Exam Study Material – Blaster Part 4 (Explosives Handbook)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Punked the Warped Tech of a Victorian World That Never Was
THE MAGAZINE OF TECHNOLOGY INSIDERS 10.08 STEAM PUNKED THE WARPED TECH OF A VICTORIAN WORLD THAT NEVER WAS www.spectrum.ieee.org volume 45 number 10 north american 10.08 UPDATE 13 OPEN-SOURCE VOTING Can open-source software save electronic voting? By Mark Anderson 14 VIRTUAL COLONOSCOPY 16 CAR TALK 18 KEEPING MEMS MOVING 20 HOME FUEL CELLS TO SELL IN JAPAN OPINION 22 48 9 SPECTRAL LINES Is the United States ready for digital television? The transition may not be so smooth. By Tekla S. Perry 10 FORUM Futurist Ray Kurzweil gets the last word on the singularity. 21 TECHNICALLY SPEAKING New words are needed to reprocess old electronics. By Paul McFedries DEPARTMENTS 4 BACK STORY 28 On the road to Tikrit. SPARKS FLY: COVER STORY 6 CONTRIBUTORS Engineers build community and 22 HANDS ON more at TechShop 48 THE STEAMPUNK TechShop, a high-tech hands-on [top left]; strange workshop, is expanding—perhaps to steam-powered CONTRAPTORS a city near you. By David Schneider critters inhabit Do-it-yourself enthusiasts are drawing on the aesthetics of the I-Wei Huang’s CAREERS garage [top right]; 19th-century Victorian era to create fantastic brass-adorned, steam-driven 24 Sam Altman is only 23 and on and solar panels machines. All hail the steampunk subculture. By Erico Guizzo leave from Stanford, but his software on a U.S. Air Force base harvest may already be on your cellphone. energy from the 28 A LESS WELL-OILED WAR MACHINE By Susan Karlin sun [bottom]. One of the world’s most profligate users of energy, the U.S. -
Chapter 2 EXPLOSIVES
Chapter 2 EXPLOSIVES This chapter classifies commercial blasting compounds according to their explosive class and type. Initiating devices are listed and described as well. Military explosives are treated separately. The ingredi- ents and more significant properties of each explosive are tabulated and briefly discussed. Data are sum- marized from various handbooks, textbooks, and manufacturers’ technical data sheets. THEORY OF EXPLOSIVES In general, an explosive has four basic characteristics: (1) It is a chemical compound or mixture ignited by heat, shock, impact, friction, or a combination of these conditions; (2) Upon ignition, it decom- poses rapidly in a detonation; (3) There is a rapid release of heat and large quantities of high-pressure gases that expand rapidly with sufficient force to overcome confining forces; and (4) The energy released by the detonation of explosives produces four basic effects; (a) rock fragmentation; (b) rock displacement; (c) ground vibration; and (d) air blast. A general theory of explosives is that the detonation of the explosives charge causes a high-velocity shock wave and a tremendous release of gas. The shock wave cracks and crushes the rock near the explosives and creates thousands of cracks in the rock. These cracks are then filled with the expanding gases. The gases continue to fill and expand the cracks until the gas pressure is too weak to expand the cracks any further, or are vented from the rock. The ingredients in explosives manufactured are classified as: Explosive bases. An explosive base is a solid or a liquid which, upon application or heat or shock, breaks down very rapidly into gaseous products, with an accompanying release of heat energy. -
Schedule 1 — Authorised Explosives [Cl
Schedule 1 — Authorised explosives [cl. 3] UN number Specified explosives of UN classification 1.1A (0129) Lead Azide (0130) Lead Styphnate (0135) Mercury Fulminate (0114) Tetrazene UN number Specified explosives of UN classification 1.1B (0029) Anoline Delay Detonators (ICI) (0029) Austin Delay Primer Delays (0225) Boosters, with Detonator (0029) Capped (Detonator) safety fuse (0360) Capped Fuse Delay Assembly (ICI) (0360) CXA MS Connectors (TES) (0030) Carrick Short Delay Detonators (ICI) (0030) Coal Mine Delay Detonators (Du Pont) (0360) Cordline Delay Detonators (ICI) (0030) Delay Detonators (0029) Detaline MS in the hole Delays (Du Pont) (0029) Detaline MS Surface Delays (Du Pont) (0029) Detaline Starter (Du Pont) (0029) Detonating Relays (0029) Detonators (0030) Du Pont Acudet Mark V Detonators (0360) Du Pont Detaslide (0030) Du Pont SSS Seismic Detonators (0030) Electric Delay Detonators (ERT) (0030) Electric Detonators (0030) Electric Instantaneous II Detonators (ICI) (0030) Electric Super SP (DWL) (0030) Electric Super Seismicdet (DNAP) (0360) Etinel Non Electric Detonators (ERT) (0360) Exel Bunchdet Detonators (ICI) (0360) Exel Connectadet Detonators (ICI) (0360) Exel Detonators (ICI) (0360) Exel Detonators (MS & LP Series) (ICI) (0360) Exel Enduredet Detonators (ICI) (0360) Exel Goldet Detonators (ICI) (0360) Exel Lead-In Line (ICI) (0360) Exel LLHD Detonators (ICI) (0360) Exel MS Connectors (ICI) (0360) Exel Trunkline Delay (ICI) (0360) Fanel Non Electrical Delay Detonators (TES) (0360) Fuse Delay Assembly (0030) High Pressure -
(12) Patent Application Publication (10) Pub. No.: US 2016/0052835 A1 KLUNKER Et Al
US 2016.0052835A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2016/0052835 A1 KLUNKER et al. (43) Pub. Date: Feb. 25, 2016 (54) DETONATOR-SENSITIVE ASSEMBLED (30) Foreign Application Priority Data BOOSTER CHARGES FOR USE IN BLASTING ENGINEERING AND THE USE Nov. 14, 2012 (DE) ...................... 10 2012 110955.9 THEREOF (71) Applicant: EST ENERGETICS GMBH, Rothenburg (DE) Publication Classification (51) Int. Cl. (72) Inventors: Jirgen KLUNKER, Niesky (DE): C06B 23/00 (2006.01) Konrad ZIEGLER, Bernburg Saale F42D3/00 (2006.01) (DE) C06B 25/34 (2006.01) (73) Assignee: EST ENERGETICS GMBH, (52) U.S. Cl. Rothenburg (DE) CPC ............... C06B 23/003 (2013.01); C06B 25/34 (2013.01); F42D 3/00 (2013.01) (21) Appl. No.: 14/442,197 (22) PCT Fled: Nov. 12, 2013 (57) ABSTRACT PCT NO.: PCT/EP2013/0736.58 (86) This invention relates to detonator-sensitive assembled S371 (c)(1), booster charges for use in blasting engineering. The booster (2) Date: May 12, 2015 charge comprises nitroalkane and a cavity-forming agent. US 2016/0052835 A1 Feb. 25, 2016 DETONATOR-SENSITIVE ASSEMBLED dispersed microspheres. The microspheres can be hollow BOOSTER CHARGES FOR USE IN glass microspheres, resin beads, ceramic beads, etc. BLASTING ENGINEERING AND THE USE 0008 Further disclosed, in U.S. Pat. No. 4,334,476A, is an THEREOF initial explosive charge for granular or liquid explosives, with 0001. The invention concerns detonator-sensitive an interior channel to hold the ignition device, whereby the assembled booster charges for use in blasting engineering. interior channel exhibits a small wall thickness so as to 0002 Insensitive, non-toxic and inexpensive explosives, improve the detonation. -
Chapter 6 INITIATION
Chapter 6 INITIATION COMPONENTS USED IN ELECTRIC BLASTING The electric power source used to initiate a blast may be a twist or push type generator blasting machine and a remote radio device, a condenser discharge machine, or an AC power line through a blasting switch. Never use batteries directly; only a blasting machine or blasting switch provides the current and time control necessary to prevent cap arcing and misfires. The generator type blasting machine converts the mechanical energy of the blaster’s hand motion into electrical energy and then closes the contacts to the firing circuit when the peak electric energy is generated. A condenser discharge machine uses dry-cell batteries to charge a set of capacitors. When the fire button is pushed, the stored electrical energy in these capacitors is discharged into the firing circuit. The remote detona- tion system can be activated and controlled with the commonly used King radio that has been retrofitted with a dual tone modulated frequency chip (DTMF). The entire remote detonation system allows the blaster-in- charge more flexibility in selecting a location to initiate the blast. No alterations or repairs of an electric blasting machine should be attempted, unless by the manufacturer. Ordinary maintenance by the blaster should be limited to changing the batteries in the condenser discharge type machines and to lubricating the moving parts in the generator type. The LEAD WIRE, or the FIRING LINE as it is sometimes called, connects the power source to the blasting circuit. It should be a two-conductor, insulated, solid copper wire (with exception of the multiconduc- tor cable for a sequential blasting machine) and be at least 14-gauge thickness. -
ACCESSORIES Accessories
ACCESSORIES Accessories Detonating cords are high velocity flexible cords, filled A purpose manufactured detonating cord cutter with PETN which detonates at 7000 m per second. This designed to be employed for the safe cutting of product is waterproof with a continuous covering of detonating cords. The device has an internal blade that orange, blue, yellow or red plastic. The colour depicts reduces the risk of operator self-injury. the different strength available. The Mantis is a specifically designed device to which AEL detonators are clipped. The main objective is to centralize the detonator at the toe. This is to ensure maximum immersion of the detonator into the emulsion. Pentolite primers are plastic cylinders filled with a very energetic explosive comprising of a mixture of PETN and TNT. The primers incorporate circular detonator channels for easy insertion of a detonator or detonating cord. The detonator channel is stepped to prevent the detonator from protruding from the primer and to ensure its proper location. The Hot-Hole monitor is used as a safety device which monitors temperature changes in hot/reactive blast-holes at the measurement point. This can reduce the risk of being in a life-threatening situation as it audibly indicates when pre- determined temperature tolerances have been reached within the blast- hole. This early warning safety device will give the end-user sufficient warning to evacuate a bench is undergoing a potentially dangerous increase in temperature. 120 AEL Intelligent Blasting ACCESSORIES General Specifications -
Guide for the Selection of Commercial Explosives Detection Systems For
2.5.3.8 EXPRAY Field Test Kit EXPRAY is a unique, aerosol-based field test kit for the detection of what the manufacturer refers to as Group A explosives (TNT, DNT, picric acid, etc.), Group B explosives (Semtex H, RDX, PETN, NG, smokeless powder, etc.), and compounds that contain nitrates that are used in improvised explosives. Detection of explosive residue is made by observing a color change of the test paper. EXPRAY can be used in a variety of applications, and although in some aspects it does not perform as well as many of the other trace detectors discussed in this section, it costs only $250. This very low cost, coupled with simplicity and ease of use, may make it of interest to many law enforcement agencies (see the EXPRAY kit in fig. 13). The EXPRAY field kit2 is comprised of the following items: - one can of EXPRAY-1 for Group A explosives, - one can of EXPRAY-2 for Group B explosives, - one can of EXPRAY-3 for nitrate-based explosives (ANFO, black powder, and commercial and improvised explosives based on inorganic nitrates), - special test papers which prevent cross contamination. Figure 13. Photo of the EXPRAY Field Test Kit for explosives Initially, a suspected surface (of a package, a person’s clothing, etc.) is wiped with the special test paper. The paper is then sprayed with EXPRAY-1. The appearance of a dark violet-brown color indicates the presence of TNT, a blue-green color indicates the presence of DNT, and an orange color indicates the presence of other Group A explosives. -
Schedule 1 — Authorised Explosives [Cl
Schedule 1 — Authorised explosives [cl. 3] UN number Specified explosives of UN classification 1.1A (0129) Lead Azide (0130) Lead Styphnate (0135) Mercury Fulminate (0114) Tetrazene UN number Specified explosives of UN classification 1.1B (0029) Anoline Delay Detonators (ICI) (0029) Austin Delay Primer Delays (0225) Boosters, with Detonator (0029) Capped (Detonator) safety fuse (0360) Capped Fuse Delay Assembly (ICI) (0360) CXA MS Connectors (TES) (0030) Carrick Short Delay Detonators (ICI) (0030) Coal Mine Delay Detonators (Du Pont) (0360) Cordline Delay Detonators (ICI) (0030) Delay Detonators (0029) Detaline MS in the hole Delays (Du Pont) (0029) Detaline MS Surface Delays (Du Pont) (0029) Detaline Starter (Du Pont) (0029) Detonating Relays (0029) Detonators (0029) DRC Detonators (Orica) (0030) Du Pont Acudet Mark V Detonators (0360) Du Pont Detaslide (0030) Du Pont SSS Seismic Detonators (0030) Electric Delay Detonators (ERT) (0030) Electric Detonators (0030) Electric Instantaneous II Detonators (ICI) (0030) Electric Super SP (DWL) (0030) Electric Super Seismicdet (DNAP) (0360) Etinel Non Electric Detonators (ERT) (0360) Exel Bunchdet Detonators (ICI) (0360) Exel Connectadet Detonators (ICI) (0360) Exel Detonators (ICI) (0360) Exel Detonators (MS & LP Series) (ICI) (0360) Exel Enduredet Detonators (ICI) (0360) Exel Goldet Detonators (ICI) (0360) Exel Lead-In Line (ICI) (0360) Exel LLHD Detonators (ICI) (0360) Exel MS Connectors (ICI) (0360) Exel Trunkline Delay (ICI) (0360) Fanel Non Electrical Delay Detonators (TES) (0360) Fuse Delay -
Type E High Explosives
G03-01 Type E High Explosives Classification and Authorization General and Detailed Requirements for Type E Explosives March 2015 Explosives Regulatory Division 1 Table of Contents 1. Introduction ........................................................................................................................ 1 1.1 Scope ....................................................................................................................... 1 1.2 Approvals - Authorization of explosives .................................................................... 3 1.3 Regulation of use ...................................................................................................... 3 1.4 Required documentation ........................................................................................... 3 1.5 Continuing authorization ........................................................................................... 3 2. Request for authorization .................................................................................................. 4 2.1 List of articles ............................................................................................................ 4 2.2 Mandatory documentation ........................................................................................ 4 2.2.1 Additional mandatory documentation specific to bulk explosives used for commercial blasting ...................................................................................... 4 2.2.2 Additional mandatory documentation specific to packaged -
Explosives and Blasting Procedures Manual
Information Circular 8925 Explosives and Blasting Procedures Manual By Richard A. Dick, Larry R. Fletcher, and Dennis V. D'Andrea US Department of Interior Office of Surface Mining Reclamation and Enforcement Kenneth K. Eltschlager Mining/Blasting Engineer 3 Parkway Center Pittsburgh, PA 15220 Phone 412.937.2169 Fax 412.937.3012 [email protected] UNITED STATES DEPARTMENT OF THE INTERIOR James G. Watt, Secretary BUREAU OF MINES Robert C. Horton, Director As the Nation's principal conservation agency, the Department of the Interior has responsibility for most of our nationally owned public lands and natural resources. This includes fostering the wisest use of our land and water re• sources, protecting our fish and wildlife, preserving the environmental and cultural values of our national parks and historical places, and providing for the enjoyment of life through outdoor recreation. The Department assesses our energy and mineral resources and works to assure that their development is in the best interests of all our people. The Department also has a major re· sponsibility for American Indian reservation communities and for people who live in Island Territories under U.S. administration. This publication has been cataloged as follows: Dick, Richard A Explosives and blasting procedures manual, (Bureau of Mines Information circular ; 8925) Supt. of Docs. no.: I 28.27:8925. 1. Blasting-Handbooks, manuals, etc, 2. Explosives-Haodbooks, manuals, etc, I. Fletcher, Larry R. II. D'Andrea, Dennis V. Ill, Title, IV. Series: Information circular (United States, Bureau of Mines) ; 8925, TN295,U4 [TN279] 622s [622'.23] 82·600353 For sale by the Superintendent of Documents, U.S. -
Ejcs-2107326
Earthline Journal of Chemical Sciences ISSN (Online): 2581-9003 Volume 6, Number 2, 2021, Pages 165-208 https://doi.org/10.34198/ejcs.6221.165208 Peroxide Based Organic Explosives Lemi Türker Department of Chemistry, Middle East Technical University, Üniversiteler, Eski şehir Yolu No: 1, 06800 Çankaya/Ankara, Turkey; e-mail: [email protected]; [email protected] Abstract In recent years progressively increasing terrorist activities, which use homemade explosives; such as acetone peroxide and other cyclic organic peroxides have led to worldwide awareness by security and defense agencies. Then the development of methodologies for the detection of cyclic organic peroxides have become an urgent need. Until quite recently, most of the current technology in use for trace detection of explosives had been unable to detect these energetic compounds. Differences in physical properties between cyclic organic peroxides is the main barrier for the development of a general method for analysis and detection of the peroxide explosives. In this short review, the most relevant contributions related to preparation, characterization and detection of the most important cyclic organic peroxides have been presented. It also includes few recent investigations about the toxicity and metabolism of some peroxide explosives. 1. Introduction Organic peroxides are another class of explosives which have been the focus of interest of many researchers in recent years [1,2]. Cyclic organic peroxides-based homemade explosives have been used to build weapons of mass destruction in the Middle East for several years. Increased terrorist activities, which use acetone peroxide and other cyclic organic peroxides as homemade explosives, have led to worldwide awareness by security and defense agencies. -
INITIATION SYSTEMS for OIL and GAS PERFORATING GUNS an Investigation of the Effects of Industry-Used Cleaning Fluids on the A-140F Perforator Initiation System
INITIATION SYSTEMS FOR OIL AND GAS PERFORATING GUNS An investigation of the effects of industry-used cleaning fluids on the A-140F perforator initiation system. Prepared by EriKa Nieczkoski and Dr. Vilem Petr Colorado School of Mines Department of Mining Engineering Advanced Explosives Processing Research Group INTRODUCTION Fluid desensitized detonators were developed specifically for the petroleum industry, designed as an additional precaution against the occasional leakage of liquid (oil, water, and perhaps a mixture of oil and water) into the perforator carrier [1]. The alternative design1 ensures that should any liquid enter the detonator, specifically the distance between the fuse head and base charge, desensitization will occur, and thus the perforating shape charges will not detonate. However, partial order detonation2 has been observed regardless of the absence of a leakage; this an obvious safety concern for wireline operators. The industry speculates that the reason for this occurrence is the presence of residual perforator cleaning fluids within the assembly. Typically, perforating equipment is cleaned with water, and petroleum-based distillates: mineral spirits and diesel fuel. It is an easier, more cost effective method to clean the equipment and to use it again, instead of returning it directly to the manufacturer. Essentially, the assumption is that some residual cleaning fluid is left in the system, and is then sealed into the assembly. When the perforator is lowered into the production well, temperatures become significantly high – reaching 300 degrees Fahrenheit – and the residual liquids become vaporized within the system. Although the fluid desensitized detonators are designed not to detonate in the presence of a liquid obstruction, the chemical effects of small amounts of liquids and vaporized petroleum-based cleaning fluids have not been studied.