Expression Profiling of Ion Channel Genes Predicts Clinical Outcome in Breast Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Age-Dependent Myocardial Transcriptomic Changes in the Rat
Revista Română de Medicină de Laborator Vol. 22, Nr. 1, Martie, 2014 9 Research article DOI: 10.2478/rrlm-2014-0001 Age-dependent myocardial transcriptomic changes in the rat. Novel insights into atrial and ventricular arrhythmias pathogenesis Modificări transcriptomice dependente de vârstă în miocardul de șobolan. Noi aspecte referitoare la patogeneza aritmiilor atriale și ventriculare Alina Scridon1,2, Emmanuelle Fouilloux-Meugnier3, Emmanuelle Loizon3, Marcel Perian1, Sophie Rome3, Claude Julien2, Christian Barrès2, Philippe Chevalier2,4 1.Physiology Department, University of Medicine and Pharmacy of Tîrgu Mureș, 540139, Tîrgu Mureș, Romania 2. Unité de Neurocardiologie, EA4612, Université Lyon 1, F-69008, Lyon, France 3. Unité 1060 INSERM CarMen, Université Lyon 1, F-69008, Lyon, France 4. Hospices Civils de Lyon, Hôpital Louis Pradel, Service de Rythmologie, 69500, Bron, France Abstract Background: Aging is associated with significantly increased prevalence of cardiac arrhythmias, but tran- scriptional events that underlie this process remain to be established. To gain deeper insight into molecular mech- anisms of aging-related cardiac arrhythmias, we performed mRNA expression analysis comparing atrial and ven- tricular myocardium from Wistar-Kyoto (WKY) rats of different ages. Methods: Atrial and ventricular sampling was performed in 3 groups (n=4 each) of young (14-week-old), adult (25-week-old), and aging (47-week-old) WKY rats. mRNA expressions of 89 genes involved in cardiac arrhythmogenicity were investigated using TaqMan Low Density Array analysis. Results: Of the 89 studied genes, 40 and 64 genes presented steady atrial and ventricu- lar expressions, respectively. All genes differentially expressed within the atria of WKY rats were up-regulated with advancing age, mainly the genes encoding for various K+, Ca2+, Na+ channels, and type 6 collagen. -
De Novo BK Channel Variant Causes Epilepsy by Affecting Voltage Gating but Not Ca2+ Sensitivity
European Journal of Human Genetics (2018) 26:220–229 https://doi.org/10.1038/s41431-017-0073-3 ARTICLE De novo BK channel variant causes epilepsy by affecting voltage gating but not Ca2+ sensitivity 1 2 3,4 5 6 Xia Li ● Sibylle Poschmann ● Qiuyun Chen ● Walid Fazeli ● Nelly Jouayed Oundjian ● 7 8 9 9,10 Francesca M. Snoeijen-Schouwenaars ● Oliver Fricke ● Erik-Jan Kamsteeg ● Marjolein Willemsen ● Qing Kenneth Wang1,3,4 Received: 18 August 2017 / Revised: 6 November 2017 / Accepted: 23 November 2017 / Published online: 12 January 2018 © European Society of Human Genetics 2018 Abstract Epilepsy is one of the most common neurological diseases and it causes profound morbidity and mortality. We identified the first de novo variant in KCNMA1 (c.2984 A > G (p.(N995S)))—encoding the BK channel—that causes epilepsy, but not paroxysmal dyskinesia, in two independent families. The c.2984 A > G (p.(N995S)) variant markedly increased the macroscopic potassium current by increasing both the channel open probability and channel open dwell time. The c.2984 A > G (p.(N995S)) variant did not affect the calcium sensitivity of the channel. We also identified three other variants of fi > > > 1234567890 unknown signi cance (c.1554 G T (p.(K518N)), c.1967A C (p.(E656A)), and c.3476 A G (p.(N1159S))) in three separate patients with divergent epileptic phenotypes. However, these variants did not affect the BK potassium current, and are therefore unlikely to be disease-causing. These results demonstrate that BK channel variants can cause epilepsy without paroxysmal dyskinesia. The underlying molecular mechanism can be increased activation of the BK channel by increased sensitivity to the voltage-dependent activation without affecting the sensitivity to the calcium-dependent activation. -
The Mineralocorticoid Receptor Leads to Increased Expression of EGFR
www.nature.com/scientificreports OPEN The mineralocorticoid receptor leads to increased expression of EGFR and T‑type calcium channels that support HL‑1 cell hypertrophy Katharina Stroedecke1,2, Sandra Meinel1,2, Fritz Markwardt1, Udo Kloeckner1, Nicole Straetz1, Katja Quarch1, Barbara Schreier1, Michael Kopf1, Michael Gekle1 & Claudia Grossmann1* The EGF receptor (EGFR) has been extensively studied in tumor biology and recently a role in cardiovascular pathophysiology was suggested. The mineralocorticoid receptor (MR) is an important efector of the renin–angiotensin–aldosterone‑system and elicits pathophysiological efects in the cardiovascular system; however, the underlying molecular mechanisms are unclear. Our aim was to investigate the importance of EGFR for MR‑mediated cardiovascular pathophysiology because MR is known to induce EGFR expression. We identifed a SNP within the EGFR promoter that modulates MR‑induced EGFR expression. In RNA‑sequencing and qPCR experiments in heart tissue of EGFR KO and WT mice, changes in EGFR abundance led to diferential expression of cardiac ion channels, especially of the T‑type calcium channel CACNA1H. Accordingly, CACNA1H expression was increased in WT mice after in vivo MR activation by aldosterone but not in respective EGFR KO mice. Aldosterone‑ and EGF‑responsiveness of CACNA1H expression was confrmed in HL‑1 cells by Western blot and by measuring peak current density of T‑type calcium channels. Aldosterone‑induced CACNA1H protein expression could be abrogated by the EGFR inhibitor AG1478. Furthermore, inhibition of T‑type calcium channels with mibefradil or ML218 reduced diameter, volume and BNP levels in HL‑1 cells. In conclusion the MR regulates EGFR and CACNA1H expression, which has an efect on HL‑1 cell diameter, and the extent of this regulation seems to depend on the SNP‑216 (G/T) genotype. -
Pharmacogenomics of Drug-Induced Conditions
Pharmacogenomics of Drug-Induced Conditions Dan M. Roden, M.D. Professor of Medicine and Pharmacology Director, Oates Institute for Experimental Therapeutics Assistant Vice-Chancellor for Personalized Medicine Vanderbilt University School of Medicine !1 An “idiosyncratic” drug response AR, 78 year old male • Coronary artery disease; 13 years s/p bypass surgery • 2 days after starting dofetilide (potent IKr blocker)… No personal or family history of syncope, sudden death • KCNQ1 variant leading to R583C identified • In vitro: ↓IKs • Not found in >400 ethnically-matched controls • ∴this is likely subclinical congenital Long QT Syndrome !2 Another face of the congenital long QT syndrome !3 Father’s ECG !4 Mother’s ECG !5 9-year-old sister’s ECG !6 Family tree Aunt, cousin, niece with 402 426 syncope 462 405 439 428 (RBBB) 436 428 492 411 419 404 • One episode of syncope, age 20 • Multiple ER visits for acute allergic reactions à epinephrine without incident !7 Mother’s ECG post-exercise !8 Identifying a mutation in KCNQ1 mothersister …YI G FLGLI… …YI D FLGLI… G269D !9 Family tree Aunt, cousin, niece with 402 426 syncope 462 405 439 428 (RBBB) 436 428 492 411 419 404 Incomplete penetrance !10 Grandfather’s ECG !11 Defining the “drug-induced long QT syndrome” • Marked QT prolongation and typical pause-dependent torsades de pointes with drug challenge, both resolving with drug withdrawal • Variants: • Marked QT prolongation (e.g. >520 or 550 or 600 msec), recognized and drug withdrawn (no torsades) • pause-dependent polymorphic VT after administration -
Tomo-Seq Identifies SOX9 As a Key Regulator of Cardiac Fibrosis During Ischemic Injury
myocardial myocardial Eva van ◼ osis fibr SOX9 transcription ◼ PhD* PhD PhD PhD MSc, PhD naarden, MSc, PhD naarden, PhD* ventricular remodeling Correspondence to: Correspondence Rooij, MSc, PhD, Hubrecht Department of Institute, KNAW University Medical Cardiology, Uppsalalaan 8, Center Utrecht, The Netherlands. 3584CT Utrecht, E-mail [email protected] of Funding, see page 1408 Sources Key Words: ischemia ◼ © 2017 American Heart Association, Inc. *Drs. Lacraz and Junker contributed equally. Grégory P.A. Lacraz, MSc, P.A. Grégory MSc, Jan Philipp Junker, Monika M. Gladka, MSc, MSc Bas Molenaar, Scholman, MSc Koen T. MSc Marta Vigil-Garcia, BS Danielle Versteeg, BS Hesther de Ruiter, MSc, Vermunt, Marit W. MSc, Creyghton, Menno P. Manon M.H. Huibers, Nicolaas de Jonge, MD Alexander van Oude- Eva van Rooij, MSc, PhD 2017;136:1396–1409. DOI: 10.1161/CIRCULATIONAHA.117.027832 DOI: 2017;136:1396–1409. Circulation. blunted the cardiac fibrotic fibrotic blunted the cardiac Sox9 ). Subsequent correlation analysis allowed). Subsequent correlation Serca2 Editorial, see p 1410 , and Nppa Based on the exact local expression cues, tomo-seq can Based on the exact local expression Cardiac ischemic injury induces a pathological remodeling ischemic injury induces a pathological remodeling Cardiac , Although genome-wide transcriptome analysis on diseased tissues Tracing transcriptional differences with a high spatial resolution with a high spatial resolution transcriptional differences Tracing Col1a2 October 10, 2017 October 10, 1396 CONCLUSIONS: novel genes and key transcription factors involved in specific serve to reveal able to unveil the Using tomo-seq, we were remodeling. aspects of cardiac pointing fibrosis, of cardiac of SOX9 as a key regulator unknown relevance fibrosis. -
Towards Mutation-Specific Precision Medicine in Atypical Clinical
International Journal of Molecular Sciences Review Towards Mutation-Specific Precision Medicine in Atypical Clinical Phenotypes of Inherited Arrhythmia Syndromes Tadashi Nakajima * , Shuntaro Tamura, Masahiko Kurabayashi and Yoshiaki Kaneko Department of Cardiovascular Medicine, Gunma University Graduate School of Medicine, Maebashi 371-8511, Gunma, Japan; [email protected] (S.T.); [email protected] (M.K.); [email protected] (Y.K.) * Correspondence: [email protected]; Tel.: +81-27-220-8145; Fax: +81-27-220-8158 Abstract: Most causal genes for inherited arrhythmia syndromes (IASs) encode cardiac ion channel- related proteins. Genotype-phenotype studies and functional analyses of mutant genes, using heterol- ogous expression systems and animal models, have revealed the pathophysiology of IASs and enabled, in part, the establishment of causal gene-specific precision medicine. Additionally, the utilization of induced pluripotent stem cell (iPSC) technology have provided further insights into the patho- physiology of IASs and novel promising therapeutic strategies, especially in long QT syndrome. It is now known that there are atypical clinical phenotypes of IASs associated with specific mutations that have unique electrophysiological properties, which raises a possibility of mutation-specific precision medicine. In particular, patients with Brugada syndrome harboring an SCN5A R1632C mutation exhibit exercise-induced cardiac events, which may be caused by a marked activity-dependent loss of R1632C-Nav1.5 availability due to a marked delay of recovery from inactivation. This suggests that the use of isoproterenol should be avoided. Conversely, the efficacy of β-blocker needs to be examined. Patients harboring a KCND3 V392I mutation exhibit both cardiac (early repolarization syndrome and Citation: Nakajima, T.; Tamura, S.; paroxysmal atrial fibrillation) and cerebral (epilepsy) phenotypes, which may be associated with a Kurabayashi, M.; Kaneko, Y. -
Supplementary Table S1. Upregulated Genes Differentially
Supplementary Table S1. Upregulated genes differentially expressed in athletes (p < 0.05 and 1.3-fold change) Gene Symbol p Value Fold Change 221051_s_at NMRK2 0.01 2.38 236518_at CCDC183 0.00 2.05 218804_at ANO1 0.00 2.05 234675_x_at 0.01 2.02 207076_s_at ASS1 0.00 1.85 209135_at ASPH 0.02 1.81 228434_at BTNL9 0.03 1.81 229985_at BTNL9 0.01 1.79 215795_at MYH7B 0.01 1.78 217979_at TSPAN13 0.01 1.77 230992_at BTNL9 0.01 1.75 226884_at LRRN1 0.03 1.74 220039_s_at CDKAL1 0.01 1.73 236520_at 0.02 1.72 219895_at TMEM255A 0.04 1.72 201030_x_at LDHB 0.00 1.69 233824_at 0.00 1.69 232257_s_at 0.05 1.67 236359_at SCN4B 0.04 1.64 242868_at 0.00 1.63 1557286_at 0.01 1.63 202780_at OXCT1 0.01 1.63 1556542_a_at 0.04 1.63 209992_at PFKFB2 0.04 1.63 205247_at NOTCH4 0.01 1.62 1554182_at TRIM73///TRIM74 0.00 1.61 232892_at MIR1-1HG 0.02 1.61 204726_at CDH13 0.01 1.6 1561167_at 0.01 1.6 1565821_at 0.01 1.6 210169_at SEC14L5 0.01 1.6 236963_at 0.02 1.6 1552880_at SEC16B 0.02 1.6 235228_at CCDC85A 0.02 1.6 1568623_a_at SLC35E4 0.00 1.59 204844_at ENPEP 0.00 1.59 1552256_a_at SCARB1 0.02 1.59 1557283_a_at ZNF519 0.02 1.59 1557293_at LINC00969 0.03 1.59 231644_at 0.01 1.58 228115_at GAREM1 0.01 1.58 223687_s_at LY6K 0.02 1.58 231779_at IRAK2 0.03 1.58 243332_at LOC105379610 0.04 1.58 232118_at 0.01 1.57 203423_at RBP1 0.02 1.57 AMY1A///AMY1B///AMY1C///AMY2A///AMY2B// 208498_s_at 0.03 1.57 /AMYP1 237154_at LOC101930114 0.00 1.56 1559691_at 0.01 1.56 243481_at RHOJ 0.03 1.56 238834_at MYLK3 0.01 1.55 213438_at NFASC 0.02 1.55 242290_at TACC1 0.04 1.55 ANKRD20A1///ANKRD20A12P///ANKRD20A2/// -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Emerging Roles for Multifunctional Ion Channel Auxiliary Subunits in Cancer T ⁎ Alexander S
Cell Calcium 80 (2019) 125–140 Contents lists available at ScienceDirect Cell Calcium journal homepage: www.elsevier.com/locate/ceca Emerging roles for multifunctional ion channel auxiliary subunits in cancer T ⁎ Alexander S. Hawortha,b, William J. Brackenburya,b, a Department of Biology, University of York, Heslington, York, YO10 5DD, UK b York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK ARTICLE INFO ABSTRACT Keywords: Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been Auxiliary subunit shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are Cancer typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Calcium channel Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further Chloride channel expanding the repertoire of cellular processes governed by ion channel complexes to processes such as trans- Potassium channel cellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it Sodium channel is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will − focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+,K+,Na+ and Cl channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregu- lated (e.g. Cavβ,Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1,Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. -
KCND3 Potassium Channel Gene Variant Confers Susceptibility to Electrocardiographic Early Repolarization Pattern
KCND3 potassium channel gene variant confers susceptibility to electrocardiographic early repolarization pattern Alexander Teumer, … , Elijah R. Behr, Wibke Reinhard JCI Insight. 2019. https://doi.org/10.1172/jci.insight.131156. Clinical Medicine In-Press Preview Cardiology Genetics Graphical abstract Find the latest version: https://jci.me/131156/pdf 1 KCND3 potassium channel gene variant confers susceptibility to 2 electrocardiographic early repolarization pattern 3 Alexander Teumer1,2*, Teresa Trenkwalder3*, Thorsten Kessler3, Yalda Jamshidi4, Marten E. van den 4 Berg5, Bernhard Kaess6, Christopher P. Nelson7,8, Rachel Bastiaenen9, Marzia De Bortoli10, 5 Alessandra Rossini10, Isabel Deisenhofer3, Klaus Stark11, Solmaz Assa12, Peter S. Braund7,8, Claudia 6 Cabrera13,14,15, Anna F. Dominiczak16, Martin Gögele10, Leanne M. Hall7,8, M. Arfan Ikram5, Maryam 7 Kavousi5, Karl J. Lackner17,18, Lifelines Cohort Study19, Christian Müller20, Thomas Münzel18,21, 8 Matthias Nauck2,22, Sandosh Padmanabhan16, Norbert Pfeiffer23, Tim D. Spector24, Andre G. 9 Uitterlinden5, Niek Verweij12, Uwe Völker2,25, Helen R. Warren13,14, Mobeen Zafar12, Stephan B. 10 Felix2,26, Jan A. Kors27, Harold Snieder28, Patricia B. Munroe13,14, Cristian Pattaro10, Christian 11 Fuchsberger10, Georg Schmidt29,30, Ilja M. Nolte28, Heribert Schunkert3,30, Peter Pramstaller10, Philipp 12 S. Wild31, Pim van der Harst12, Bruno H. Stricker5, Renate B. Schnabel20, Nilesh J. Samani7,8, 13 Christian Hengstenberg32, Marcus Dörr2,26, Elijah R. Behr33, Wibke Reinhard3 14 15 16 1 Institute -
Transcriptomic Analysis of Native Versus Cultured Human and Mouse Dorsal Root Ganglia Focused on Pharmacological Targets Short
bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-ND 4.0 International license. Transcriptomic analysis of native versus cultured human and mouse dorsal root ganglia focused on pharmacological targets Short title: Comparative transcriptomics of acutely dissected versus cultured DRGs Andi Wangzhou1, Lisa A. McIlvried2, Candler Paige1, Paulino Barragan-Iglesias1, Carolyn A. Guzman1, Gregory Dussor1, Pradipta R. Ray1,#, Robert W. Gereau IV2, # and Theodore J. Price1, # 1The University of Texas at Dallas, School of Behavioral and Brain Sciences and Center for Advanced Pain Studies, 800 W Campbell Rd. Richardson, TX, 75080, USA 2Washington University Pain Center and Department of Anesthesiology, Washington University School of Medicine # corresponding authors [email protected], [email protected] and [email protected] Funding: NIH grants T32DA007261 (LM); NS065926 and NS102161 (TJP); NS106953 and NS042595 (RWG). The authors declare no conflicts of interest Author Contributions Conceived of the Project: PRR, RWG IV and TJP Performed Experiments: AW, LAM, CP, PB-I Supervised Experiments: GD, RWG IV, TJP Analyzed Data: AW, LAM, CP, CAG, PRR Supervised Bioinformatics Analysis: PRR Drew Figures: AW, PRR Wrote and Edited Manuscript: AW, LAM, CP, GD, PRR, RWG IV, TJP All authors approved the final version of the manuscript. 1 bioRxiv preprint doi: https://doi.org/10.1101/766865; this version posted September 12, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. -
Thermodynamics and Electrophysiological Analysis of the Cold Receptor TRPM8
Clues to understanding cold sensation: Thermodynamics and electrophysiological analysis of the cold receptor TRPM8 Sebastian Brauchi*†, Patricio Orio*§, and Ramon Latorre*§¶ *Centro de Estudios Cientı´ficos,Valdivia 509-9100, Chile; †Universidad Austral de Chile, Valdivia 509-9200, Chile; and §Universidad de Chile, Santiago 780-0024, Chile Contributed by Ramon Latorre, September 13, 2004 The cold and menthol receptor, TRPM8, also designated CMR1, is a thermodynamics (20) of TRPV1, one of the molecular trans- member of the transient receptor potential (TRP) family of excita- ducers of heat sensation. Large values for transitional entropy, tory ion channels. TRPM8 is a channel activated by cold tempera- enthalpy, and Q10 were found, (20) indicating large rearrange- tures, voltage, and menthol. In this study, we characterize the cold- ments in the channel structure during activation. In contrast, and voltage-induced activation of TRPM8 channel in an attempt to little is known about regulation of its counterpart, TRPM8. identify the temperature- and voltage-dependent components Here we show that the large changes in TRPM8 channel gating involved in channel activation. Under equilibrium conditions, de- induced by temperature are mainly due to modifications of the creasing temperature has two effects. (i) It shifts the normalized maximum probability of opening and to a shift along the voltage conductance vs. voltage curves toward the left, along the voltage axis of the conductance-voltage curves. Moreover, the results axis. This effect indicates that the degree of order is higher when can be fully explained by using an allosteric model in which the channel is in the open configuration. (ii) It increases the temperature has only a moderate effect on the voltage sensors maximum channel open probability, suggesting that temperature (Q10 Ϸ 3) when channels are closed.