Distinguishing Characteristics of Sponges

Total Page:16

File Type:pdf, Size:1020Kb

Distinguishing Characteristics of Sponges Distinguishing characteristics of sponges Continue Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. You are here: Home / Uncategorized / Characteristics of sponges: BTW, They are animals, NOT plants! Sponges are amazing creatures with some unique characteristics. Here is a brief overview of sponges and their features. Almost all of us are familiar with commercial sponges, which are used for various purposes, such as cleaning. There are several living sponges found in both seawater as well as fresh water. These living species are not plants, but are classified as porifera animals. The name of this branch is derived from the pores on the body of the sponge, and it means the bearer of pores in Greek. It is believed that there are about 5000 to 10,000 species of sponges, and most of them are found in seawater. So sponges are unique aquatic animals with some interesting characteristics. Would you like to write to us? Well, we are looking for good writers who want to spread the word. Get in touch with us and we'll talk... Let's work together! Sponges are mainly found as part of marine life; but, about 100 to 150 species can be found in fresh water. They may resemble plants, but are actually sessile animals (inability to move). Sponges are often found attached to rocks and coral reefs. You can find them in different forms. While some of them are tube-like and straight, some others have a fan-like body. Some are found as crusts on rocks. You can also find sponges in the shape of glasses or vases, or like dense plants and trees. There are several sponges that have finger-like growths on them. Even the colors are different with different types. The color of the sponge ranges from white and beige, to shades of green, brown, yellow, red, purple, lavender and blue. They can be about an inch to more than 1.5 meters in width. While some of them are soft, some are really hard. They can be brittle or flexible. The body of the sponge can be described as an arrangement of different cell types. These cells do not form tissues, but are loosely arranged to form the body. Each cell type has a specific function. While one end of the body of a sponge is attached to the substrate (like stone), the other end is an opening, called osculum. In short, asymmetrical sponges (sometimes showing asymmetry of the center) hollow structures with a body wall. The body wall of a sponge consisting of two thin layers is separated with a gelatinous layer called mesohyl. The outer skin is made of epidermal cells. This layer has many pores that facilitate water entering and exiting the body. The cells responsible for the formation of pores are called porocytes. After the outer layer with epidermal cells and and The gel-like inner layer called mesohyl exists. In this class, there are certain cells, called amoebocytes responsible for transporting nutrients and digesting food. They are also responsible for the formation of spicules, which are considered the bones of this animal. They play an important role in the sexual reproduction of sponges. The same layer is made of collared cells or choanocytes that are flagellated. These cells use flagella to form a constant stream of water inside the sponge. This helps transport oxygen and nutrients to all parts of the body. They aid digestion of food as well as the elimination of waste, through osculum. Sponges have specialized cells with the ability to change to other cell types. Therefore, sponges are made of these specialized cells, and they do not have any head, trunk, body or apptubly. They are simple multi-celled organisms. Sponges are filter feeders, who absorb nutrients as well as oxygen from water, which enters its body through the pores. Most often, they feed on bacteria and food particles that are in the water; however, some species have a tbibial relationship with certain microorganisms. These microorganisms capable of conducting photosyntheses produce more food and oxygen, which will be shared with sponges. Some are predators, and eat small aquatic animals, such as crustaceans. Sponges can reproduction both sexually and asymlessly. Although, both male and female parts are found in the same individual, fertilization occurs only between sperm and ovum produced by different sponges. Even if the sperm is released by a sponge that enters the same organism through water, it is removed through osculum. The sperm travels with water currents, enters other individuals, and fertilizes the ovaries in mesohyl. After fertilization, the ciliated larvae swim and look for a substrate for growth. In the case of asstile reproduction, the sponge may undergo regeneration, in which a fragment or even a single cell can develop into a new individual. Another method is budding, in which new sponges will be formed with a few cells on the outer surface of the parents. This new sponge breaks and grows into a new individual. Another sponge feature is the formation of a bud called gemmule, inside its body. This gemmule is difficult and hardy, and if the sponge is killed under disadvantaged conditions, the gemmule will develop into a new individual. There are many more interesting and wonderful sponge events. If you are interested in knowing more about this animal, you can conduct an in-depth study of them. Characteristics of crustaceansÓapart from a delicious treat to our taste buds, crustaceans are also a very unique creation of nature! Please the characteristics of crustaceans are described in this ... Protista CharacteristicsProtista is one of the animal classifications It has different groups and subs. Their characteristics vary according to. For details read this article protista characteristics. Taiga AnimalsThe list of animals found in the taiga may not be as impressive as the list for other creatures, but this biome too, has a few lessons for everyone. This article is about aquatic animals. For the sponge cleaning tool, see Sponge (tool). For other uses, see Sponge (orientation). Porifera PoriferaTemporal Range: Ediacaran-Recent PreꞒ Ꞓ O S D C P T J K Pg N A Kitchen-Tube Scientific Classification Domain: Eukaryota Kingdom: Animalia Phylum: PoriferaGrant, 1836 Typical Species Amphimedon queenslandica[1] Calcarea Hexactinellida Demospongiae Homoscleromorpha †Stromatoporoidea Synonyms Parazoa/Ahistozoa (sans Placozoa)[2] Sponge, members of the Porifera branch (/pəˈrˈfərə/; meaning pore bearer), is a metazoa cbutt (animal) basically like a sister of Diploblasts. [5][6][7] They are multi-celled organisms with bodies full of pores and channels that allow water to circulate through them, including jelly-like mesohyl sandwiched between two thin layers of cells. The branch of animal studies sponges is called foam. [8] Sponges have non-specialized cells that can transform into other types and often move between the main cell layers and mesohyl during this process. Sponges do not have a nervous, digestive or circulatory system. Instead, most rely on maintaining a constant flow of water through their bodies to get food and oxygen and to eliminate waste. Sponges were the first to branch the evolutionary tree from the common ancestors of all animals, making them the sister group of all other animals. [3] The term Sponge terminology is derived from the ancient Greek σπγγος (spóngos). [9] An overview of sponge biodiversity and the esoo forms in the lips of a wall position in 60 feet (20 m) of water. Includes yellow tube sponge, Aplysina fistularis, purple vase sponge, Niphates digitalis, red encrusted sponge, Spirastrella coccinea [nl], and gray wire sponge, Callyspongia sp. Sponges are similar to other animals where they are multi-celled, heterosexual, lack cellular formation and production of sperm cells. Unlike other animals, they lack real tissues[10] and bodies. [11] Some of them are radiation-symmetrical, but mostly asymmetric. The shapes of their body are adjusted for the maximum effect of water flow through the central cavity, where water settles nutrients and then left through a hole called osculum. Many sponges have internal skeletons of foam and/or spicules (bone-like pieces) of calcium carbonate or silicon dioxide. [10] All sponges are aquatic sessile, which means that they attach to an underwater surface and remain in place (i.e. do not travel). Although there is fresh water most are marine species (saltwater), which have habitats from tidal zones to depths in excess of 8,800 m (5.5 mi). Although most of the approximately 5,000-10,000 species of sponges are known to feed on bacteria and other micro-foods in the country, some host photocrysymthesis microorganisms such as endemic, and these alliances often produce more food and oxygen than they consume. Some species of sponges living in poor food environments have evolutioned as predators whose prey is mostly small crustaceans. [12] Most species use sexual reproduction, which releases sperm cells into the water to fertilize the ovaries to which in some species are released and in others retained by the mother. Fertilized eggs develop into larvae, swimming out in search of places to settle. [13] Sponges are known for reproducing from broken debris, although this only works if the fragments consist of suitable cell types. Some species give birth by budding. As environmental conditions become less hospitable to sponges, e.g. temperatures drop, many freshwater species and some marine species produce gems, the surviving shells of non-specialized cells remain inactive until conditions improve; they then form completely new sponges or regenerate the skeletons of their parents. [14] In most sponges, an internal gelatin matrix called mesohyl functions as an endoskeleton, and it is the only skeleton in soft sponges that inscate rock-hard surfaces.
Recommended publications
  • Taxonomy and Diversity of the Sponge Fauna from Walters Shoal, a Shallow Seamount in the Western Indian Ocean Region
    Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region By Robyn Pauline Payne A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Biodiversity and Conservation Biology, University of the Western Cape. Supervisors: Dr Toufiek Samaai Prof. Mark J. Gibbons Dr Wayne K. Florence The financial assistance of the National Research Foundation (NRF) towards this research is hereby acknowledged. Opinions expressed and conclusions arrived at, are those of the author and are not necessarily to be attributed to the NRF. December 2015 Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region Robyn Pauline Payne Keywords Indian Ocean Seamount Walters Shoal Sponges Taxonomy Systematics Diversity Biogeography ii Abstract Taxonomy and diversity of the sponge fauna from Walters Shoal, a shallow seamount in the Western Indian Ocean region R. P. Payne MSc Thesis, Department of Biodiversity and Conservation Biology, University of the Western Cape. Seamounts are poorly understood ubiquitous undersea features, with less than 4% sampled for scientific purposes globally. Consequently, the fauna associated with seamounts in the Indian Ocean remains largely unknown, with less than 300 species recorded. One such feature within this region is Walters Shoal, a shallow seamount located on the South Madagascar Ridge, which is situated approximately 400 nautical miles south of Madagascar and 600 nautical miles east of South Africa. Even though it penetrates the euphotic zone (summit is 15 m below the sea surface) and is protected by the Southern Indian Ocean Deep- Sea Fishers Association, there is a paucity of biodiversity and oceanographic data.
    [Show full text]
  • Appendix: Some Important Early Collections of West Indian Type Specimens, with Historical Notes
    Appendix: Some important early collections of West Indian type specimens, with historical notes Duchassaing & Michelotti, 1864 between 1841 and 1864, we gain additional information concerning the sponge memoir, starting with the letter dated 8 May 1855. Jacob Gysbert Samuel van Breda A biography of Placide Duchassaing de Fonbressin was (1788-1867) was professor of botany in Franeker (Hol­ published by his friend Sagot (1873). Although an aristo­ land), of botany and zoology in Gent (Belgium), and crat by birth, as we learn from Michelotti's last extant then of zoology and geology in Leyden. Later he went to letter to van Breda, Duchassaing did not add de Fon­ Haarlem, where he was secretary of the Hollandsche bressin to his name until 1864. Duchassaing was born Maatschappij der Wetenschappen, curator of its cabinet around 1819 on Guadeloupe, in a French-Creole family of natural history, and director of Teyler's Museum of of planters. He was sent to school in Paris, first to the minerals, fossils and physical instruments. Van Breda Lycee Louis-le-Grand, then to University. He finished traveled extensively in Europe collecting fossils, especial­ his studies in 1844 with a doctorate in medicine and two ly in Italy. Michelotti exchanged collections of fossils additional theses in geology and zoology. He then settled with him over a long period of time, and was received as on Guadeloupe as physician. Because of social unrest foreign member of the Hollandsche Maatschappij der after the freeing of native labor, he left Guadeloupe W etenschappen in 1842. The two chief papers of Miche­ around 1848, and visited several islands of the Antilles lotti on fossils were published by the Hollandsche Maat­ (notably Nevis, Sint Eustatius, St.
    [Show full text]
  • Carnivorous Sponges of the Atlantic and Arctic Oceans
    &DUQLYRURXVVSRQJHVRIWKH$WODQWLFDQG $UFWLF2FHDQV 3K\ORJHQ\WD[RQRP\GLVWULEXWLRQDQGPLFURELDODVVRFLDWLRQVRIWKH &ODGRUKL]LGDH 'HPRVSRQJLDH3RHFLORVFOHULGD -RQ7KRPDVVHQ+HVWHWXQ Dissertation for the degree of philosophiae doctor (PhD) at the University of Bergen 'LVVHUWDWLRQGDWH1RYHPEHUWK © Copyright Jon Thomassen Hestetun The material in this publication is protected by copyright law. Year: 2016 Title: Carnivorous sponges of the Atlantic and Arctic Oceans Phylogeny, taxonomy, distribution and microbial associations of the Cladorhizidae (Demospongiae, Poecilosclerida) Author: Jon Thomassen Hestetun Print: AiT Bjerch AS / University of Bergen 3 Scientific environment This PhD project was financed through a four-year PhD position at the University of Bergen, and the study was conducted at the Department of Biology, Marine biodiversity research group, and the Centre of Excellence (SFF) Centre for Geobiology at the University of Bergen. The work was additionally funded by grants from the Norwegian Biodiversity Centre (grant to H.T. Rapp, project number 70184219), the Norwegian Academy of Science and Letters (grant to H.T. Rapp), the Research Council of Norway (through contract number 179560), the SponGES project through Horizon 2020, the European Union Framework Programme for Research and Innovation (grant agreement No 679849), the Meltzer Fund, and the Joint Fund for the Advancement of Biological Research at the University of Bergen. 4 5 Acknowledgements I have, initially through my master’s thesis and now during these four years of my PhD, in all been involved with carnivorous sponges for some six years. Trying to look back and somehow summarizing my experience with this work a certain realization springs to mind: It took some time before I understood my luck. My first in-depth exposure to sponges was in undergraduate zoology, and I especially remember watching “The Shape of Life”, an American PBS-produced documentary series focusing on the different animal phyla, with an enthusiastic Dr.
    [Show full text]
  • BIO 313 ANIMAL ECOLOGY Corrected
    NATIONAL OPEN UNIVERSITY OF NIGERIA SCHOOL OF SCIENCE AND TECHNOLOGY COURSE CODE: BIO 314 COURSE TITLE: ANIMAL ECOLOGY 1 BIO 314: ANIMAL ECOLOGY Team Writers: Dr O.A. Olajuyigbe Department of Biology Adeyemi Colledge of Education, P.M.B. 520, Ondo, Ondo State Nigeria. Miss F.C. Olakolu Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. Mrs H.O. Omogoriola Nigerian Institute for Oceanography and Marine Research, No 3 Wilmot Point Road, Bar-beach Bus-stop, Victoria Island, Lagos, Nigeria. EDITOR: Mrs Ajetomobi School of Agricultural Sciences Lagos State Polytechnic Ikorodu, Lagos 2 BIO 313 COURSE GUIDE Introduction Animal Ecology (313) is a first semester course. It is a two credit unit elective course which all students offering Bachelor of Science (BSc) in Biology can take. Animal ecology is an important area of study for scientists. It is the study of animals and how they related to each other as well as their environment. It can also be defined as the scientific study of interactions that determine the distribution and abundance of organisms. Since this is a course in animal ecology, we will focus on animals, which we will define fairly generally as organisms that can move around during some stages of their life and that must feed on other organisms or their products. There are various forms of animal ecology. This includes: • Behavioral ecology, the study of the behavior of the animals with relation to their environment and others • Population ecology, the study of the effects on the population of these animals • Marine ecology is the scientific study of marine-life habitat, populations, and interactions among organisms and the surrounding environment including their abiotic (non-living physical and chemical factors that affect the ability of organisms to survive and reproduce) and biotic factors (living things or the materials that directly or indirectly affect an organism in its environment).
    [Show full text]
  • Incidence and Identity of Photosynthetic Symbionts in Caribbean Coral Reef Sponge Assemblages
    J. Mar. mz. A». KA! (2007), 87, 1683-1692 doi: 10.1017/S0025315407058213 Printed in the United Kingdom Incidence and identity of photosynthetic symbionts in Caribbean coral reef sponge assemblages Patrick M. Erwin and Robert W. Thacker* University of Alabama at Birmingham, 109 Campbell Hall, 1300 University Boulevard, Birmingham, Alabama 35294-1170, USA. Corresponding author, e-mail: [email protected] Marine sponges are abundant and diverse components of coral reefs and commonly harbour photosynthetic symbionts in these environments. The most prevalent symbiont is the cyanobacterium, Synechococcus spongiarum, isolated from taxonomically diverse hosts from geographically distant regions. We combined analyses of chlorophyll-a (chl-a) concentrations with line-intercept transect surveys to assess the abundance and diversity of reef sponges hosting photosymbionts on Caribbean coral reefs in the Bocas del Toro Archipelago, Panama. To identify symbionts, we designed PCR primers that specifically amplify a fragment of the 16S ribosomal RNA gene from S. spongiarum and used these primers to screen potential host sponges for the presence of this symbiont. Chlorophyll-a data divided the sponge community into two disparate groups, species with high (>125 Mg/g, N=20) and low (<50 Mg/g, N=38) chl-a concentrations. Only two species exhibited intermediate (50— 125 (Jg/g) chl-a concentrations; these species represented hosts with reduced symbiont populations, including bleached Xestospongia muta and the mangrove form of Chondrilla nucula (C. nucula f. hermatypicd). Sponges with high and intermediate chl-a concentrations accounted for over one-third of the species diversity and abundance of sponges in these communities. Most (85%) of these sponges harboured S.
    [Show full text]
  • Preliminary Report on the Turtle Awareness and Protection Studies
    MINISTRY OF ENVIRONMENT, HONDURAS ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTIVE STUDIES (TAPS) PROGRAM, PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC. (ProTECTOR) IN ROATAN, HONDURAS 2007 – 2008 ANNUAL REPORT JANUARY 15, 2009 ACTIVITIES OF THE TURTLE AWARENESS AND PROTECTION STUDIES (TAPS) PROGRAM UNDER THE PROTECTIVE TURTLE ECOLOGY CENTER FOR TRAINING, OUTREACH, AND RESEARCH, INC (ProTECTOR) IN ROATÁN, HONDURAS ANNUAL REPORT OF THE 2007 – 2008 SEASON Principal Investigator: Stephen G. Dunbar1,2,4 Co-Principal Investigator: Lidia Salinas2,3 Co-Principal Investigator: Melissa D. Berube2,4 1President, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), 2569 Topanga Way, Colton, CA 92324, USA 2 Turtle Awareness and Protection Studies (TAPS) Program, Oak Ridge, Roatán, Honduras 3Country Coordinator, Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR), Tegucigalpa, Honduras 4Department of Earth and Biological Sciences, Loma Linda University, Loma Linda, CA 92350, USA PREFACE This report represents the ongoing work of the Protective Turtle Ecology center for Training, Outreach, and Research, Inc. (ProTECTOR) in the Bay Islands of Honduras. The report covers activities of ProTECTOR up to and including the 2008 calendar year and is provided in partial fulfillment of the permit agreement provided to ProTECTOR from 2006 to the end of 2008 by the Secretariat for Agriculture and Ranching (SAG). ACKNOWLEDGEMENTS ProTECTOR and TAPS recognize that without the financial and logistical assistance of the “Escuela de Buceo Reef House,” this project would not have been initiated. We thank the owners and staff of that facility for their interest in sea turtle conservation and their invaluable efforts on behalf of the sea turtles of Honduras.
    [Show full text]
  • Prey Capture and Digestion in the Carnivorous Sponge Asbestopluma Hypogea (Porifera: Demospongiae)
    Zoomorphology (2004) 123:179–190 DOI 10.1007/s00435-004-0100-0 ORIGINAL ARTICLE Jean Vacelet · Eric Duport Prey capture and digestion in the carnivorous sponge Asbestopluma hypogea (Porifera: Demospongiae) Received: 2 May 2003 / Accepted: 17 March 2004 / Published online: 27 April 2004 Springer-Verlag 2004 Abstract Asbestopluma hypogea (Porifera) is a carnivo- Electronic Supplementary Material Supplementary ma- rous species that belongs to the deep-sea taxon Cla- terial is available in the online version of this article at dorhizidae but lives in littoral caves and can be raised http://dx.doi.org/10.1007/s00435-004-0100-0 easily in an aquarium. It passively captures its prey by means of filaments covered with hook-like spicules. Various invertebrate species provided with setae or thin appendages are able to be captured, although minute crus- Introduction taceans up to 8 mm long are the most suitable prey. Multicellular animals almost universally feed by means of Transmission electron microscopy observations have been a digestive tract or a digestive cavity. Apart from some made during the digestion process. The prey is engulfed parasites directly living at the expense of their host, the in a few hours by the sponge cells, which migrate from only exceptions are the Pogonophores (deep-sea animals the whole body towards the prey and concentrate around relying on symbiotic chemoautotrophy and whose larvae it. A primary extracellular digestion possibly involving have a temporary digestive tract) and two groups of mi- the activity of sponge cells, autolysis of the prey and crophagous organisms relying on intracellular digestion, bacterial action results in the breaking down of the prey the minor Placozoa and, most importantly, sponges (Po- body.
    [Show full text]
  • An Annotated Checklist of the Marine Macroinvertebrates of Alaska David T
    NOAA Professional Paper NMFS 19 An annotated checklist of the marine macroinvertebrates of Alaska David T. Drumm • Katherine P. Maslenikov Robert Van Syoc • James W. Orr • Robert R. Lauth Duane E. Stevenson • Theodore W. Pietsch November 2016 U.S. Department of Commerce NOAA Professional Penny Pritzker Secretary of Commerce National Oceanic Papers NMFS and Atmospheric Administration Kathryn D. Sullivan Scientific Editor* Administrator Richard Langton National Marine National Marine Fisheries Service Fisheries Service Northeast Fisheries Science Center Maine Field Station Eileen Sobeck 17 Godfrey Drive, Suite 1 Assistant Administrator Orono, Maine 04473 for Fisheries Associate Editor Kathryn Dennis National Marine Fisheries Service Office of Science and Technology Economics and Social Analysis Division 1845 Wasp Blvd., Bldg. 178 Honolulu, Hawaii 96818 Managing Editor Shelley Arenas National Marine Fisheries Service Scientific Publications Office 7600 Sand Point Way NE Seattle, Washington 98115 Editorial Committee Ann C. Matarese National Marine Fisheries Service James W. Orr National Marine Fisheries Service The NOAA Professional Paper NMFS (ISSN 1931-4590) series is pub- lished by the Scientific Publications Of- *Bruce Mundy (PIFSC) was Scientific Editor during the fice, National Marine Fisheries Service, scientific editing and preparation of this report. NOAA, 7600 Sand Point Way NE, Seattle, WA 98115. The Secretary of Commerce has The NOAA Professional Paper NMFS series carries peer-reviewed, lengthy original determined that the publication of research reports, taxonomic keys, species synopses, flora and fauna studies, and data- this series is necessary in the transac- intensive reports on investigations in fishery science, engineering, and economics. tion of the public business required by law of this Department.
    [Show full text]
  • Silica Stable Isotopes and Silicification in a Carnivorous Sponge
    Biogeosciences, 12, 3489–3498, 2015 www.biogeosciences.net/12/3489/2015/ doi:10.5194/bg-12-3489-2015 © Author(s) 2015. CC Attribution 3.0 License. Technical Note: Silica stable isotopes and silicification in a carnivorous sponge Asbestopluma sp. K. R. Hendry1, G. E. A. Swann2, M. J. Leng3,4, H. J. Sloane4, C. Goodwin5, J. Berman6, and M. Maldonado7 1School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK 2School of Geography, University of Nottingham, University Park, Nottingham, NG7 2RD, UK 3Centre for Environmental Geochemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK 4NERC Isotope Geosciences Facilities, British Geological Survey, Keyworth, Nottingham, NG12 5GG, UK 5National Museums Northern Ireland, 153 Bangor Road, Cultra, Holywood, Co. Down, Northern Ireland, BT18 0EU, UK 6Ulster Wildlife, 3 New Line, Crossgar, Co. Down, Northern Ireland, BT30 9EP, UK 7Centro de Estudios Avanzados de Blanes (CEAB-CSIC), Accés a la Cala St. Francesc, 14, Blanes 17300, Girona, Spain Correspondence to: K. R. Hendry ([email protected]) Received: 30 October 2014 – Published in Biogeosciences Discuss.: 2 December 2014 Revised: 29 April 2015 – Accepted: 13 May 2015 – Published: 5 June 2015 Abstract. The stable isotope composition of benthic sponge impacts the isotope signature of the internal skeleton. Anal- spicule silica is a potential source of palaeoceanographic in- ysis of multiple spicules should be carried out to “average formation about past deep seawater chemistry. The silicon out” any artefacts in order to produce more robust downcore isotope composition of spicules has been shown to relate measurements. to the silicic acid concentration of ambient water, although existing calibrations do exhibit a degree of scatter in the relationship.
    [Show full text]
  • Llista Vermella Dels Invertebrats Marins Del Mar Balear 2016
    LLISTA VERMELLA DELS INVERTEBRATS MARINS DEL MAR BALEAR 2016 Elvira Álvarez LLISTA VERMELLA DELS INVERTEBRATS MARINS DEL MAR BALEAR Elvira Álvarez 2016 Llista vermella dels invertebrats marins del mar Balear Autors L'elaboració de la LLISTA VERMELLA D'INVERTEBRATS MARINS DEL MAR BALEAR ha estat un projecte del Servei de Protecció d'Espècies de la Conselleria de Medi Ambient, Agricultura i Pesca. Redacció i coordinació: Elvira Álvarez. Recopilació bibliogràfica: Elvira Álvarez i Margalida Cerdà. Col·laboradors Per a l'elaboració de les fitxes s'ha comptat amb la col·laboració dels principals investigadors dels invertebrats marins, que han participat desinteressadament aportant experiència de recerca, coneixements de camp, etc. Tota aquesta valuosa informació ha permès en molts de casos avaluar l'estat de conservació de les espècies d'una manera rigorosa amb les dades de què es disposava. PORIFERA ARTHROPODA subfílum CRUSTACEA Enric Ballesteros Alfonso Ramos Alfonso Ramos Enric Ballesteros CNIDARIA Lluc Garcia Enric Ballesteros David Díaz Cristina Linares Raquel Goñi Diego Kersting Sandra Mallol Covadonga Orejas BRYOZOA Ricardo Aguilar Enric Ballesteros MOLLUSCA Alfonso Ramos Enric Ballesteros CHORDATA Alfonso Ramos Alfonso Ramos Maite Vázquez EQUINODERMATA Davíd Díaz Joan Oliver Alfonso Ramos Enric Ballesteros Fotografies: totes les fotografies que apareixen en aquest treball han estat cedides pels autors, són propietat de la Conselleria de Medi Ambient, Agricultura i Pesca o s'han obtingut d'informes tècnics publicats o de pàgines web amb llicència d'ús lliure. En tots els casos s'ha especificat l'autor, l’informe o la pàgina web. Agraïments: aquest treball no hauria estat possible sense la col·laboració de tots aquests retllevants investigadors en invertebrats marins de tot l'Estat.
    [Show full text]
  • Horizontal Gene Transfer in the Sponge Amphimedon Queenslandica
    Horizontal gene transfer in the sponge Amphimedon queenslandica Simone Summer Higgie BEnvSc (Honours) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2018 School of Biological Sciences Abstract Horizontal gene transfer (HGT) is the nonsexual transfer of genetic sequence across species boundaries. Historically, HGT has been assumed largely irrelevant to animal evolution, though widely recognised as an important evolutionary force in bacteria. From the recent boom in whole genome sequencing, many cases have emerged strongly supporting the occurrence of HGT in a wide range of animals. However, the extent, nature and mechanisms of HGT in animals remain poorly understood. Here, I explore these uncertainties using 576 HGTs previously reported in the genome of the demosponge Amphimedon queenslandica. The HGTs derive from bacterial, plant and fungal sources, contain a broad range of domain types, and many are differentially expressed throughout development. Some domains are highly enriched; phylogenetic analyses of the two largest groups, the Aspzincin_M35 and the PNP_UDP_1 domain groups, suggest that each results from one or few transfer events followed by post-transfer duplication. Their differential expression through development, and the conservation of domains and duplicates, together suggest that many of the HGT-derived genes are functioning in A. queenslandica. The largest group consists of aspzincins, a metallopeptidase found in bacteria and fungi, but not typically in animals. I detected aspzincins in representatives of all four of the sponge classes, suggesting that the original sponge aspzincin was transferred after sponges diverged from their last common ancestor with the Eumetazoa, but before the contemporary sponge classes emerged.
    [Show full text]
  • Biogeography and Phylogeny of Chondrilla Species (Demospongiae) in Australia
    MARINE ECOLOGY PROGRESS SERIES Vol. 270: 117–127, 2004 Published April 14 Mar Ecol Prog Ser Biogeography and phylogeny of Chondrilla species (Demospongiae) in Australia Kayley M. Usher1,*, David C. Sutton1, Simon Toze2, John Kuo3, Jane Fromont4 1The Department of Microbiology, University of Western Australia, 35 Stirling Highway, Crawley, 6009 Western Australia, Australia 2CSIRO Land and Water, Underwood Avenue, Floreat, 6014 Western Australia, Australia 3The Centre for Microscopy and Microanalysis, University of Western Australia, 35 Stirling Highway, Crawley, 6009 Western Australia, Australia 4Western Australian Museum, Perth Cultural Centre, Perth, 6000 Western Australia, Australia ABSTRACT: The biogeography and phylogeny of Chondrilla (Porifera, Demospongiae) species in Australia is poorly understood. Until the present study was carried out, 4 Chondrilla species were thought to occur in the waters of Australia and its territories: C. australiensis, C. secunda, C. mixta and C. nucula. However, the type specimen of the latter comes from the Adriatic Sea, and it has always been uncertain whether this species is present in Australia. The difficulty in determining the number of species of Chondrilla and their biogeography is largely due to the paucity of phenotypic characters that are normally used for identification. To clarify the diversity and distribution of sponges in this genus in Australia, DNA sequence analysis was applied to samples of Chondrilla from around Australia and compared to C. nucula from the Mediterranean. Classical taxonomic tech- niques were used to confirm the molecular results. Evidence was found for 3 species of Chondrilla in the temperate southern oceans of Australia with one, C. australiensis, also extending into tropical waters.
    [Show full text]