Ozone Induces Oxidative Stress in Rat Alveolar Type II and Type I-Like Cells ⁎ Jieru Wang, Shuanglin Wang, Rizwan Manzer, Glen Mcconville, Robert J

Total Page:16

File Type:pdf, Size:1020Kb

Ozone Induces Oxidative Stress in Rat Alveolar Type II and Type I-Like Cells ⁎ Jieru Wang, Shuanglin Wang, Rizwan Manzer, Glen Mcconville, Robert J Free Radical Biology & Medicine 40 (2006) 1914–1928 www.elsevier.com/locate/freeradbiomed Original Contribution Ozone induces oxidative stress in rat alveolar type II and type I-like cells ⁎ Jieru Wang, Shuanglin Wang, Rizwan Manzer, Glen McConville, Robert J. Mason Department of Medicine, National Jewish and Medical Research Center, 1400 Jackson Street, Denver, CO 80206, USA Received 21 July 2005; revised 10 January 2006; accepted 16 January 2006 Available online 9 February 2006 Abstract Ozone is a highly reactive gas present in urban air, which penetrates deep into the lung and causes lung injury. The alveolar epithelial cells are among the first cell barriers encountered by ozone. To define the molecular basis of the cellular response to ozone, primary cultures of rat alveolar type II and type I-like cells were exposed to 100 ppb ozone or air for 1 h. The mRNA from both phenotypes was collected at 4 and 24 h after exposure for gene expression profiling. Ozone produced extensive alterations in gene expression involved in stress and inflammatory responses, transcription factors, antioxidant defenses, extracellular matrix, fluid transport, and enzymes of lipid metabolism and cell differentiation. Real-time reverse transcription–polymerase chain reaction and Western blot analysis verified changes in mRNA and protein levels of selected genes. Besides the increased stress response, ozone exposure downregulated genes of cellular differentiation. The changes were more prominent at 4 h in the type I-like phenotype and at 24 h in the type II phenotype. The type I-like cells were more sensitive to ozone than type II cells. The genome-wide changes observed provide insight into signal pathways activated by ozone and how cellular protection mechanisms are initiated. © 2006 Elsevier Inc. All rights reserved. Keywords: Alveolar epithelium; Microarray analyses; Oxidative stress; Differentiation; Free radical Introduction cytotoxicity, DNA damage, and injury through acute and chronic oxidative stress, which ultimately produces necrosis, Ozone is a highly reactive oxidant gas, and a significant sloughing, and increased epithelial permeability [5]. However, component of contemporary ambient air pollution. Many the underlying process and pathways involved in regulation of observational epidemiological studies have indicated significant epithelial injury and repair in response to ozone are not well associations between ambient ozone concentration and a wide understood. Moreover, many previous studies evaluated high range of adverse respiratory health outcomes [1,2]. Ozone has concentrations of ozone (greater than 200 ppb) or were carried been shown to produce lung injury in several animal models as out on cancer cell lines, which may not be representative of well as in normal human subjects and increases airway differentiated epithelial cells [2,6–8]. None have compared responsiveness [2–4]. Ozone is relatively insoluble and targets alveolar type I and type II cell phenotypes. the distal airway epithelium and proximal alveolar units. The present study was designed to explore the cellular However, little is known about the cellular responses to ozone, response of primary cultures of alveolar type II cells and type I- especially those of lung epithelial cells. like cells to a low concentration of ozone (100 ppb for 60 min). The alveolar epithelium is one of the primary targeted sites of Specifically, we sought to define the stress response to ozone ozone toxicity [2]. Inhalation of ozone induces epithelial and to identify sensitive molecular targets in the two alveolar epithelial phenotypes. To our knowledge, this is the first study to Abbreviations: DMEM, Dulbecco's modified essential medium; EHS, focus on genome-wide changes induced by a low concentration Engelbreth-Holm-Swarm; FBS, fetal bovine serum; RS, rat serum; MHC, major of ozone on differentiated alveolar epithelial cells. The genome- histocompatibility complex; MMPs, matrix metalloproteinases; RT-PCR, wide changes observed should help to define how the epithelial reverse transcription-polymerase chain reaction; GSH, glutathione; GRX, glutaredoxin. cells respond to ozone, and, therefore, provide insight into signal ⁎ Corresponding author. Fax: +1 303 398 1806. pathways activated by ozone and how cellular protection E-mail address: [email protected] (R.J. Mason). mechanisms are initiated. 0891-5849/$ - see front matter © 2006 Elsevier Inc. All rights reserved. doi:10.1016/j.freeradbiomed.2006.01.017 J. Wang et al. / Free Radical Biology & Medicine 40 (2006) 1914–1928 1915 Materials and methods like phenotype the plated type II cells were switched from 5% rat serum to 5% fetal bovine serum (FBS). The 6-well plates were Animals incubated at 37°C on a rocking platform inside a humidified incubator gassed with 10% CO2; the media were replaced every Male Sprague-Dawley rats weighing 150–250 g were 48 h. On Day 3 and Day 5 of culture, 10−8 M dexamethasone (dex) purchased from Harlan (Indianapolis, IN). Animals were fed was added to media for both phenotypes. The ozone exposure was ad libitum and housed in an IAUAC-accredited facility in HEPA- carried out on Day 7 of culture, 6 days under air/liquid conditions. filtered cages at the National Jewish Medical and Research Center, Denver. In each microarray experiment, at least 6 rats 6– In vitro ozone exposure 8 weeks of age were used. Animal care, handling, and expe- rimental procedures were carried out in accordance with a pro- Cells were exposed to ozone in a specially designed com- tocol approved by the Animal Care and Use Committee of puter-regulated exposure facility [11]. Ozone was generated by National Jewish Medical and Research Center, Denver. passing compressed medical grade oxygen through an ozone generator (Model OZ2SS-SS, Ozotech, Yreka, CA). Four spe- Antibodies cifically designed 3.7 L glass chambers were used to expose the cultured cells. One of these specifically plumbed chambers was Rabbit anti-SP-B and SP-C were purchased from Chemicon used as the control chamber receiving humidified and warm air/ (Chemicon International, Inc. Temecula, CA), mouse anti-heme CO2 mixtures, and the other chambers received specified con- oxygenase-1 (HO-1) and heat shock 70-kDa protein (Hsp70) centrations of ozone. All chambers were fitted with a rocking were from Stressgen (SPA-180) (Stressgen, Victoria, Canada) platform to keep the culture plate rocking at the time of exposure. and Santa Cruz (sc-24) (Santa Cruz Biotechnology, Santa Cruz, The medium was completely removed from the apical surface CA), rabbit anti-Fra-1 and goat anti-actin were products from and 1 ml of media was maintained in the basolateral compart- Santa Cruz. Rabbit anti-rat SP-A and SP-D were a gift from Dr. ment for the exposure. In the current study, cells were exposed to Dennis Voelker (National Jewish Medical and Research Center, 100 ppb ozone for 60 min. Ozone concentration in the ozone Denver, CO), mouse anti-T1α was provided by Dr. Mary exposure chamber was analyzed precisely by an ozone analyzer Williams (Boston University, Boston, MA). (Model MD-050-12-f-4, Perma Pure Inc., Toms River, NJ) and was regulated by a computerized system. Type II cell isolation In vivo ozone exposure Alveolar type II cells were isolated from pathogen free adult male Sprague-Dawley rats (Harlan-Sprague-Dawley, Indiana- Rats were randomly assigned to two groups of four and polis, IN) by tissue dissociation with porcine pancreatic elastase placed in individual stainless-steel wire-mesh cages inside a (Roche Molecular Biochemicals, Indianapolis, IN) and partial 135 L exposure chamber and exposed to 2 ppm ozone or air for purification on discontinuous metrizamide gradients as des- 3 h. Chamber ozone concentration was monitored with an cribed previously [9,10]. Advance Pollution Instruments (API) Model 400A (Teledyne Instruments, San Diego, CA). Six hours after exposure, the rats Culture in the apical-access system were euthanized with an intraperitoneal injection of pentobar- bital (Abbott Laboratories, North Chicago, IL). The chest cavity Two and a half million freshly isolated viable type II cells were was opened, and the lungs were removed. plated in 1 ml of DMEM containing 5% rat serum (PelFreez Biologicals, Rogers, AR), 2 mM glutamine, 2.5 μg/ml amphoter- Immunohistochemistry analyses icin B, 100 μg/ml penicillin G, 100 μg/ml streptomycin (GIBCO BRL, Life Technologies Inc., Rockville, MD), and 10 μg/ml The ozone-and air-exposed rat lungs were perfused and fixed in gentamicin (Sigma-Aldrich, St. Louis, MO) on a filter insert acid alcohol overnight at 4°C and embedded in paraffin [12].For (Millicell-CM, 0.4 μm pore, 30 mm diameter, Millipore Corp, immunocytochemical staining, slides were incubated with 3% Bedford, MA) that had been coated with 0.4 ml of a mixture of rat donkey serum for 20 min at room temperature to block the tail collagen and Engelbreth-Holm-Swarm (EHS) tumor matrix unspecific staining and then incubated with mouse monoclonal anti- (Matrigel, Collaborative Biochemedical Products, Bedford, MA). Hsp70 or T1α antibodies overnight at 4°C. Alexa 594 conjugated The coating mixture was prepared at 4°C and allowed to donkey anti-mouse IgG (Molecular Probes. Inc., Eugene, OR) was polymerize at 37°C before the addition of the cells and contained used to detect the monoclonal antibodies. Sections were viewed and approximately 0.8 mg rat tail collagen and 2 mg EHS protein per photographed with a Zeiss Axioskop 2 fluorescent microscope. milliter. Two milliters of the same media was added to the basolateral compartment of the well. After attachment for 24 h, the Measurement of DNA monolayers were rinsed twice with DMEM, and 0.4 ml of medium was added to the apical surface and 2.0 ml to the basolateral DNA from air control and ozone-treated cells were extracted compartment. For the type II phenotype, cells were cultured in at 24 h posttreatment for DNA assay as described previously DMEM containing 5% rat serum and 10 ng/ml KGF.
Recommended publications
  • SLC44A1 Transport of Choline and Ethanolamine in Disease
    SLC44A1 Transport of Choline and Ethanolamine in Disease by Adrian Taylor A Thesis presented to The University of Guelph In partial fulfilment of requirements for the degree of Doctor of Philosophy in Human Health and Nutritional Sciences Guelph, Ontario, Canada © Adrian Taylor, April, 2019 ABSTRACT SLC44A1 TRANSPORT OF CHOLINE AND ETHANOLAMINE IN DISEASE Adrian Taylor Advisor(s): University of Guelph, 2019 Marica Bakovic Choline and ethanolamine are important molecules required for the de novo synthesis of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) via the Kennedy pathway. Additionally, these two molecules are vital for maintaining both muscular and neurological function. The goal of this thesis was to gain insight into PC and PE metabolism with the use of unique metabolic disturbances ranging from obesity and genetic mutations in neurodegenerative disease. Firstly, the protective effects of choline supplementation on muscular function were investigated within the Pcyt2+/- mouse model. In Pcyt2+/- mice, substrate flow through the CDP-ethanolamine branch of the Kennedy pathway was diminished resulting in triacylglycerol (TAG) accumulation and obesity. Supplemental choline improved muscle function by altering the expression of genes devoted to reducing TAG synthesis and restoring energy homeostasis. With this new insight about the role of choline in regulating metabolism, the cellular uptake mechanism of choline was then analyzed. Skin fibroblasts from two patients with homozygous mutations in the SLC44A1 gene suffering from Neurodegeneration with Brain Iron Accumulation (NBIA) were utilized. In these fibroblasts, SLC44A1 expression and choline uptake were drastically diminished. Moreover, PC levels were unaffected while PE levels were diminished relative to control, an indication of perturbed phospholipid homeostasis.
    [Show full text]
  • Exploring the Relationship Between Genetic Variation in Taste Receptor Genes and Salt Taste Perception Among People with Hypertension
    Mississippi State University Scholars Junction Theses and Dissertations Theses and Dissertations 11-25-2020 Exploring the relationship between genetic variation in taste receptor genes and salt taste perception among people with hypertension Pradtana Tapanee Follow this and additional works at: https://scholarsjunction.msstate.edu/td Recommended Citation Tapanee, Pradtana, "Exploring the relationship between genetic variation in taste receptor genes and salt taste perception among people with hypertension" (2020). Theses and Dissertations. 2176. https://scholarsjunction.msstate.edu/td/2176 This Dissertation - Open Access is brought to you for free and open access by the Theses and Dissertations at Scholars Junction. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of Scholars Junction. For more information, please contact [email protected]. Template B v4.1 (beta): Created by L. Threet 11/15/19 Exploring the relationship between genetic variation in taste receptor genes and salt taste perception among people with hypertension By TITLE PAGE Pradtana Tapanee Approved by: Terezie Tolar-Peterson (Major Professor) Daniel G. Peterson Diane K. Tidwell M. Wes Schilling Wen-Hsing Cheng (Committee Member/Graduate Coordinator) Scott T. Willard (Dean, College of Agriculture and Life Sciences) A Dissertation Submitted to the Faculty of Mississippi State University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Nutrition in the Department of Food Science,
    [Show full text]
  • Upregulation of Peroxisome Proliferator-Activated Receptor-Α And
    Upregulation of peroxisome proliferator-activated receptor-α and the lipid metabolism pathway promotes carcinogenesis of ampullary cancer Chih-Yang Wang, Ying-Jui Chao, Yi-Ling Chen, Tzu-Wen Wang, Nam Nhut Phan, Hui-Ping Hsu, Yan-Shen Shan, Ming-Derg Lai 1 Supplementary Table 1. Demographics and clinical outcomes of five patients with ampullary cancer Time of Tumor Time to Age Differentia survival/ Sex Staging size Morphology Recurrence recurrence Condition (years) tion expired (cm) (months) (months) T2N0, 51 F 211 Polypoid Unknown No -- Survived 193 stage Ib T2N0, 2.41.5 58 F Mixed Good Yes 14 Expired 17 stage Ib 0.6 T3N0, 4.53.5 68 M Polypoid Good No -- Survived 162 stage IIA 1.2 T3N0, 66 M 110.8 Ulcerative Good Yes 64 Expired 227 stage IIA T3N0, 60 M 21.81 Mixed Moderate Yes 5.6 Expired 16.7 stage IIA 2 Supplementary Table 2. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of an ampullary cancer microarray using the Database for Annotation, Visualization and Integrated Discovery (DAVID). This table contains only pathways with p values that ranged 0.0001~0.05. KEGG Pathway p value Genes Pentose and 1.50E-04 UGT1A6, CRYL1, UGT1A8, AKR1B1, UGT2B11, UGT2A3, glucuronate UGT2B10, UGT2B7, XYLB interconversions Drug metabolism 1.63E-04 CYP3A4, XDH, UGT1A6, CYP3A5, CES2, CYP3A7, UGT1A8, NAT2, UGT2B11, DPYD, UGT2A3, UGT2B10, UGT2B7 Maturity-onset 2.43E-04 HNF1A, HNF4A, SLC2A2, PKLR, NEUROD1, HNF4G, diabetes of the PDX1, NR5A2, NKX2-2 young Starch and sucrose 6.03E-04 GBA3, UGT1A6, G6PC, UGT1A8, ENPP3, MGAM, SI, metabolism
    [Show full text]
  • Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
    UCSF UC San Francisco Previously Published Works Title Expression profiling of ion channel genes predicts clinical outcome in breast cancer Permalink https://escholarship.org/uc/item/1zq9j4nw Journal Molecular Cancer, 12(1) ISSN 1476-4598 Authors Ko, Jae-Hong Ko, Eun A Gu, Wanjun et al. Publication Date 2013-09-22 DOI http://dx.doi.org/10.1186/1476-4598-12-106 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Ko et al. Molecular Cancer 2013, 12:106 http://www.molecular-cancer.com/content/12/1/106 RESEARCH Open Access Expression profiling of ion channel genes predicts clinical outcome in breast cancer Jae-Hong Ko1, Eun A Ko2, Wanjun Gu3, Inja Lim1, Hyoweon Bang1* and Tong Zhou4,5* Abstract Background: Ion channels play a critical role in a wide variety of biological processes, including the development of human cancer. However, the overall impact of ion channels on tumorigenicity in breast cancer remains controversial. Methods: We conduct microarray meta-analysis on 280 ion channel genes. We identify candidate ion channels that are implicated in breast cancer based on gene expression profiling. We test the relationship between the expression of ion channel genes and p53 mutation status, ER status, and histological tumor grade in the discovery cohort. A molecular signature consisting of ion channel genes (IC30) is identified by Spearman’s rank correlation test conducted between tumor grade and gene expression. A risk scoring system is developed based on IC30. We test the prognostic power of IC30 in the discovery and seven validation cohorts by both Cox proportional hazard regression and log-rank test.
    [Show full text]
  • Analyzing the Genes Related to Alzheimer's Disease Via a Network
    Hu et al. Alzheimer's Research & Therapy (2017) 9:29 DOI 10.1186/s13195-017-0252-z RESEARCH Open Access Analyzing the genes related to Alzheimer’s disease via a network and pathway-based approach Yan-Shi Hu1, Juncai Xin1, Ying Hu1, Lei Zhang2* and Ju Wang1* Abstract Background: Our understanding of the molecular mechanisms underlying Alzheimer’s disease (AD) remains incomplete. Previous studies have revealed that genetic factors provide a significant contribution to the pathogenesis and development of AD. In the past years, numerous genes implicated in this disease have been identified via genetic association studies on candidate genes or at the genome-wide level. However, in many cases, the roles of these genes and their interactions in AD are still unclear. A comprehensive and systematic analysis focusing on the biological function and interactions of these genes in the context of AD will therefore provide valuable insights to understand the molecular features of the disease. Method: In this study, we collected genes potentially associated with AD by screening publications on genetic association studies deposited in PubMed. The major biological themes linked with these genes were then revealed by function and biochemical pathway enrichment analysis, and the relation between the pathways was explored by pathway crosstalk analysis. Furthermore, the network features of these AD-related genes were analyzed in the context of human interactome and an AD-specific network was inferred using the Steiner minimal tree algorithm. Results: We compiled 430 human genes reported to be associated with AD from 823 publications. Biological theme analysis indicated that the biological processes and biochemical pathways related to neurodevelopment, metabolism, cell growth and/or survival, and immunology were enriched in these genes.
    [Show full text]
  • Supporting Table S3 for PDF Maker
    Supplemental Table S3. Annotation of identified proteins. Number of Sequence Accession Number of Theoretical Subcellular Number Locus ID Gene Name Protein Name Identified Coverage Theoretical pI Protein Family NSAF Number Amino Acid MW (Da) Location of TMD Peptides (%) (O08539) Myc box-dependent-interacting protein 1 O08539 BIN1_MOUSE BIN1 (Bridging integrator 1) (Amphiphysin-like protein) 3 10.5 588 64470 5 Nucleus other NONE 5.73E-05 (Amphiphysin II) (SH3-domain-containing protein 9) (O08547) Vesicle-trafficking protein SEC22b (SEC22 O08547 SC22B_MOUSE SEC22B 5 30.4 214 24609 8.5 Cytoplasm other 2 0.000262 vesicle-trafficking protein-like 1) (O08553) Dihydropyrimidinase-related protein 2 (DRP-2) O08553 DPYL2_MOUSE DPYSL2 5 19.4 572 62278 6.4 Cytoplasm enzyme NONE 7.85E-05 (ULIP 2 protein) O08579 EMD_MOUSE EMD (O08579) Emerin 1 5.8 259 29436 5 Nucleus other 1 8.67E-05 (O08583) THO complex subunit 4 (Tho4) (RNA and transcription O08583 THOC4_MOUSE THOC4 export factor-binding protein 1) (REF1-I) (Ally of AML-1 1 9.8 254 26809 11.2 Nucleus NONE 2.21E-05 regulator and LEF-1) (Aly/REF) O08585 CLCA_MOUSE CLTA (O08585) Clathrin light chain A (Lca) 2 4.7 235 25557 4.5 Plasma Membrane other NONE 0.000287 (O08600) Endonuclease G, mitochondrial precursor (EC O08600 NUCG_MOUSE ENDOG 4 23.1 294 32191 9.5 Cytoplasm enzyme NONE 0.000134 3.1.30.-) (Endo G) (O08638) Myosin-11 (Myosin heavy chain, smooth O08638 MYH11_MOUSE MYH11 8 6.6 1972 227026 5.5 Cytoplasm other NONE 3.13E-05 muscle isoform) (SMMHC) (O08648) Mitogen-activated protein kinase kinase
    [Show full text]
  • KONSTRUKTION VON ESCHERICHIA COLI PRODUKTIONSSTÄMMEN ZUR FERMENTATIVEN HERSTELLUNG VON SUCCINAT AUS GLYCERIN Stefan Söllner
    KONSTRUKTION VON ESCHERICHIA COLI PRODUKTIONSSTÄMMEN ZUR FERMENTATIVEN HERSTELLUNG VON SUCCINAT AUS GLYCERIN Von der Fakultät 4 (Energie-, Verfahrens- und Biotechnik) der Universität Stuttgart zur Erlangung der Würde eines Doktors der Naturwissenschaften (Dr. rer. nat.) genehmigte Abhandlung Vorgelegt von Stefan Söllner aus Schweinfurt Hauptberichter: Prof. Dr. rer. nat. Ralf Mattes Mitberichter: Prof. Dr.-Ing. Ralf Takors Tag der mündlichen Prüfung: 29.02.2012 Institut für Industrielle Genetik Universität Stuttgart 2012 Vielen Dank! … Herrn Prof. Dr. R. Mattes danke ich für die Überlassung des interessanten Themas, des Arbeitsplatzes, für gelegentliches Aufmuntern und für die Erstellung des Erstgutachtens dieser Arbeit. … Herrn Prof. Dr. R. Takors danke ich für die freundliche Übernahme des Zweitgutachtens und für spannende Diskussionen. … Herrn Dr. Josef Altenbuchner danke ich für die praktische Betreuung dieser Arbeit, für diverse Einladungen zu Grillfesten und ganz besonders für die intensive Durchsicht des Manuskriptes!!! … Herrn Dr. Martin Siemann-Herzberg danke ich für die motivierende, überschwängliche Begeisterung, die meine Ideen und Ergebnisse bei deren Besprechung jedesmal auslösten. … Herrn Prof. Dr. Reuss danke ich für die Initiierung des Projektes lange vor meiner Zeit. … Meinen Kollegen und Exkollegen danke ich für die gute Zusammenarbeit, das abwechslungsreiche Arbeitsklima sowie die vielen fachlichen und nichtfachlichen Gespräche, welche die Arbeit immer spannend gestalteten. Vor allem danke ich für das Verständnis für die von mir durchgeführten, absolut notwendigen, regelmäßigen Arbeitskontrollen. … Frau Dr. Anne Völker hat mir die Integration zu Beginn meines Aufenthaltes am IIG sehr erleichtert. Herzlichen Dank dafür! … Herrn Kambiz Morabbi Heravi danke ich recht herzlich für die Einladung ans National Institute of Genetic Engineering and Biotechnology in Teheran, Iran und für die internationale Freundschaft.
    [Show full text]
  • Effect of Genetic Variation on Salt, Sweet, Fat and Bitter Taste
    Effect of Genetic Variation on Salt, Sweet, Fat and Bitter Taste by Andre Dias A thesis submitted in conformity with the requirements for the degree of Doctor of Philosophy Department of Nutritional Sciences University of Toronto © Copyright by Andre Dias 2014 Effect of Genetic Variation on Salt, Sweet, Fat and Bitter Taste Andre Dias Doctor of Philosophy Department of Nutritional Sciences University of Toronto 2014 Abstract Background: Taste is one of the primary determinants of food intake and taste function can be influenced by a number of factors including genetics. However, little is known about the relationship between genetic variation, taste function, food preference and intake. Objective: To examine the effect of variation in genes involved in the perception of salt, sweet, fat and bitter compounds on taste function, food preference and consumption. Methods: Subjects were drawn from the Toronto Nutrigenomics and Health Study, a population of healthy men (n=487) and women (n = 1058). Dietary intake was assessed using a 196-item food frequency questionnaire (FFQ) and food preference was assessed using a 63-item food preference checklist. Subsets of individuals were phenotyped to assess taste function in response to salt (n=95), sucrose (n=95), oleic acid (n=21) and naringin (n=685) stimuli. Subjects were genotyped for Single Nucleotide Polymorphisms (SNPs) in candidate genes. Results: Of the SNPs examined in putative salt taste receptor genes (SCNN1(A, B, D, G), TRPV1), the rs9939129 and rs239345 SNPs in the SCNN1B gene and rs8065080 in the TRPV1 gene were associated with salt taste. In the TAS1R2 gene, the rs12033832 was associated with sucrose taste and sugar intake.
    [Show full text]
  • Discovery of Novel Biomarkers for Atherosclerotic Aortic Aneurysm
    www.nature.com/scientificreports There are amendments to this paper OPEN Discovery of novel biomarkers for atherosclerotic aortic aneurysm through proteomics-based assessment of disease progression Hiroaki Yagi1,6, Mitsuhiro Nishigori1,2,6, Yusuke Murakami2,6, Tsukasa Osaki1, Sayaka Muto2,4, Yutaka Iba3, Kenji Minatoya3, Yoshihiko Ikeda4, Hatsue Ishibashi-Ueda4, Takayuki Morisaki5, Hitoshi Ogino3, Hiroshi Tanaka3, Hiroaki Sasaki3, Hitoshi Matsuda3 & Naoto Minamino1,2* Since aortic aneurysms (AAs) are mostly asymptomatic, but they have a high mortality rate upon rupture, their detection and progression evaluation are clinically important issues. To discover diagnostic biomarkers for AA, we performed proteome analysis of aortic media from patients with thoracic atherosclerotic AA (TAAA), comparing protein levels between the aneurysm and normal tissue areas. After hierarchical clustering analysis of the proteome analysis data, tissue samples were classifed into three groups, regardless of morphological features. This classifcation was shown to refect disease progression stage identifed by pathological examination. This proteomics-based staging system enabled us to identify more signifcantly altered proteins than the morphological classifcation system. In subsequent data analysis, Niemann-Pick disease type C2 protein (NPC2) and insulin-like growth factor-binding protein 7 (IGFBP7) were selected as novel biomarker candidates for AA and were compared with the previously reported biomarker, thrombospondin 1 (THBS1). Blood concentrations of NPC2 and IGFBP7 were signifcantly increased, while THBS1 levels were decreased in TAAA and abdominal atherosclerotic AA patients. Receiver operating characteristic analysis of AA patients and healthy controls showed that NPC2 and IGFBP7 have higher specifcity and sensitivity than THBS1. Thus, NPC2 and IGFBP7 are promising biomarkers for the detection and progression evaluation of AA.
    [Show full text]
  • Proteomics of Lipid Accumulation and DGAT Inhibition in Hepg2 Liver Carcinoma Cells
    Proteomics of lipid accumulation and DGAT inhibition in HepG2 liver carcinoma cells. By Bhumika Bhatt-Wessel A thesis submitted to Victoria University of Wellington in fulfilment of the requirement for the degree of Doctor of Philosophy In Cell and Molecular Biology. Victoria University of Wellington 2017. i ABSTRACT Non-alcoholic fatty liver disease (NAFLD) is a manifestation of the metabolic syndrome in the liver. It is marked by hepatocyte accumulation of triacylglycerol (TAG) rich lipid droplets. In some patients, the disease progresses to non-alcoholic steatohepatitis (NASH), characterized by cellular damage, inflammation and fibrosis. In some cases, cirrhosis and liver failure may occur. However, the pathogenesis of NAFLD is still unclear. The present project is based on the hypothesis that hepatocytes are equipped with mechanisms that allow them to manage lipid accumulation to a certain extent. Continued or increased lipid accumulation beyond this triggers molecular mechanisms such as oxidative stress, lipid peroxidation and cell death that aggravate the condition and cause disease progression. The aim of this project is to study the effects of lipid accumulation on the cells using proteomics approach to identify proteins involved in the disease progression. A cell culture model was used in the study. HepG2 cells, a human liver carcinoma cell line, were treated with a mixture of fatty acids (FA) to induce lipid accumulation. The lipid accumulation in HepG2 cells was measured with Oil red O assay and the effect of lipid accumulation on the proliferation of the cells was measured using an MTT cell proliferation assay. HepG2 cells treated with 1 mM FA mixture for 6 hours induced lipid accumulation 1.4 times of control with 90% of cell proliferation capacity of the control cells.
    [Show full text]
  • Bioinformatics Unmasks the Maneuverers of Pain Pathways In
    www.nature.com/scientificreports OPEN Bioinformatics Unmasks the Maneuverers of Pain Pathways in Acute Kidney Injury Received: 4 March 2019 Aprajita Gupta 1, Sanjeev Puri 2 & Veena Puri 1 Accepted: 31 July 2019 Acute Kidney injury (AKI) is one of the leading health concerns resulting in accumulation of nitrogenous Published: xx xx xxxx as well as non-nitrogenous wastes in body and characterised by a rapid deterioration in kidney functions. Besides the major toll from the primary insult in the kidney, consequential extra-renal secondary insults endowed with the pathways of infammatory milieu often complicates the disease outcome. Some of the known symptoms of AKI leading to clinical reporting are fatigue, loss of appetite, headache, nausea, vomiting, and pain in the fanks, wherein proinfammatory cytokines have been strongly implicated in pathogenesis of AKI and neuro-infammation. Taking in account these clues, we have tried to decode the neuro-infammation and pain perception phenomenon during the progression of AKI using the pathway integration and biological network strategies. The pathways and networks were generated using bioinformatics software viz. PANTHER, Genomatix and PathVisio to establish the relationship between immune and neuro related pathway in AKI. These observations envisage a neurol-renal axis that is predicted to involve calcium channels in neuro-infammatory pathway of AKI. These observations, thus, pave a way for a new paradigm in understanding the interplay of neuro- immunological signalling in AKI. Acute kidney injury (AKI) is a clinical event associated with a rapid loss of kidney function, leading to high mor- bidity and mortality1. Every year about 2 million people die from AKI due to late detection of disease or paucity of efective therapeutic interventions2.
    [Show full text]
  • Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers
    Research Article Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers Dohun Pyeon,1,2 Michael A. Newton,3 Paul F. Lambert,1 Johan A. den Boon,1,2 Srikumar Sengupta,1,2 Carmen J. Marsit,6 Craig D. Woodworth,7 Joseph P. Connor,4 Thomas H. Haugen,8 Elaine M. Smith,9 Karl T. Kelsey,6 Lubomir P. Turek,8 and Paul Ahlquist1,2,5 1McArdle Laboratory for Cancer Research; 2Institute for Molecular Virology; Departments of 3Statistics and of Biostatistics and Medical Informatics and 4Obstetrics and Gynecology; 5Howard Hughes Medical Institute, University of Wisconsin-Madison, Madison, Wisconsin; 6Departments of Genetics and Complex Diseases, Harvard School of Public Health, Boston, Massachusetts; 7Department of Biology, Clarkson University, Potsdam, New York; 8Department of Pathology, Veterans Affairs Medical Center; and 9Department of Epidemiology, University of Iowa, Iowa City, Iowa Abstract lower female reproductive tract, penis, and anus (1). In particular, Human papillomaviruses (HPV) are associated with nearly all high-risk HPVs are associated with nearly all cervical cancers, a cervical cancers, 20% to 30% of head and neck cancers (HNC), leading cause of cancer death in women worldwide despite the and other cancers. Because HNCs also arise in HPV-negative effectiveness in developed countries of screening for early patients, this type of cancer provides unique opportunities to detection of precancerous lesions (1). Prophylactic HPV vaccines define similarities and differences of HPV-positive versus HPV- should eventually reduce infections by the most prevalent high-risk HPVs, but do not cover all high-risk HPVs.
    [Show full text]