Evolution, Morphology, and Gene Expression of Functionally Specialized Zooids in Siphonophora

Total Page:16

File Type:pdf, Size:1020Kb

Evolution, Morphology, and Gene Expression of Functionally Specialized Zooids in Siphonophora Evolution, morphology, and gene expression of functionally specialized zooids in Siphonophora Catriona Munro A dissertation submitted to the Graduate School of Brown University. In partial fulfillment of the requirements for the degree of Doctor of Philosophy Providence, RI May 2019 ii Copyright ©Copyright 2019 by Catriona Munro. All rights reserved. iv This dissertation by Catriona Munro is accepted in its present form by the Department of Ecology and Evolutionary Biology as satisfying the dissertation requirement for the degree of Doctor of Philosophy. Casey W. Dunn, Advisor Date Recommended to the Graduate Council Erika Edwards, Reader Date David Rand, Reader Date James Kellner, Reader Date Approved by the Graduate Council Andrew G. Campbell, Dean of the Graduate School Date v vi Curriculum vitae Catriona Munro Education 2013–2019 PhD Ecology and Evolutionary Biology, Brown University Advisor: Casey W. Dunn 2012–2013 MRes Ocean Science, University of Southampton Advisors: Sven Thatje, Chris Hauton 2008–2011 BSc Biology, First Class Honours, University College London Peer-Reviewed Publications Munro C, Siebert S, Zapata F, Howison M, Damian-Serrano A, Church SH, Goetz FE, Pugh PR, Haddock SHD, Dunn CW (2018) Improved phylogenetic resolution within Siphonophora (Cnidaria) with implications for trait evolution. Molecular Phylogenetics and Evolution. 127: 823-833. doi: 10.1016/j.ympev.2018.06.030, bioRxiv preprint: doi:10.1101/251116 Brown, A, Thatje S, Oliphant A, Munro C, Smith KE (2018) Temperature effects on larval development in the lithodid crab Lithodes maja. Journal of Sea Research. 139:73-84. doi: 10.1016/j.seares.2018.06.009 Dunn CW, Zapata F, Munro C, Siebert S, Hejnol A (2018). Pairwise comparisons are problematic when analyzing functional genomic data across species. Proceedings of the National Academy of Sciences. 115(3):E409-E417 doi:10.1073/pnas.1707515115. bioRxiv preprint: doi:10.1101/107177 Dunn CW, Munro C (2016) Comparative genomics and the diversity of life. Zoologica Scripta. 45:5-13. doi:10.1111/zsc.12211 Munro C, Morris JP, Brown A, Hauton C, Thatje S (2015). The role of ontogeny in physiological toler- ance: decreasing hydrostatic pressure tolerance with development in the northern stone crab Lithodes maja. Proceedings of the Royal Society of London B. 282(1809): 20150577 doi: 10.1098/rspb.2015.0577 Shank TM, Baker ET, Embley RW, Hammond S, Holden JF, White S, Walker SL, Calderon M, Herrera S, Lin TJ, Munro C, Heyl T, Stewart L, Malik M, Lobecker M, Potter J (2012) GALREX 2011: Exploration of the Deep-Water Galapagos Region. Oceanography 25 Suppl.: 50-51. URL: http://tos.org/oceanography/archive/25-1_supplement.pdf vii Academic Awards and Scholarships June 2017– NSF Doctoral Dissertation Improvement Grant (award no. 1701272) $21,028 May 2018 May–June 2017 EMBRC-France funding (main PI: Casey Dunn) April–May 2016 EMBRC-France funding (main PI: Casey Dunn) March 2016 MBL Embryology Post-Course research $1484 2014–2015 RI-EPSCoR Graduate Student Fellowship (full tuition and stipend) May 2014 Travel Award, Evolution of the First Nervous Systems II Meeting 2012–2013 Society for Underwater Technology, Educational Support Fund (full Masters’ degree tuition) 2011 Dean’s List, UCL Lilian Clarke Prize, UCL 2008–2011 Harold and Olga Fox Scholarship, UCL 2009 Darwin Prize, UCL Research Positions 2012 Research Assistant Shank Lab, Woods Hole Oceanographic Institution Summer Summer Student Fellow, then Guest Student Shank Lab, Woods Hole Oceano- 2011–end 2011 graphic Institution Summer 2010 Volunteer Shank Lab, Woods Hole Oceanographic Institution Conference Presentations †Oral, ‡Poster, presenting author †Munro C, S Siebert, F Zapata , CW Dunn (2018) Siphonophore Differential Gene Expression Patterns Analyzed within a Phylogenetic Context. SICB Meeting, San Francisco CA †‡Munro C, S Siebert, M Howison , F Zapata , CW Dunn (2016) Gene expression patterns in siphonophore zooids, Hydroidfest, Bodega CA ‡Munro C, S Siebert, M Howison , F Zapata , CW Dunn (2016) Exploring the evolution of functional specialization in siphonophores using RNAseq, SICB Meeting, Portland OR †Munro C, GW Luther III, RA Lutz, C Vetriani, TS Moore, S Herrera, TM Shank (2012) Temporal and spatial patterns of in situ community structure using time-lapse camera systems at a vent field on the East Pacific Rise, 13th International Deep-Sea Biology Symposium, Wellington New Zealand Teaching Graduate Teaching Assistant Brown University Invertebrate Zoology (Undergraduate level): Fall semester, 2014 Invertebrate Zoology (Undergraduate level): Fall semester, 2013 Guest Lecture, University of Rhode Island, BIO460 Pelagic Ecology, 6 August 2014 Mentoring Fall 2015 - Nicola Malakooti, undergraduate viii Scientific Expeditions R/V Western Flyer, ROV Doc Ricketts, Gulf of California, Mexico, March 8-16, 2015. Chief scientist: Steven Haddock R/V Western Flyer, ROV Doc Ricketts, Monterey Bay, U.S.A, September 16-22, 2014. Chief scientist: Steven Haddock R/V Endeavor, North East Atlantic, U.S.A, August 13-18, 2014. Chief scientist: Brad Seibel R/V Western Flyer, ROV Doc Ricketts, Monterey Bay, U.S.A, May 17-23, 2014. Chief scientist: Steven Haddock R/V Western Flyer, ROV Doc Ricketts, Monterey Bay, U.S.A, November 19-24, 2013. Chief scientist: Steven Haddock R/V Falkor, ROV Global Explorer MK3, Deep-Sea Coral Shakedown cruise, Gulf of Mexico U.S.A, August 26 - September 6, 2012. Chief scientist: Peter Etnoyer M/V Holiday Chouest, ROV UHD 34, HC3 Leg 1 and 2. October 2-26, 2011. Gulf of Mexico, U.S.A. Chief scientists: Charles Fisher and Erik Cordes Science Outreach Volunteering Feb 2016 – Feb 2018, Hennessy Elementary School, Brown Junior Researchers Program (After-school science class, 5th grade students) Science Writing Munro, C. (2015) A day in the life of a siphonophore lab. http://thenode.biologists.com/a-day-in- the-life-of-a-siphonophore-lab/lablife/ Munro, C., S. Herrera, T. Heyl Muric (2011) Exploring the Paramount Seamounts. http://oceanexplorer.noaa.gov/okeanos/explorations/ex1103/logs/july14/july14.html Munro, C. (2010) Volunteer Gets an Oceanful of Experience. Oceanus. http://www.whoi.edu/oceanus/viewArticle.do?id=84128 Courses and Workshops Jun 7- Jul 18 MBL Embryology, Woods Hole MA 2015 ix x Dedication To my parents – for seeing a 9 year old who wanted to identify all the animals on the reef, and pointing this curiosity and passion towards science. And to Larry – for your love, support, and much needed sense of perspective: reminding me of my achieve- ments when I am dwelling my failures; and reminding me in my moments of extreme focus that there are other important things in life. xi xii Acknowledgements This work would not be possible without the support of so many people. My family has always been a constant source of support and love. I’m grateful to my parents for moving so much, and for exposing the three of us to new people, cultures, and countries. We were always free to explore and make mistakes. My parents encouraged and respected my strong sense of intellectual independence. I always let them know about my achievements, challenges, and failures on my own terms – and when I did, they were always there to support my dreams and soothe my fears. My brothers grew up to become accomplished, kind, and generous men, and I love seeing what wonderful fathers and husbands they have become; Tilly and Danielle are both amazing sisters-in-law. To me, my brothers will always be the kids cooking up some scheme to access the top floors of the Liang Ma so that we can race remote controlled cars, often to their own doom down a set of stairs. I followed my older brothers everywhere, even when it wasn’t the best idea – Lachlan, always the leader, and Iain, ever questioning authority. I can always count on them to bring me down to earth. Larry has been with me throughout the journey of this PhD. He dropped me off outside Walter Hall for my in-person interview with Casey, and picked me up at the end of the day, full of hope about how it went. His love and support has ranged from apples secretly stashed in coat pockets (“just in case you get hungry”) to agreeing to leave his comfort zone and family, and move to a new country for my next position as a postdoc. I am so lucky and grateful. We adopted Odin during the second year of my PhD, and he made our lives richer. He helped too, mostly by insisting that I take a break and go for a run or walk in the woods. I also want to thank Larry’s family and friends for fully embracing me as one of their own and cheering me on throughout this process. There are so many friends that have been there for me, good times and bad, too many to name them all. Henry Stanley and Charlotte Ballard have been there for me since UCL, and always make time to see me (even when “close by” simply means the same continent). Sarah Ye, my oldest friend, who I don’t see nearly enough, but who I have been lucky to see more of over the past few years. My grad student cohort in EEB (David Sleboda, David Boerma, Robbie Lamb, Kim Neil, Brooke Osborne, Priya Nakka, Adam Spierer, and Kara Pellowe), have all grown as scientists alongside me and continue to inspire me. In addition to those in my cohort, KC Cushman, Lindsay McCulloch, Nikole Bonacorsi, Jillian Oliver, and Morgan Moeglein, are all brilliant women scientists and good friends. The EEB astronauts, led by Adam, got me out of bed at 6 am on Tuesdays and Thursdays for exercise, and more importantly, good company. Book club provided a literary diet of modern, diverse authors and also all of the best gossip. I’ve been lucky to be in such a friendly, supportive environment for five years.
Recommended publications
  • Diversity and Community Structure of Pelagic Cnidarians in the Celebes and Sulu Seas, Southeast Asian Tropical Marginal Seas
    Deep-Sea Research I 100 (2015) 54–63 Contents lists available at ScienceDirect Deep-Sea Research I journal homepage: www.elsevier.com/locate/dsri Diversity and community structure of pelagic cnidarians in the Celebes and Sulu Seas, southeast Asian tropical marginal seas Mary M. Grossmann a,n, Jun Nishikawa b, Dhugal J. Lindsay c a Okinawa Institute of Science and Technology Graduate University (OIST), Tancha 1919-1, Onna-son, Okinawa 904-0495, Japan b Tokai University, 3-20-1, Orido, Shimizu, Shizuoka 424-8610, Japan c Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Yokosuka 237-0061, Japan article info abstract Article history: The Sulu Sea is a semi-isolated, marginal basin surrounded by high sills that greatly reduce water inflow Received 13 September 2014 at mesopelagic depths. For this reason, the entire water column below 400 m is stable and homogeneous Received in revised form with respect to salinity (ca. 34.00) and temperature (ca. 10 1C). The neighbouring Celebes Sea is more 19 January 2015 open, and highly influenced by Pacific waters at comparable depths. The abundance, diversity, and Accepted 1 February 2015 community structure of pelagic cnidarians was investigated in both seas in February 2000. Cnidarian Available online 19 February 2015 abundance was similar in both sampling locations, but species diversity was lower in the Sulu Sea, Keywords: especially at mesopelagic depths. At the surface, the cnidarian community was similar in both Tropical marginal seas, but, at depth, community structure was dependent first on sampling location Marginal sea and then on depth within each Sea. Cnidarians showed different patterns of dominance at the two Sill sampling locations, with Sulu Sea communities often dominated by species that are rare elsewhere in Pelagic cnidarians fi Community structure the Indo-Paci c.
    [Show full text]
  • The Evolution of Siphonophore Tentilla for Specialized Prey Capture in the Open Ocean
    The evolution of siphonophore tentilla for specialized prey capture in the open ocean Alejandro Damian-Serranoa,1, Steven H. D. Haddockb,c, and Casey W. Dunna aDepartment of Ecology and Evolutionary Biology, Yale University, New Haven, CT 06520; bResearch Division, Monterey Bay Aquarium Research Institute, Moss Landing, CA 95039; and cEcology and Evolutionary Biology, University of California, Santa Cruz, CA 95064 Edited by Jeremy B. C. Jackson, American Museum of Natural History, New York, NY, and approved December 11, 2020 (received for review April 7, 2020) Predator specialization has often been considered an evolutionary makes them an ideal system to study the relationships between “dead end” due to the constraints associated with the evolution of functional traits and prey specialization. Like a head of coral, a si- morphological and functional optimizations throughout the organ- phonophore is a colony bearing many feeding polyps (Fig. 1). Each ism. However, in some predators, these changes are localized in sep- feeding polyp has a single tentacle, which branches into a series of arate structures dedicated to prey capture. One of the most extreme tentilla. Like other cnidarians, siphonophores capture prey with cases of this modularity can be observed in siphonophores, a clade of nematocysts, harpoon-like stinging capsules borne within special- pelagic colonial cnidarians that use tentilla (tentacle side branches ized cells known as cnidocytes. Unlike the prey-capture apparatus of armed with nematocysts) exclusively for prey capture. Here we study most other cnidarians, siphonophore tentacles carry their cnidocytes how siphonophore specialists and generalists evolve, and what mor- in extremely complex and organized batteries (3), which are located phological changes are associated with these transitions.
    [Show full text]
  • A New Computing Environment for Modeling Species Distribution
    EXPLORATORY RESEARCH RECOGNIZED WORLDWIDE Botany, ecology, zoology, plant and animal genetics. In these and other sub-areas of Biological Sciences, Brazilian scientists contributed with results recognized worldwide. FAPESP,São Paulo Research Foundation, is one of the main Brazilian agencies for the promotion of research.The foundation supports the training of human resources and the consolidation and expansion of research in the state of São Paulo. Thematic Projects are research projects that aim at world class results, usually gathering multidisciplinary teams around a major theme. Because of their exploratory nature, the projects can have a duration of up to five years. SCIENTIFIC OPPORTUNITIES IN SÃO PAULO,BRAZIL Brazil is one of the four main emerging nations. More than ten thousand doctorate level scientists are formed yearly and the country ranks 13th in the number of scientific papers published. The State of São Paulo, with 40 million people and 34% of Brazil’s GNP responds for 52% of the science created in Brazil.The state hosts important universities like the University of São Paulo (USP) and the State University of Campinas (Unicamp), the growing São Paulo State University (UNESP), Federal University of São Paulo (UNIFESP), Federal University of ABC (ABC is a metropolitan region in São Paulo), Federal University of São Carlos, the Aeronautics Technology Institute (ITA) and the National Space Research Institute (INPE). Universities in the state of São Paulo have strong graduate programs: the University of São Paulo forms two thousand doctorates every year, the State University of Campinas forms eight hundred and the University of the State of São Paulo six hundred.
    [Show full text]
  • Downloaded from Brill.Com10/07/2021 03:16:02AM Via Free Access 176 A
    Contributions to Zoology, 70 (3) 175-179 (2001) SPB Academic Publishing bv, The Hague Short notes and reviews classification: of the Simplifying hydrozoan inappropriateness group Hydroidomedusae in a phylogenetic context Antonio+C. Marques Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo. Av. Bandeirantes, 3900, 14040-901, Ribeirão Preto, SP, Brazil, e-mail: [email protected] Keywords:: Hydrozoa, Hydroidomedusae, classification, nomenclature, taxonomy Abstract ated classifications and models of phylogeny si- multaneously. In phonetics, classifications reflect The systematics ofHydrozoa is consideredfrom the viewpoint overall similarity, not necessarily phylogeny (Hull, of logical consistency between phylogeny and classification. 1988: 122; Mayr and Ashlock, 1991: 128). With The validity of the nominal taxon Hydroidomedusae (includ- regard to the higher levels of hydrozoan classifi- all of the is dis- ing groups Hydrozoa except Siphonophorae) cation, no cladistic or phenetic classifications have cussed with regard to its distinctness and inclusive relationships. In been proposed. All classifications seem general, phylogenetic systematic evidence suggest that the hydrozoan use of the is term Hydroidomedusae inappropriate given our to be based on gradistic or essentialistic principles, current level of It is concluded that understanding. no new, or although the majority of their proponents would names until broader resurrected, are necessary before or a not characterize
    [Show full text]
  • The Histology of Nanomia Bijuga (Hydrozoa: Siphonophora) SAMUEL H
    RESEARCH ARTICLE The Histology of Nanomia bijuga (Hydrozoa: Siphonophora) SAMUEL H. CHURCH*, STEFAN SIEBERT, PATHIKRIT BHATTACHARYYA, AND CASEY W. DUNN Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island ABSTRACT The siphonophore Nanomia bijuga is a pelagic hydrozoan (Cnidaria) with complex morphological organization. Each siphonophore is made up of many asexually produced, genetically identical zooids that are functionally specialized and morphologically distinct. These zooids predominantly arise by budding in two growth zones, and are arranged in precise patterns. This study describes the cellular anatomy of several zooid types, the stem, and the gas-filled float, called the pneumatophore. The distribution of cellular morphologies across zooid types enhances our understanding of zooid function. The unique absorptive cells in the palpon, for example, indicate specialized intracellular digestive processing in this zooid type. Though cnidarians are usually thought of as mono-epithelial, we characterize at least two cellular populations in this species which are not connected to a basement membrane. This work provides a greater understanding of epithelial diversity within the cnidarians, and will be a foundation for future studies on N. bijuga, including functional assays and gene expression analyses. J. Exp. Zool. (Mol. Dev. Evol.) 324B:435– 449, 2015. © 2015 The Authors. Journal of Experimental Zoology Part B: Molecular and J. Exp. Zool. Developmental Evolution Published by Wiley Periodicals, Inc. (Mol. Dev. Evol.) 324B:435–449, How to cite this article: Church SH, Siebert S, Bhattacharyya P, Dunn CW. 2015. The histology of 2015 Nanomia bijuga (Hydrozoa: Siphonophora). J. Exp. Zool. (Mol. Dev. Evol.) 324B:435–449. Siphonophores are pelagic hydrozoans (Cnidaria) with a highly and defense (Dunn and Wagner, 2006; Totton, '65).
    [Show full text]
  • Changing Jellyfish Populations: Trends in Large Marine Ecosystems
    CHANGING JELLYFISH POPULATIONS: TRENDS IN LARGE MARINE ECOSYSTEMS by Lucas Brotz B.Sc., The University of British Columbia, 2000 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in The Faculty of Graduate Studies (Oceanography) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2011 © Lucas Brotz, 2011 Abstract Although there are various indications and claims that jellyfish have been increasing at a global scale in recent decades, a rigorous demonstration to this effect has never been presented. As this is mainly due to scarcity of quantitative time series of jellyfish abundance from scientific surveys, an attempt is presented here to complement such data with non- conventional information from other sources. This was accomplished using the analytical framework of fuzzy logic, which allows the combination of information with variable degrees of cardinality, reliability, and temporal and spatial coverage. Data were aggregated and analysed at the scale of Large Marine Ecosystem (LME). Of the 66 LMEs defined thus far, which cover the world’s coastal waters and seas, trends of jellyfish abundance (increasing, decreasing, or stable/variable) were identified (occurring after 1950) for 45, with variable degrees of confidence. Of these 45 LMEs, the overwhelming majority (31 or 69%) showed increasing trends. Recent evidence also suggests that the observed increases in jellyfish populations may be due to the effects of human activities, such as overfishing, global warming, pollution, and coastal development. Changing jellyfish populations were tested for links with anthropogenic impacts at the LME scale, using a variety of indicators and a generalized additive model. Significant correlations were found with several indicators of ecosystem health, as well as marine aquaculture production, suggesting that the observed increases in jellyfish populations are indeed due to human activities and the continued degradation of the marine environment.
    [Show full text]
  • Looking for Missing Proteins in the Proteome Of
    Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, Christophe Bruley, Charlotte Macron, Anne Gonzalez de Peredo, Yohann Coute, Karima Chaoui, et al. To cite this version: Yves Vandenbrouck, Lydie Lane, Christine Carapito, Paula Duek, Karine Rondel, et al.. Looking for Missing Proteins in the Proteome of Human Spermatozoa: An Update. Journal of Proteome Research, American Chemical Society, 2016, 15 (11), pp.3998-4019. 10.1021/acs.jproteome.6b00400. hal-02191502 HAL Id: hal-02191502 https://hal.archives-ouvertes.fr/hal-02191502 Submitted on 19 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Journal of Proteome Research 1 2 3 Looking for missing proteins in the proteome of human spermatozoa: an 4 update 5 6 Yves Vandenbrouck1,2,3,#,§, Lydie Lane4,5,#, Christine Carapito6, Paula Duek5, Karine Rondel7, 7 Christophe Bruley1,2,3, Charlotte Macron6, Anne Gonzalez de Peredo8, Yohann Couté1,2,3, 8 Karima Chaoui8, Emmanuelle Com7, Alain Gateau5, AnneMarie Hesse1,2,3, Marlene 9 Marcellin8, Loren Méar7, Emmanuelle MoutonBarbosa8, Thibault Robin9, Odile Burlet- 10 Schiltz8, Sarah Cianferani6, Myriam Ferro1,2,3, Thomas Fréour10,11, Cecilia Lindskog12,Jérôme 11 1,2,3 7,§ 12 Garin , Charles Pineau .
    [Show full text]
  • Downloaded from Genbank (Table S1)
    water Article Integrated Taxonomy for Halistemma Species from the Northwest Pacific Ocean Nayeon Park 1 , Andrey A. Prudkovsky 2,* and Wonchoel Lee 1,* 1 Department of Life Science, Hanyang University, Seoul 04763, Korea; [email protected] 2 Faculty of Biology, Lomonosov Moscow State University, 119991 Moscow, Russia * Correspondence: [email protected] (A.A.P.); [email protected] (W.L.) Received: 16 October 2020; Accepted: 20 November 2020; Published: 22 November 2020 Abstract: During a survey of the siphonophore community in the Kuroshio Extension, Northwest Pacific Ocean, a new Halistemma Huxley, 1859 was described using integrated molecular and morphological approaches. The Halistemma isabu sp. nov. nectophore is most closely related morphologically to H. striata Totton, 1965 and H. maculatum Pugh and Baxter, 2014. These species can be differentiated by their nectosac shape, thrust block size, ectodermal cell patches and ridge patterns. The new species’ bracts are divided into two distinct types according to the number of teeth. Type A bracts are more closely related to ventral bracts in H. foliacea (Quoy and Gaimard, 1833) while Type B bracts are more similar to H. rubrum (Vogt, 1852). Each type differs, however, from the proximal end shape, distal process and bracteal canal. Both of the new species’ morphological type and phylogenetic position within the genus Halistemma are supported by phylogenetic analysis of concatenated DNA dataset (mtCOI, 16S rRNA and 18S rRNA). Integrated morphological and molecular approaches to the taxonomy of siphonophores showed a clear delimitation of the new species from the congeners. Halistemma isabu sp. nov. is distributed with the congeners H.
    [Show full text]
  • Hydrozoan Insights in Animal Development and Evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston
    Hydrozoan insights in animal development and evolution Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston To cite this version: Lucas Leclère, Richard Copley, Tsuyoshi Momose, Evelyn Houliston. Hydrozoan insights in animal development and evolution. Current Opinion in Genetics and Development, Elsevier, 2016, Devel- opmental mechanisms, patterning and evolution, 39, pp.157-167. 10.1016/j.gde.2016.07.006. hal- 01470553 HAL Id: hal-01470553 https://hal.sorbonne-universite.fr/hal-01470553 Submitted on 17 Feb 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Current Opinion in Genetics and Development 2016, 39:157–167 http://dx.doi.org/10.1016/j.gde.2016.07.006 Hydrozoan insights in animal development and evolution Lucas Leclère, Richard R. Copley, Tsuyoshi Momose and Evelyn Houliston Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire de Biologie du Développement de Villefranche‐sur‐mer (LBDV), 181 chemin du Lazaret, 06230 Villefranche‐sur‐mer, France. Corresponding author: Leclère, Lucas (leclere@obs‐vlfr.fr). Abstract The fresh water polyp Hydra provides textbook experimental demonstration of positional information gradients and regeneration processes. Developmental biologists are thus familiar with Hydra, but may not appreciate that it is a relatively simple member of the Hydrozoa, a group of mostly marine cnidarians with complex and diverse life cycles, exhibiting extensive phenotypic plasticity and regenerative capabilities.
    [Show full text]
  • 1 Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince
    Metagenetic Analysis of 2018 and 2019 Plankton Samples from Prince William Sound, Alaska. Report to Prince William Sound Regional Citizens’ Advisory Council (PWSRCAC) From Molecular Ecology Laboratory Moss Landing Marine Laboratory Dr. Jonathan Geller Melinda Wheelock Martin Guo Any opinions expressed in this PWSRCAC-commissioned report are not necessarily those of PWSRCAC. April 13, 2020 ABSTRACT This report describes the methods and findings of the metagenetic analysis of plankton samples from the waters of Prince William Sound (PWS), Alaska, taken in May of 2018 and 2019. The study was done to identify zooplankton, in particular the larvae of benthic non-indigenous species (NIS). Plankton samples, collected by the Prince William Sound Science Center (PWSSC), were analyzed by the Molecular Ecology Laboratory at the Moss Landing Marine Laboratories. The samples were taken from five stations in Port Valdez and nearby in PWS. DNA was extracted from bulk plankton and a portion of the mitochondrial Cytochrome c oxidase subunit 1 gene (the most commonly used DNA barcode for animals) was amplified by polymerase chain reaction (PCR). Products of PCR were sequenced using Illumina reagents and MiSeq instrument. In 2018, 257 operational taxonomic units (OTU; an approximation of biological species) were found and 60 were identified to species. In 2019, 523 OTU were found and 126 were identified to species. Most OTU had no reference sequence and therefore could not be identified. Most identified species were crustaceans and mollusks, and none were non-native. Certain species typical of fouling communities, such as Porifera (sponges) and Bryozoa (moss animals) were scarce. Larvae of many species in these phyla are poorly dispersing, such that they will be found in abundance only in close proximity to adult populations.
    [Show full text]
  • Midwater Data Sheet
    MIDWATER TRAWL DATA SHEET RESEARCH VESSEL__________________________________(1/20/2013Version*) CLASS__________________;DATE_____________;NAME:_________________________; DEVICE DETAILS___________ LOCATION (OVERBOARD): LAT_______________________; LONG___________________________ LOCATION (AT DEPTH): LAT_______________________; LONG______________________________ LOCATION (START UP): LAT_______________________; LONG______________________________ LOCATION (ONBOARD): LAT_______________________; LONG______________________________ BOTTOM DEPTH_________; DEPTH OF SAMPLE:____________; DURATION OF TRAWL___________; TIME: IN_________AT DEPTH________START UP__________SURFACE_________ SHIP SPEED__________; WEATHER__________________; SEA STATE_________________; AIR TEMP______________ SURFACE TEMP__________; PHYS. OCE. NOTES______________________; NOTES_____________________________ INVERTEBRATES Lensia hostile_______________________ PHYLUM RADIOLARIA Lensia havock______________________ Family Tuscaroridae “Round yellow ones”___ Family Hippopodiidae Vogtia sp.___________________________ PHYLUM CTENOPHORA Family Prayidae Subfamily Nectopyramidinae Class Nuda "Pointed siphonophores"________________ Order Beroida Nectadamas sp._______________________ Family Beroidae Nectopyramis sp.______________________ Beroe abyssicola_____________________ Family Prayidae Beroe forskalii________________________ Subfamily Prayinae Beroe cucumis _______________________ Craseoa lathetica_____________________ Class Tentaculata Desmophyes annectens_________________ Subclass
    [Show full text]
  • First Record of Beaching Events for a Calycophoran Siphonophore: Abylopsis Tetragona (Otto, 1823) at the Strait of Gibraltar
    Marine Biodiversity https://doi.org/10.1007/s12526-018-0926-1 SHORT COMMUNICATION First record of beaching events for a caLycophoran siphonophore: Abylopsis tetragona (Otto, 1823) at the Strait of GibraLtar Elena Guerrero1 & Karen Kienberger2 & Ana ViLLaescusa 3 & Josep-Maria GiLi1 & GabrieL Navarro2 & Laura Prieto 2 Received: 26 March 2018 / Revised: 2 August 2018 / Accepted: 8 October 2018 # Senckenberg GeseLLschaft für Naturforschung 2018 Abstract Two beaching events of the calycophoran siphonophore Abylopsis tetragona (Otto, 1823) were observed in two different areas of the Strait of Gibraltar during the cold season. The first was discovered on November 2014, on Getares Beach (Algeciras Bay, Mediterranean part of the Strait of Gibraltar), where more than 700 colonies were found deposited along the tideline. The second event was discovered on January 2015, on Paloma Baja Beach (Tarifa, Atlantic part of the Strait of Gibraltar) where an average density of 170 colonies m−2 was spread along the seashore. Both events seemed to be promoted by strong easterly winds, preceded by upwelling episodes that may have concentrated high densities of the siphonophore in superficial layers. This study represents the first report of a calycophoran siphonophore mass stranding. The records were made thanks to citizen science and jellyfish outreach at secondary schools (PERSEUS@school initiative), illustrating the importance of citizen science projects in observing natural phenomena. We consider the monitoring and recording of cnidarian stranding events especially important in highly productive and biologically active areas such as the Strait of Gibraltar. Keywords Mass stranding . Gelatinous zooplankton . Citizen science . Outreach . Secondary schools Introduction abundant epipelagic siphonophore inhabitant of temperate and warm waters of the Atlantic, Pacific and Indican oceans Siphonophores are long pelagic colonial hydrozoans and the Mediterranean Sea (Alvariño 1971; Mapstone 2014).
    [Show full text]