under section 332(g) of the Tariff Act of 1930 (USITC inv. No. 332-332, Global Competitiveness of U.S. Advanced-Technology Manufacturing Industries: Large Civil Aircraft, Publication 2667) and includes the following information: C A description of changes in the structure of the global LCA industry, including the Boeing-McDonnell Douglas merger, the restructuring of Airbus Industrie, the emergence of Russian producers, and the possibility of Asian parts suppliers forming consortia to manufacture complete airframes; C A description of developments in the global market for aircraft, including the emergence of regional jet aircraft and proposed jumbo jets, and issues involving Open Skies and free flight; C A description of the implementation and status of the 1992 U.S.-EU Large Civil Aircraft Agreement; C A description of other significant developments that affect the competitiveness of the U.S. LCA industry; and C An analysis of the aforementioned structural changes in the LCA industry and market to assess the impact of these changes on the competitiveness of the U.S. -
Dyah Jatiningrum
Curriculum Vitae EDUCATION 2012–2018 Doctoral, Aerospace Engineering Technische Universiteit Delft, Delft, The Netherlands Thesis: Characterising Angular Accelerometers using a Two-Axis Motion Simulator 2006–2008 Master, Aeronautics and Astronautics Institut Teknologi Bandung, Bandung, Indonesia Thesis: Development of Manual for Sail-Flight Test Program of Wing-in-Surface Effect Craft 1998–2004 Bachelor, Aeronautics and Astronautics Institut Teknologi Bandung, Bandung, Indonesia Thesis: Simulation and Reconstruction of Space Shuttle Launch PUBLICATIONS 1. D. Jatiningrum, C. C. de Visser, M. M. van Paassen, E. van Kampen, and M. Mulder, Characterising Angular Accelerometer Calibration Setup Disturbance Using Box–Jenkins Method, Advances in Aerospace Guidance, Navigation and Control: Selected Papers of the Fourth CEAS Specialist Conference on Guidance, Navigation and Control Held in Warsaw, Poland, April 2017, edited by Bogusław Dołega, Robert Głebocki, Damian Kordos, and Marcin Zugaj, 279–294 (Springer International Publishing, Cham, Switzerland, 2018). 2. D. Jatiningrum, C. C. de Visser, M. M. van Paassen, and M. Mulder, Investigating Misalignment in a 3-Axis Angular Accelerometer Measurement Unit, AIAA Guidance, Navigation and Control Conference (Grapevine, Texas, 2017). 3. D. Jatiningrum, C. C. de Visser, M. M. van Paassen, and M. Mulder, Modelling an Angular Accelerometer using the Frequency-Response Measurements, AIAA Guidance, Navigation and Control Conference (San Diego, California, 2016). 4. D. Jatiningrum, C. C. de Visser, M. M. van Paassen, and M. Mulder, Motion Simulator 2-axes Input Design for Angular Accelerometer Calibration, AIAA Modeling and Simulation Technologies Conference (San Diego, California, 2016). 5. D. Jatiningrum, A. Muis, C. C. de Visser, M. M. van Paassen, and M. Mulder, A High-Precision Position Turn- Table as the Reference for Angular Accelerometer Calibration Experiment, 5th CEAS Air and Space Conference (Delft, The Netherlands, 2015). -
US EPA, Pesticide Product Label, BEAUVERIA BASSIANA STRAIN
U.S. ENVIRONMENTAL PROTECTION AGENCY EPA Reg. Number: Date of Issuance: Office of Pesticide Programs Biopesticides and Pollution Prevention Division (7511P) 82074-17 3/18/2021 1200 Pennsylvania Ave., N.W. Washington, D.C. 20460 NOTICE OF PESTICIDE: Term of Issuance: X Registration Reregistration Unconditional (under FIFRA, as amended) Name of Pesticide Product: Beauveria bassiana strain GHA 2% ES Name and Address of Registrant (include ZIP Code): LAM International Corporation 117 South Parkmont Street Butte, MT 59701 Note: Changes in labeling differing in substance from that accepted in connection with this registration must be submitted to and accepted by the Biopesticides and Pollution Prevention Division prior to use of the label in commerce. In any correspondence on this product, always refer to the above EPA Registration Number. On the basis of information furnished by the registrant, the above named pesticide is hereby registered under the Federal Insecticide, Fungicide, and Rodenticide Act (FIFRA or the Act). Registration is in no way to be construed as an endorsement or recommendation of this product by the U.S. Environmental Protection Agency (EPA). In order to protect health and the environment, the Administrator, on his or her motion, may at any time suspend or cancel the registration of a pesticide in accordance with the Act. The acceptance of any name in connection with the registration of a product under the Act is not to be construed as giving the registrant a right to exclusive use of the name or to its use if it has been covered by others. This product is unconditionally registered in accordance with FIFRA section 3(c)(5) provided that you: 1. -
Cultivation of Neglected Tropical Fruits W Ith Promise
Cultivation of Neglected Tropical Fruits W ith Promise Part 6. The Rambutan U.S. Department of Agriculture Science and Education Administration February 1979 Trade names are used in this publication solely for the purpose of providing specific information. Mention of a trade name does not constitute a guarantee or warranty of the product by the U.S. Department of Agriculture or an endorsement by the Department over other products not mentioned. This publication is available from the Mayagiiez Institute of Tropical Agriculture, Science and Educa tion Administration, P.O. Box 70, Mayagiiez, P.R. 00708. Other publications in this series: Part 1. The Mangosteen. ARS-S-155. Part 2. The Mamey Sapote. ARS-S-156. Part 3. The Pummelo. ARS-S-157. Part 4. The Lanson. ARS-S-171. Part 5. The Canistel and Its Relatives. Cultivation of Neglected Tropical Fruits With Promise. Part 6. The Rambutan. February 1979. Published by Agricultural Research (Southern Region), Science and Education Administration, U.S. Department of Agriculture, P.O. Box 53326, New Orleans, La. 70153. ii NATg 2 B 3S i C fL '/■ b CONTENTS Page Abstract ............................................................................................................ 1 Introduction ...................................................................................................... 1 The rambutan .................................................................................................... 2 Botanical description ................................................................................ -
Investment Opportunities of the Private Sector on the Sustainable Food System in Indonesia
INVESTMENT OPPORTUNITIES OF THE PRIVATE SECTOR ON THE SUSTAINABLE FOOD SYSTEM IN INDONESIA TABLE OF CONTENT Abbreviations and Acronyms ................................................................................ ii Executive Summary ................................................................................................. iii Chapter 1 – General Overview .............................................................................. 1 1.1 Background ................................................................................................ 1 1.2 Conceptual Framework: Role of the Private Sector in Sustainable Food System to Support SDG 2 ......................................................................... 3 1.3 The Purpose of the Investment Opportunities Report ................................ 4 Chapter 2 – Commodity Value Chain Landscape ................................................ 6 2.1 Business Environment Situation in Commodity Value Chain ................... 6 2.1.1 Soybean Commodity ........................................................................ 8 A. National Situation of Soybean Commodity ................................ 8 B. Value Chain of Soybean Commodity.......................................... 9 2.1.2 Coffee Commodity ........................................................................... 13 A. National Situation of Coffee Commodity ................................... 13 B. Value Chain of Coffee Commodity ............................................ 14 2.1.3 Mangosteen Commodity ................................................................. -
Effects of Different Weather Conditions and Addition of Mangosteen Peel Powder on Chemical Properties and Antioxidant Activity of Coconut Sap
Agritech, 38 (3) 2018, 295-303 Effects of Different Weather Conditions and Addition of Mangosteen Peel Powder on Chemical Properties and Antioxidant Activity of Coconut Sap Pepita Haryanti1,2*, Supriyadi3, Djagal Wiseso Marseno3, Umar Santoso3 1Jenderal Soedirman University, Faculty of Agriculture, Department of Agricultural Technology, Jl. Dr. Soeparno, Grendeng, Purwokerto, Central Java 53122, Indonesia 2Doctoral program of Food Science, Gadjah Mada University, Faculty of Agricultural Technology, Department of Food Technology and Agricultural Product Technology, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia 3Gadjah Mada University, Faculty of Agricultural Technology, Department of Food and Agricultural Product Technology, Jl. Flora No. 1, Bulaksumur, Yogyakarta 55281, Indonesia *Email: [email protected] Submission: November 2nd, 2017 ; Acceptance: August 6th, 2018 ABSTRACT Coconut sap is sweet, oyster-white and translucent liquid which can be obtained by tapping coconut flowers for 8 – 12 hours. Since it contains sugar with nearly neutral pH, coconut sap is highly susceptible to spontaneous fermentation. In order to maintain the quality of the sap during the tapping process, coconut farmers usually add preservative substances. The preservatives can be produced either naturally, such as mixtures of lime, mangosteen peel and sliced jackfruit wood, or synthetic one, such as sodium metabisulphite. The chemical properties of coconut sap might be affected by weather conditions during the tapping process. This research aimed to determine the effect of weather conditions during tapping process and variations of mangosteen peel powder concentration on the chemical properties and antioxidant activity of the coconut sap. The results showed that the optimum preservative concentration of mangosteen peel powder was 0.84 g/L of coconut sap which was tapped in sunny weather condition. -
Daftar Arsip Statis Pt Industri Pesawat Terbang Nusantara (Pt Iptn) 1950 - 1988
DAFTAR ARSIP STATIS PT INDUSTRI PESAWAT TERBANG NUSANTARA (PT IPTN) 1950 - 1988 DIREKTORAT PENGOLAHAN DEPUTI BIDANG KONSERVASI ARSIP ARSIP NASIONAL REPUBLIK INDONESIA JAKARTA 2017 KATA PENGANTAR Berdasarkan Undang-Undang Nomor 43 Tahun 2009 tentang Kearsipan, Arsip Nasional Republik Indonesia (ANRI) sebagai lembaga kearsipan nasional wajib melakukan pengolahan arsip statis berskala nasional yang diterima dari lembaga negara, perusahaan, organisasi sosial politik, organisasi kemasyarakatan, dan perseorangan. Pengelolaan arsip statis ANRI bertujuan untuk menjamin keselamatan arsip sebagai bukti pertanggungjawaban nasional dalam kehidupan bermasyarakat, berbangsa dan bernegara. Arsip statis yang dikelola ANRI merupakan memori kolektif, identitas bangsa, bahan penelitian, dan pengembangan ilmu pengetahuan serta sumber informasi publik. Berkaitan dengan hal itu, Direktorat Pengolahan ANRI pada Tahun Anggaran 2016 melaksanakan penyusunan Daftar Arsip Statis PT IPTN 1950-1988. Substansi arsip yang dimuat dalam daftar arsip ini adalah arsip terkait pelaksanaan tugas dan fungsi PT IPTN yang tercipta pada 1950-1988, dan arsip statis PT IPTN yang dikelola terdiri dari arsip tekstual. Daftar arsip ini merupakan sarana bantu penemuan arsip statis PT IPTN yang tersimpan di ANRI. Kami menyadari daftar arsip ini masih belum sempurna, namun daftar arsip ini sudah dapat digunakan untuk mengakses arsip statis PT IPTN periode 1950-1988 yang tersimpan di ANRI. Akhirnya, kami mengucapkan banyak terima kasih kepada pimpinan ANRI, tim, dan semua pihak yang telah