<<

13)7

Continuous Cropping Systems Reduce Near-Surface Maximum Compaction in No-TiB Soils /7 Humberto BIancoCanqui/ L R. Stone.,A..J.Schieg&,J.G. Benjamin, fri.F.Vigil,and P.W, Seahlman

ABSTRACT Because of increased c ucerns over compaction in notill I nhls, it is important to assess how continuous cropping ss-ctcni influence risks of SOCIcompaction across a range of oiEt and NI management systems. e quantified diftrenccs in maximum densirs isd ci 1inca ssatcr content ( \ C bs he Proctor rest held hulk p, md rhcir rdationships n ith soil irano. .. irbon SOt uneentration asro thrm 7’i I sr cropping istems on a silts LIas loam iii loam arid Instil in the rentril rear Plains tIn the silty dat loam 05CD in sorhuni [Sa,rhurn b,a.,Ior Sloenehf$allou SJj and Stinter ssheat rrshcam aestivum (Li]-fallow wasgreater in 5 (Wf) than continuous wheat (WW)5 and continuous sorghurn (SS) m I by 01 Mg in the 0 to Sem soil depth On the loam, 0511D in WF was greater than in Weorn (Zea m,avsL)mi.llet (Pankum liliaceum C) (WCM) . fL24 Mg a m and perennial grass (GRASS) by OIl lg 3m On the .siitloam, soii properties were untf&cted by cropping systems. Elimination of fallowing increased the CWC 10 to was by 25% The Pb greater in WF (152 .Mg)3m than W. M . )3m in the silty clay loam, while under WF and WCF was greater than ( under WCM and GRASS in the loam for the 0 to Swmdepth The CD and decreased whereas CWC increased with an increase in SOC 3 Pb concentration in the 0 to iScm depth Overall. continuous cropping systems in NI reduced nearsuriace maximum soil compaction primarily by increasing SOC concentration.

-‘a.; compaction. Noolil sods are often susceptible to compaction C - •- .-‘ ‘p C. due to lack ofdisturhance and fieldequipment trac, Because of the greater biomass C input than cropTailow system.s,inten sifiedcropping systemsoften increase 5ç concentration over cropTailow systems(Liehig et al, 2004; Peterson and Westfali, \\ , iI in’’i ‘ii 1’. ‘,IC,iscC ‘d 1)fl ‘-ng’ pCI’I’’ 2004) ThCS increase in SOC CCC,l’vinduce resilient properties ‘Cli) ‘i I) h ‘‘k ,, il )( Ii, lit TC).i ICCC 1St CL Iii IT to sod and provCdca buthsr dRC ott compaction. Influence ot

ii C’ I ‘CC ‘ CCC co i ‘ 0 iCC- 1)t)’,% liii I increased colCucCitraiCon by continuous cC opping systems

I‘‘°° )C%• I. L a I. CC C CC ‘CT ha ct it CCO I. 51C’ ‘‘ dii ‘‘C on soil cempactibilitv requires further research.

I 1.1,Cs ‘C’ CC ‘)Oil PeCI ,CI,.C ‘ •‘C1 tt., 1.1))) lii’ I C’, The Proctor test Cs a tCsehilapproach to determine soils

C C, sC C,;l,,I,..l ICICIe -1,0, p’ CII CC IC CC CCC’’’’ susccptCbClItv to cornpactCon American OociCts for lasting toil Materials 2007), The Proctor test has been used to deterrn.inc the BDtnas which isequivalent to the max.imo.mcompactibii.itv of a soil (Thomas ct al, 1996;Aragon et al, 2.000;Blances Canqui ct al., 2009). Th.eProctor test allows the dete.rmination of relative soil hiCikdensity at di04rent soil water contents under standard;sed compactive fdrccs, .11wsoil water content at rOt; Sroctct hulk dunsit ‘ti on reaches a mi’t;[Ciuoi vahCc 3 , I .0 ‘U-S., Slic racer test oar ropartart asron nc sea. t)Ut. It

lhi.lityamon diversecrop rotations managed order NT. Ptcviou.ssri.dies•havereported that soilstinder loogoermNT t can be lessssasceptibhrto compactionthan plowedsoils doe to NT-inducedin,teasein SOC concentrrtion (ihomas et sO,1946;Blanco-Canqoieta1. 20090Soilresilienceor buffering cipactis‘car ir;ctcasewith increasingvestsOllow is NT adoption , t,. ‘,tI( ‘llt ( o,s 20097 On a silt loam in KcCfttCckv, ihornaset al. 1996’ observed

Abhrcr,aiions; l5l) f5’’’,’r- -,k ( 55’( SI,. i,7- — C C St. con.rirntow a i-thom; p5 triO hail. density; W(.SOahmir—corn--.mille wit wtnrr when tallow; 5-3lJ wiwar—sorphuns ,rrr;um.—tallow- 5kW. conti0000a whean W’X’ F,wheat whrar—sorghum—ihiiasa,

• /f .. ‘C ,. .1 • CC’-f 1 that hr g—lermNi agtnscrrr ecreasedB[), a parameterr6 i los - and Trrbunc aS‘16--+8N iOI”l’d 5 \\“ , KS: hs soilcorn ractihrlirv. about 020 Mnrn comparedwith plowed and Akron +08 6ff N. I0’ 9 ‘B’ CT These experiments sniic Pie samerusk cporred that BDi 9 soil under N1 was hare been in place for hI yr it Dna, 11st at IS-ibunc,1airs 19vs asJoseas that in snii.sunder permanent sod (dbornas et ai,, )961 at Akron, lIre soilswere( rete silty clayloam )fine, smectitic, R.eccnrlyacrossfoursoilsin the centralGreat Plai.ns.Blarsco(Zan mesicPachicArgiusrolls)in Hays; Richfieldsilt loam (fine’, st al (2009 re’orred that nest surfaceBD under Ions term smecaitie’,mesie-Aridic Arginstoll) in ‘T’ribune;and Weld loam (between 19and 4i ye) NT yvatemswaslowerthan under molT dIne, sme titie, nnesie Aridic Argiustoli in Akron, The soil-sat

board ni.owed.an sa ivcntion.aih;P lcdso-iisbyabout6 to 1. Nm Tribune aridAPriorare di---epand welldrained. wh-ileth oil at increase nil nduce-d in St )C c.rncentratronexplained920 ofrhe Hat sic sic’ deep hut modelaSideicrwis 5 I he 5 permraie. -o.i .me 0 r K I e a d at the three sites is ‘: 1%.-kserageanrususipieprtaruon is S-SOinto the eentrai hl:uns Ella Great coCanpui ct :2099) showiup Iflat HiS 1ft I I Ii eI V ax soil’ssusccpti.bilirvsocompactiondecreaseda.sthe NT induced Ar Hays, there were fixccropping systems(S-F,SS, ‘B--SF,9FF, SOC concentrationincreased,1h.eBD915 russ-besensis.iveto small and \VBr7) arrangt-d in a split-plot RCB des-ign.-withtlirec-rep chantes in SOC c.oncentra.rion4Tvidscn. et aL,1967). licatesunder rird-ucedtill and NT, Cr-pping r-y-s-temsw-erethe can Publishedstudies BDe usingti-seProctor test in agricuh main plots and the tiliage:s-ystenas- e’rethe subplots, E,ichp--has-c sri 1to soilshavem stlv compareddifferences between plowtill of the rotations war-p-resenteach year. S—i,rinplrts—tv-etc2—i.4-b and NT Oractices Thomasct al. 1996:illaneo-C.artouiet 2-s-i m in sIre and subpiots sync 12.2 be los-i m in ri/e Row 1009- nd not uris P those Si nong cropping sssternswrrhin he p,isirsg wa.s )i Os inissiie,ir 11551 0Th or firr sorghum niy same tiliage stem tJnamani in Oh shuns,s, s moldboard tire Pvccropping sstcms Li sderNT stoic used ri 5thi crude. I n r s vS I so urn i niElrLr01) :\ds-jtiunal details of man: emei-atare melded ha’ha pson lowersoilorganicmatter concentration than soilsunder lespedeza (20013,At Tribune, there.st-crcthree cropping systems i:wheat— (Lespeealza striate) dishedonce annually (Davidsonet aL,1967). sorghum—sorghuna—failowWSSF),w-hear-eheat—sorghum— Some studieshavecomparedBDe.,xin cultivatedagainstthat in fallow(WWS F),arid WWf arranged-in a RCB design with Poe ut vareds ni cres vro salsro rr r ra Qr e four replicares man-agediarrdcrNT -,achphaseof the rotations er ai. l999 observedt rh-atdishedand moldboard soils plowed was present s-ads near. The cr-hearph.ascof the rotation tsar used 0 “ n 01 0cc fir this study. I he sire of the plots was 12 be 36 ni, Rosespachig Or n I I ‘1 vhs i ti _iO’ Dv. Z in. was 41.19m for svhezr and 0Th m for sorghii us. and (Toss 2i)00 fbirnd thas dO decreasedfromculuvarcd to At Akron, tour crop rorarlonc 5BF, ‘X’CF,\k’CM. and noncuitivated regardless-ofdutidrs’nccsin sod textural class. (-IRASS) under NT’were selected within a larger cropping Becauseof increasedconcernsovercompaction in NT soils,it 5 stem experiu-nent.This experiment is laid out in a randomized isimperativeto assesshow continuous cropprngsystemscan influn complete block design (RCBD) with three replicates Further ence risksofsoil compactionacrossa rangeof soilsand NT man details of all the cropping systems as well as plot management agement systems.‘[4date, no study hasdocumented the possible ale u-.rportedhr Anderson er al. (19993and lleniarnin mral. difkrcnces in sol compaction risksamong long-termNT cropping -2O0-. Each phase of the rotation was present each year. ‘Ibm systemson regionalscales.Characterization 55ofBD, under erop phases under reheat were used for th study. The lots under ping systems levcls with different orhiomass C unputusneeded for RASS were is nder perennial grass i nelud nagsmooth broune a better understandingof etidetsand causesnFsoilcompaction :Bromusjut-rIfle L,) and reheat grass iç-ropyrons Sr/i ?rr.borurn increased SOC in continuous croppingsystemsmayor maynot (Link) Richt,l - Wheat and nilllet were planted in 0,19 to rosa influencesoilstructural.and hydraulicproperties(Benjaminer aL while corn svas-planted in 0,7h m rosvs, 2008), and its-impactson BD havenot been widelyresearched, 15m Soil Sampling and Analysis The obleetivesof this studs’wereto determinedif+drencesin

1 ) a is s t’ft so r 0prroarmateiv 3 kg ofb.lk soil wascollected trrameach tre’-at- “v I F sun r s netit pot St CV h sire for the if- naS-cm ,nul 5- to IS--en:depths

C I - ‘‘ I tied-size i-factions ci ((did crrnccnrraniou. The- samples wets’ pacrinurind(ii)changes-in SOC ennccnti-arinndue’to difieivntial air dniedat about 20’C for 72 h, gently-cnn-sbed and passed by- biomassC input -differentcroppingsystemsare responsible(hr i in r ieses fsr the ieterr inoci I hO u ( haq in hI) ‘B( nd Of Ted 4 ber rromprm otis particle-sizefractions, ‘bee131 0ss 4 r5 and 162C’B—secredetci-mincd studies in that incomparesdiff-’rcncx:sin wsilcoropactibilityao-::ong he the Proctor r:r:sn(AnnericauSocier--y-for besting a--rid,i(-anerials-.,

‘ r Ti- S I

no -cmc-eesxc- t 9 di hn-iwnrra ro’.mrs sit L5Stdm be twecim as r-d diii rences:n Bid an’s-instOusse I t -‘ 1

1 MATERIALS AND 1ETHODS e mrxedseith se,uterarid conlp,smtedin three layersin a 0,11)-to Description of the Study S&k diam, and 0,12 iii high standard Proctor mold, Twenty—fl-ye This stud seasconducted acrossthree soilsunder iongrerm bioxvspe’rs-oillayerwere applied using a 2.5-kg Proctor drop edI cropping tor ems manapsd under N I ii the enr 6 l-sammerfalliri’ t em a 0.3(1-rnhe.ighr,The compacted 5-.Pi in the. C i sins Ire togs so s vpresvtc Iij anion ft 6 Procn-srmold was see carefully trim med anal iirhed,ansi50 n’S

I’) q -.,‘,s,o l,-,-rl • VvsI,,,,s IA’) 4 ‘>11 (I [he raul,nctrse xvatcrcontent ow10 subsamplewascxtrapcn an \\‘‘ F dad ia’ardatfurronr that an\X-CF n the loam,Croppaug ared to that of the compacted soil,and tk Proctor bulk densmtv Sti lab dims, old S ‘ls,,!I a 1s,Jil I

a a, T C,, 1 1.,, 1 U 1,fl mr O I 1 1 no 1 t’r ha,‘i l’s ci r impacted soil by lumas ftlse Proetommold.The computed l’hcscresultsshowthat ioaae=termcontinuous eroppanpsystems.

hulk dci sitSesacre plomtcdas’ianstthe pravIrnetriewater Jrntent had ,s sapnitacanrmpaet ‘anremiucinetwar-surlaceniaxlurum COUI

to ‘stain rhs Punt c,np.ict-on curve. A hithoider punonial 8) ml, a a s

I, “o ‘-‘ kIm ill neat-ftl fas,e81,), amongmn.stlpanus’stcfn,S 51e’ milldci Oil .50)1 I -, - a cii ii a lire hhcst Is poll trhcp’ len ‘iIcurvea asselectedas the BC, crc’pncumstenas ‘a’ 055Cr maIl as s,rc’ -taltowsystems.in the siltC At the time atwi sarnplsnncfor the Proctor rest, intact 9- hi’ clii 50,115 .010 loam but not aI the 1iit loans,In enema,OSta SUP

1 I “ S-ens soil er’s were coiletted ho the to S-cm depth and 5 ! s, .5 ,.,“l 5mm the cemster st u- t’ in -a a deptis ntcrva[ hr the determina ielatiVec(,iiiir,icrisIr ditidri ss rh crssepiaigsSstctfls,

s c a’ Is, c ft. lcttisJu I I ‘lIrecursii 0551(1 changes in Pro-s;ts.srbulk density in tO and Rcinseh, The sand, silt, and else content were d ter loam hi.itlamer difidrenecsin ti-scsilts-clayloam,and loam nsighm msned hs’the hydrometer rnct.hodusing samplespassed through be due t.otIme hallowing reasons,First, the experi.meritin the silt. .2-mmsieves asi andOr, 2992).Theparticle-sizefractionswere loam at TriOsrse(11 vr)has lace-sin place Cr shorter rime period determined onlvfor the0.-to S--emsoildepth. TheSOC eosneen than tIleexpe.rinaentsat F-lay’s(33 yr) a-nda-itA.kron (19ya),Since tra.tionin eachsaniplewasdeterminedon air-dryand ground chan-es in s.cail.properties in this climate are ofte.aadetectc.d99cr

sa.mplespassedm}srough0.25-mnssievesbythe dry eom.bustion long periods ofexperimentation, we hypothesiz.ethat signi.h-’ method (Nelsonand Summers,1996),lIre BDmnaCPVC,anal cant diI’-krencesin 5a•810 and SOC concentration in the silt SOC concentrationweredetermined Cr the 0- to 5-e.mand 5- to loam rust’surfac’ein tIrelonge.rte’rm Second,e.roppingsystems 15-e.msoildepths.TIrebulksoilsamplesand soilcoreswereccii differed among tIrethree so--ils,The experiment in the.-siltyclay leet.edfrom the nontraeked rowsat eachsite, loa.mand boanaincluded more contrasting cropping s’ys-tems One wa \OXA modelung the PROC c5LM an995 zas (era-p-fallowvs.continuous c.foppingsysteni-.s)than that in.the-’ used itotestwhetherdifferencesi.nBC., CVC, sm.nd,silt,and silt loam with only three systems(WSSF,WWSF, and WW), claycontent, and SOC concentrationweresigniheant.To test Fallowperiods occurred every2 y--r(hr the WF and SF in the silt).’ diffkreneesin Proctorbulk densitybelow..sBDm data points for clayloam and ‘sX--’Fin the loam.,whereas in the silt loam, they 5 evere 4 r, lesscontrasting differencesin each treatmentand replicateweredeterminedfrom the polyno oce.urred Thus, the crop mial curvesat selectedlevelstafsoil watercontent.The PROC ping systemsin the silt loam than in other soilsprobablyreduced CORR in S.ASwasusedto establishanyrelationshipsamong differencesin soilco.mpaetihilirydue to smallerdifferencesin BDrnaxsCWC. particle-sizefractions, and SOC concentration, surface residue cover, biomassC input, and soilproperties. Statistical differenceswerereported at the 0.05 probability level Similar to BC, ernpping systemsalso altered CX1C in the unless orhcrwmseindicated. The statistical analysiswas conducted silty clayloam and loam but nor in the silt loam (Fig.3A-3C),

usmngSAXstaristimi software(SAXInstitute, 2009). The asthatsilty dat’ loam (Fig,3A) differedonly in the

0- to S-cmdepth. but, ima thatloam, it diffkredat both deptia RESULTS AND DISCUSSION intervals Fig. 10), On the silty clayloam, the CWC in WW Maximum Bulk Density and SSwasgreater than an\VF and WSF by (1,02kgtkg and and Critical Water Content SF C (tOn kg kg_s Fig.CC, On tIre loans, tIreCWC in W{ZM

a he m’rocrorbulk densityvs.soiwate .rco.ntcntcurves air tire ,, .5 a”ms,c— ‘a 1- \c

— S ‘c, I ‘ ‘a C ,,“C,,,e”

a c l5a- r’ a, 1A thronmablid Xlean Bid fur the two depth intervalsbr A C 5s”a a ci a,r ‘ A F ,5 af 00, each sOilis shown in 0F! 2A--ZCThe Proctorbulk densatvcurves 0.99 kg Oh’. For th 5-to 15 ens depth.,CWC in \VL,M anal

a hat a ‘ ,,n a i Vt ir ‘a, ‘A a 0 2 act cs!rIeSitspa”sv c.’:’t evieln the 5’ to ‘i--cmsoildctath, C , 5,, — (Si ii -‘wsth (“055- (it ‘asils‘F,c At5” -,, 15(5’

1 ‘, iS, I dcc.r’c-asceIsc-SmIsan inc.rcascin (‘A—S lire ‘ ‘At’Ccx-rl-ajnecl6-s’i, rncsn dricrar iss.iik density hcicsvctire c nib sF tnT \VF wars a -sa rm

—‘ “—5- 5 5

. ‘5 “Ii si. Xi’ creacersn tic -ri’ \ic’(d- than iii \V0 C and ash is 5 “a

beio’sv , ii ic’i Omit mere were no Jih’em’cnces at 1cOrriipac t on in sOS’Sr0 0555.515c-lw ni tIDe 0 “v’.tttn’s S tcrmriccsimii’nscmoir[se,ltrSensate55Cr-lilt. sienineaast ‘i, Ii)-jhi, Oit. ‘IA-tESS, F’ r cx-anrr’im’.mean (Sd4”Cincreased he a ()i)-S 99kg - ‘am SF to \CW ,saadSt n tire silty else in sesteniswhich included fallow Fag.IA-IC), On the siltyclam Fig, )A’ and from ‘aX’Fto \‘c( SM in the iaaam(Fig 5‘IC Ihao,

a 1 Sn , as i r dad r ,I a ‘A 1- sig n5 aa results suggest that a,ails c’oartinuou.scropping system’sarray than a A 1 99 ar b 0 1 Mgin (log 2A’ he mrs(TIcked,mt greater sa.siI water coaatentsthan those in crop

C to a 81) A’ asgasact than r ‘A( C fillosv st-stemsr-s’ithoutcausing exce-ssivecompac-tion.lit a.lso 0 s ‘0 s S 9 5 I tlg log 2( Cs 81) i us r Ira I t’tcr”n,,cs anear surtas,eroctm r as l1 Anrnnrsm,,, n,,rn’,l • Vntsamn tfl taa,,,,,s 4 • ‘)flfl * represent ronelnuouc tbrm

hulk and Fig. )Yfl I. ,..

J:. —

I :2 C I.

density so 4 and Felationship 1.Allj 1.70 1.80 (.30 LOU L5U LW l0 L30 L5O 1.20 I ‘Jo 1.40 / 10

iritcr:toAbuvu s the F) under whea

differed what o • A LSD /7 wsw iSSF WWSF A values WW) of ann falh

only Proctor ( O —

below where (B wheat (WF) and / 0(0 bulk

the die differences j 5 fa wheat 01 cm denelty

CWC, wheat.-sorghumsmghum.-fal1aw ew Scm depth .. .0. TRIHL:E depth WF’ rotpfaHo with ‘iekt

which )l(RON among 3o’gm.m1aI1ow loam toll 0 A 0

indicate water the W(F (WCF (t.30 / cropping content ..

B wba dOt t5 systems for 110 wheaes.rghumfaHow LW L50 lJ( core.-mtHe 1.70 LOP LOU L20 L5O- L541 110 I .20 .30 the ,WSSF (.r3ppin 0.00 at 0 I seicted to Richfiddsih Ir, ..

Fractions, 5cm wheat

Field 7/ dAb EWCM ,V.(1T1 .( depth levels

Bulk h,m heat Sod )c+ aiti.[cci 0.12 and of

and (A.C) Ste Wtier 5t0

Density, Cretesilly moO WSF; oerenna orghum-4aOuw 5w 15cm Weld 15cm

Soil water m, and Conteat o..i8 15cm ““S 1110. loam conttnuOus depth depth

Organic 5 clay content

PartlcleSize f1 in / grass dcpth to (kg loam ffe 0.24 I 5cm• kg) l,c ‘GRASS) silty (WWSF were orghum

Carbon depth 7 .iv 0.30 4 dgnificant.

lis11 Error (DF) and

1) / ‘551 /

anO )fl WW bars for md (A ../ 0 /

average

except

SOC

[cOne,

wi.s.iicr•o.i.ay

wit

the

and

Fc in

across

Fbi

millet

(WS$F),

wheat—sorghum—fallow

Fig.

‘[he

(WSSF).

millet

wheat-sc

Fig.

WW(1J6

ic

16

(.;.R]2.s.s the

,,.

0,

3. c4

4

concentratton

opingrusrcrnvar•

and

s,,j

10

(he

ccrrc

S(.)C

in

2.

SF,

S

(WCM),

aemos.s

Critical

2

10

0

a.scera,gcd 5

.,.

(WCM5

(5

0.12

the Maximum

oO.n.ten:t

t wheat—wheat—sorghum—fallow

j

the

Akron

WE

1,45

to

nod

whe

rghum—fallow

t

concentration

silt

(‘Sc

(l.,il.

l,’,,’r,’,I

CretesIltycb.yleam

WF,

15mm

loam

“-‘O-’WSF

Mgm°(

—ctr-5S

C’rctrilt

‘—k-SF

Crltkal

11,14

\\

water

WSF,

1,50

5lasinum

and

loam.

i

if

t—wheat—sorgbum—fàflow

acre

locatIons,

and

\

was

M

WSF,

ten

soil,

HAYS

under

bulk

ii

depth.

i

perennial

FlAYS

0.16

1,55

1’

•.ss

F

j

Water

and

perennial

(Fig.

content

‘a,

Silo.

rn)

cc

t•l1

cb

a.nv by

moan

density

(WSF)

and

Bulk

S

1,60

55

\V\V

(WSF)

diffdred

0.16

n

ccc

about

6A6C

-‘i-

C

there

Con

I

respectively,

loam

otrhcc

cc

he

c

.SD

he S/,’,li,,,r. c

(IA

lkns0s

nd

ppircg

7.

using

grass ‘

1.4(5

teat

., l.i

‘,

cc

grass

‘H

and

ard*570

0.29

using

averaged

were

22%

continuous

1’

I

a.c St.

—.4-SF

%(

runs

cdt ,,,L

cononueus

Mg

among

(kg :1

•‘

1.70

On

1

tnistnit•5,

Proctor

(GRASS).

(lSlg

2.0 (.5

(GRASS),

in

no

I

kg’9 Proctor

9.22

tic

cod

mi

Oiata WF

1/

I

?

4

then.

Jfl9

times

I

thcO ru’4)

1,75

okg’mt

statistical

mes

(WW5F)

acro

)

Mac A.

(WWSFh

..

was

s

9.24

not sorghum

test

to

Ity

I

greater

ia*

sorghum

greater

test

s

cc to

10

Mom

c\

clay

2Mb

greater

shnwnr S

6

4

2

by

9

ott 10

F4.a55, r

0.12

r’

4)

d+hrrnces

by

depth

1.45

and

loans

4,4,•,•_4__,

and

(it

d.eprh. ma

than

4

sterns

(4(5,

than aed

r

depth

($5)

Rk’bf1e1dl1t

depth.

s

(55)

than

Critital

0.14

Sr

Rkhrwld

WW;

J4j

-0>-

-‘4— ‘-‘

Sand

1.50

ilVCF hihnum

TR4LWNE

WW;

*

org

c

the

for

in

TR.IBUNI[

v and

for

e

-—---‘a, and

WW

wWSF WSSF

three

0.16

1.55

‘)fllfl

eat

and

Water

/

contrnuous

three

and

/

sift

conrmuous

I,

barn

II

Bulk \

II

(C)

I,50•

kiam

14.18

\ soils

(C)

SOC

COntent

cccv

was:

po’t

SOC

P

largdly

the

that’

ho

On

oiIs

1,4

\

1 g,

wheat—fallow

\\ flensi

7

\\ wheat—fallow

‘—0—

—A--WWSF

less

1.4

bun

under

tinies,

the.

0.20

ru,

\

concentration

I

coot

the

under

wheat

\

to

lrrcibntedi

n

Rebtionships

times (kg

strongly

our

wheat

1.70

WW

lottie,

Para

fMe

(Iran

c

avcrage

1

cntration

(A)

S’crsa

kg’%

0.22

while

hid

cc

-4

4 c

(A)

cr4

while

1,73’

(WW)

wheat—fallow

•rlltete

hut

on

SOC

(WW)

(WF),

correlated

depth

wheat—fallow

0.24

B

wt.’4,.

(W

that

to

I

the rorocs

14*

,, hipotliesis

that

explained

F)

(or

rise

concentration

19

rs

(B)

S

silt

6

4

in

2

0

wheat—cern—fallow

in B)

U

c

0.12

the

4

neatwsarfacc 0

coder

lX’F

j

and

55

between

1.45

loam

wheat—sorghum—sorghum—fallow

c’4,.,tzc.nc,vc

the

h

with

wheat—sorghum—sorghum—fallow 0-

1

was

•••t

,q

(WF)

and

C.rhka

0.14

silt

I

28%

to

S

4,50

las4nwm

and

\VCM

(WF),

/

‘lice

fj(

SOC

greater

t

15-cm

151),,.

ekHosm

‘GRASS

loss

W(

ri AKRO(

WUM

of

tot

HiM

Z1t

L3o—o

under

•Gr I

0,16 1.55

sorghum—fallow

accum.u.lsrior.

5oi

the

concentration

filiw

sorghum—fallow

was

1/

the in

..Ir.Ceidesd

and

i

:flj

depth

//‘w.CM

than

Bulk

?t

I..69

variations

0.16

ho

GRASS

Compaction

loam,

I

grearer

decreased

‘I

(WCF),

loam.

(WCF)

I

DcnsiI)

0

in

—*—WCF

443

Carbon

to

SF

0.20

all

C

H-’

by

(kg

5

of

was

by

soils,

1.70

in

wheat—cern—

(‘slg

[St

on’

(SF)

in

wheat—corn— c

SF

lfl

kg’E

0.22

1.5

(SF).

greater

SC.

the

m

dcprh

1.75.

,up’

linc

times.

tones

4

i.ic.

silty

s

The

C,

41.24

am

I 14* silty clayloam chit,. 8A), ‘9”a for the silt loam IFig 513),arid 66% t)arthe loam Fig. 5Q). Across the three soils, changes n SOC concentration explained 371¼,,of the variations in Fig. SD). The relationship between p5 and SOC conccntra tion was,however,weaker than that between 3D and SOC RidilIddsiO bail, 05 concentration Acrossall soils,changes in SOC, concentra tion ex.piained‘ 7% oft he variabilityin 5513D, (Fig.ID), but 212 5.. rhes xpLinssi ml “2¼ 1 th. sat iii ilits ii.”4: ‘ n Fi [) the Bl),,,, and p, were significantly related. Changes B x hind ibo it 30% t th ai ibilit in 131) The increase in (IsXC wasalsoattributed an increase is us •; to SOC ‘..;AKRo Wdd ban concentration with continuouscropping systems as the ( WC was Il,”0. strongi correlatedwith SOC concentration (Fig.917).TheCWC Ii” increasedwith an increasein SOC concentration (Fi,g.9A9D). .71.6 butthe m.agrmodeof the..relationshipsvariedwith soil.(Zhanges in SOC concentration i’s explained16%ofthevariabilityinCWC “lit lit las an F g \ + in h5 it Ison 1’n. )B s C ; ia -aS%in the loam rhig.9(-\ Across the three s,ils, SOC concentra’

.“ 2.”Ss ‘ 2,13 non accountedfir 63%of theyariations in C’A’C Fig.91)1 Ihc t 1,3 “055; Po.ou; ‘and, silt, and claycontentwere not correlated with 0,,3D (I’ATS, C D andSOC concentrationin anysoil(datanot shown). 1,2 ‘—‘ ““. Li 0.10 0.15 0.20 0,25 e• o,is o,ie •is The reduced soiih susceptibility to compaction and compres’ cniibaiWka (,,sisst (kg kg9 Critki 55iCr ( siiteiH kg Iw’) sion with.increased SOC concentration is attributed to the 171kwng..meehanisms.mdocedhy.soBorganic matter (Soane.. Fig. 4. Relationship between ma**rnurn bulk density and 1990; Aragfin ct al., 2000: Ball 2000), First, soil nrgarilc critical water content by the Proctor test for three soils (AC) 1.,eta and across all soils (D) under different cropping systems. matter increases the soils resstance to deformation by mprov’ Ing the elasticity and rebounding capacity of the s:oil matrix.

t t t “ ‘5 S I 15,01 13 Soil organic matcrais are moreeiasticand looser than mineral and 12% for the loam (Fig.7C). Acrossthe three soils,c.hang’es particles. Second, soil organic matter lowersthe bulk densit of in SOC concentrationexplained71%of t.hevariationsin tile wholesoilbythe “dilution effect”as it has a lowerbulk and (Fig.‘D). It is important to note that whilethe 1axBDn and SOC particle density than mineral particles.Third, organiccom concentrationamongcrop rotations did not statistically ditftr pounds of high molecularweightcontribute to the bonding of in the silt loam.RISim significantlydecreasedwith an inucase organic and mineral particles at the conra.t points inside the with SOC concentration as a result of lower, although not stati.s maero and mieroaggregares.improving the resilience against ii 5 siL,nitKant[3D Fit, 23 4ant its i SOC onesntra soilconsolidation and compaction. Fourth. soil organic matter ‘A‘A’ tion I hip. 6W in than in W\VSF and \VSSF. mayalter the electrical chargeoforganomi neralcontact points ihe )1C wasalsopniheantlv correlatedwith SOC concentra and ,ncreasehiction between organic and mineralparrcles, or ig sA SD S solar to BC the sit crased wirn an which would reduceconsolidati.onof aggregates. increasein SOC conc.entrationin all soils,Changes i.nSOC Results of this study also indicate that the relativemaxi concentration explained23%of the variations in .BD, Forthe mum compactive force that these soils can resistwithout being Field thilk Densth (Nig or’) Field Bulk Density (Mg ni’) Field Bulk 1)nsits (Mg rn”) 10 1,2 1.4 1.6 1.8 1.1) 1.2 1.4 1.6 1.8 1.0 1,2 1.4 1.6 1.8 4 0 + Crete silts cbv kiam!\ Richfield sift loam B 1 54’ C, HA\ S TRIBUNF KRON 2 •. 4,

‘l 6’ •-‘ WSSF v’WGM “F •“ ‘—-“ WWSF GRASS 8 -C-WSF —C— WW -‘O—’ WW ‘WF 10 10 10

Fig. 5, Field bulk density by depth for three soils under (A) wheat—fallow(WF), sorghum—fallow(SF), wheat—sorghum—fallow(WSF), Continuous sorghum (SS), and contInuous wheat (WW): (B) wheat—sorghwm.’sarghum.-fallow WSSF), wheawheat.sorghum.4allow WWSF anC WW a”d C w’wa -‘a iDw 5WF oea”—c”n— atbil’ lWC ea ,.rr’iii (WCMj a’id on”—””’a1 grass CRASS Ii’?’) r l,,,.-,,’,t • Vr,i,,n, Ifl’) 4 • ‘?fliCi

A4,,-,,

soils

organic

Fig.

non

the

increased

Cllov mere

7, erarion

concentration

ha

excessive (1)5

base

compacted

and

wheat—sorghum—fallow

fallow

Fig.

Relationship

0

,-,.-,,

adopting

C

ippc;

of

under perennial

prone

large 6.

concentration

S4t)rgaamc

periods

SOC

10

than

(WSF),

Soil

(rcrr (

SOC 0-

Inasimuns

40

different

inpheations

0

to

depends

concentration to

organic

continuous

continuous

silly .

(retr

compaction

-.--.l

5

due

between c.cnee Crop-fallow

grass

0,28;

continuous

(434

-em

‘F

clay

5

244

_—_..

confinement

iltt

t 4 ’)

cropping

P4,0t

ll4S Soil

C

soil corn

for

on

utration

(GRASS).

lOam

concentration

104

10

cb

because

()rnk

SoC three

cropping

cropping

maximum

depth

\,.-l

(WWSF),

action

30

in

than

sorghum

loam

s

Ii

15

these

systems. on

eunec

seems

L2 soils

/

is

(ig

cropping

thee

of

reducing

I.e

attributed

mae

11

44

systems

systems

F)

20

NT

the (A—C)

ntrat).un, bulk

k 1 )

and

had

-, B

suggest

(SS),

0’)

be by

heneficia.l

soils, 5) WW

density

depth

lower

(frn4or

onsc-svhat

2530

441

systems

and

a still

which I and

arid

C—

to

that

ihese.

compaction

945;

the thus

SOC

across 504k

and

continuous

for

,

50

—-,

and

Rwhrk1

increase

impac.ts

40

tKIltlil

20 near-surface

without

4

srrariliea

6

three 4 0<41414

(C> 1)

results

managed they

loam

S

cone

-0

soil LIt

0 all

wheat—fallow

si*

were

,‘

soils

Rklifldd

en

SO

of

may

3040

to

wheat

5

SC

[RI

/

A(— 4

under

So1)

ii

LlL

/

.1

silt under

C 10

Fig.

(WW);

/

‘I

Orgiuii

r

I

cone

/

(A>

learn

(1,4

4-

(WF),

application

son

Crowing

non 8.

improved

is

rrrahahlv

C 0.4

h

unrraOon

15

no

2.0

(I

dIfferent

Relationship

rosso. wheat’-’-fallow

entratlon

soil

——

Soil

ht

——W44Sl

-WSSF

and

C

(B>

at

wheat—corn—fallow (g

Soil

water

lower

20

miter

wheat

West1ail,

w

kg)

2000).

(rcfrs,itts

deep-rooted 4Organlc

the

tO

man

023;

Blanco-Canqu;

cropping

are

content

far

depths

25

only

S. content,

agemem

‘st4,94

among

between

Among

(‘ig

three orghum—sorghum—fallow

(WF),

(

c-lay

L7S

2004;

20

factor

S

as

31)

kg)

and

changes

systems,

iaam I

plant •

2)°i

U

soils

particle-siac

the

11

6

sorghum’-’-fallow

2

strategies

these

Benaniin

reduce.

that

field

(WCF),

sod all

I,/

(A—C)

Species

er

h

can

dynamically

fa

bulk

(40

factors

a!,,

L2

Ia

2,0

41°

SOC

04

(1_s

S

tots,

1/ 4.2

Wdd

4,6

2.0

0

be

/

that

KRON

and

201h)

era!.. wheat—corn—millet

/

density

such di

/ Soil

-

d

B

altered

/

SslUriaoic

stratification SOC

in

loam

II)

across increase

----

Organic

rifurlon.,

21 <

Oucucing

r’

(SF),

as

2007) may

C 10

0

4i02.Ix

\ilSolh

with

(WSSF),

thrage sod

-

032-,

concentration

-al—GR’CiS

‘-ala”

ha

15

039;

be

Rirhfidd

all

wheat—sorghum--’-

5)

U(

cropping

-

SC soil

and

(g

precipitation

a-

alternatives

soils and

-

0<0,01

grass

20

(121

20

kg)

are

organic

4,85

7

kg

manure

wheat—

4’2Y3

SOC

concentrm

silt

(D)

compact

)

(WCM),

needed.

Peter loam

25

systems

30

is

con

to 30

both

at

cropping

rise’ water

saris

below

I

ma.ximuns

the

the

non

:drn

rest

and

partly

These

determined

held

because

reflect

information

should

7’)4

risks

in

Data ttset

under

incvcase

C

maximum

Fig.

low

‘It

Characterization

a a

I”

1st

is

a

a

is

Proctor 6

It

Os

P

detcrm.i

cultivated

concentration

pressure

urovidcs

80 u

os

over

0.115

[tiC

iris

ids 0.20

0.15

dynamics

is

5,16

6.110’

9.

rather

5,iS

1115

of

520

this 0,25

/

it

Dr

differences

explain

-

some

soil

(‘r’

n

important

different

Relationship

he

ailosvs.

s

systems soil

it

to

o

SOC

IA

situ

dererrn 0” 1

the

C

I

CW(f.

soil

uses

mrerpreted

water

rest

bieaedI

nation

and

detcrmi.nations,

exerted than

bulk SssSOs-gimk

(530:

compaction.

rising

ot

on

loam

ieee

of

soils

held

the com.pacti.ori

/

the

concentration the

allowed

homogenized

on

(‘O’ir

ill

2

the

3D

had

cropping

density

em

med level

‘.

at

rri.elerr

i.n

P

,“li.l*is

r”0,1ir

to for

relatively

large

Weld

nOtice

soil

increased

decreased

conditions.

.4K

breakdown

rules

from

ir

0,44:

SiltS

1-ugh

of

by

relative

size

H4YS

tents,

atm between

indicate

itrcarer

ROts

three

00’ on

/

without 0,0011

rautiously. Siam

compaction.

relative

fic.ld

di

P’

a.nd

25

the

nt

o

and ,0;’,y5

Akron

n

Crir.icai

by

P”-4L,51

roil small

/

kg-i)

0.01

iii)

ceLlo

the

systems.

su

a

of

simulating

so

kstn

determination

weak

soik

di.sturbed

equipmer.t. the

ditThrences

cf+bct

SOC

distu.rbance

First.

oil

hncarly’

seamer

in

enctose

soil

that

I

with

that

iluliowi

critica

ihe

compaction

hulk

s’soii eansine

and

50

our

indicate Proctor

nod

(AC)

water

samples.

re.iationship

The

the

concentration

the

on the

depth

Proctor ic

/

content

0,25

undisturbed

11.55

0,00

density study,

hot

ng

t.i

with

compaction

water

results

Proctor

reducing

5011

soil

the

Proctor

vu-

S

e’sces’sive a

I

in

and

example.

additional

Second,

a)

test

chat B

,‘

.‘rtenC

in

fes,..i

in

sm

soil

effbcts

/ which sa.niples,

can

an

that Setk

bulk

in

across

using

soil

cultivated

content

and

from

growing

As.

deeper

increase

between

compaetibiiity

a

test

hfkJOk

iii

hc

vse2s9J5

test rOA4;i°itøi

bulk

continuous

samples

density

soil

comna.cnion

stated

it

c and do

soil

065:

of

it

in

trathekcd.

the

inc.

provides ri.S.k.5

this

perm.its

permits

all

at’S”

whereas

intljrnsa

\5C

held

this

not

cores,

C

density

at

soil

organic

P

reduced

k,am

Proctor

soils

perennial

siform

25

soils 01561

in

study

BD,.. a’

earlier,

the

at

514

kç)

fully

may

studs,

soil

0

depths.

75

(D)

and the

“““

M

Anrnnnmw 5’

/

1)as-idsan,J.M,,

Lnss:’’ai’i,

l’icniarn,n,hG,,.

Ocnanm,jA

Ball,

Aragrin,

Anderson,

Ams’ncaii

means practices

eompactibilirv

concentration

ing

content

anti

systems

under

srstcrns

tion,

btrthckcd llius,c.

compaction

soils candy

naton

eampactihilit

The

systems central

(Fig.

SOC

:‘,,rar

Soil’I’IlIsgr

Starr:

den’.sirysvith smaris

nnareer

sod B.C.,

Strength

kc-’rrr:

physic-al’

Sil’

21)07,

SOC

r’hvocal

cornparribiiirv

This

Beniamin.

I’rotLkpeir.

t..s:’s.)tii. Attire

PA.

srgannr ret

the

compaction

neansurface Innansi

studic

Fist

A,,

R.,A..M,F.

I’hT’

for

a’s’’

71))

Sri.

continuous

Mr.

D.l.

rrtnr’non

conccnrraton, methods

iowcr

intiniorl

Snorts

of SI

,“

R,L.

increased changes Cropping

maximum

increased

become

Creat regional

also

(12

M.D.

such

concentration

may Soil

,.

the

Soc.

and.

Stahlniiaan,

and

nianaglrig

crOon

P.

(‘.ampbcll,

properties

tallow

asl

MIsS

M,,’,Iikba,

t”i.,,

with

Res,

400

d.

Grsy,aaid

depth

IdA.

.1k S&’:.

1909,

near

organic

increased

hydraulic

,.5. wthont

same

than

Garcia,

12:95

alleviate

as

(I

For

These

on was

kin

in

54:1

i’lans Vigil. ..,

in rierory

us

ft-lhfAt3

n.

,riii.i

‘al

S:ar.

Mkha,r,,dM,iSViizii,

intensity

A

continuous

under

SOC compacted

Bowman,

Lii,

Testing

thu

intends-ely

under

laboratory

periods

.5. study

/

over

A

, these

crti

the

with

maximum

-ac.

SOC

2005.

.Stonr,

I.I--.I26.

primarily cropping

-‘ r”er,rinc

‘saInt

arid

and

compactive under

hulk

timoperiierar

,ta,y:

remnause

‘Sm’

D.I.

lAP

coo’p’atc.ibiht:” D.C.

R,R.

:1,

compaction

results

,.o’,

propc-rries.

ppi

.5’

Vnlnn,n

shows

soil

rwocnoppingsys’nems. idA.

signiticantly

organic

(1,00

crop

CONCLUSIONS

concentration

Oi,)_

but

some

ails.

,Nidsoii,

No-ri!,!

the

REFERENCES

across

an

no- dPI-en

arid

through

A,!.

concentration

r’otcl’.r,

Nir’i,sen.

Pi.Igueira.

t.nrs::’is..

density

ug

12010

in

D.C.

may

crop-tallow soils

compaction

cropped.

su I-looter,

-

kN-mn

increase

Bl).

till rrOp

soil

.5-il lOS

.\Iateriak.

-Cllw

system

.Schiegei.

I

indicate

systems.

rfkce

am

that

cropping

of carbon

responsible

on

innlii’ced

fc-,a:i iuous

bulk

Fri Nielsen,

lAd-. 1St

L’tlrci

three

reduce

Soil

suls.

Ic-i,

MT.

lower

‘A’.M.

water

ansi

force,

rotations

the

‘niS)l.

a

physical of

5/,

and

decreased

107

des’land

cirr:

semiarid

2000.

appropriate

within long-term

tOn

T:ila 5 e-

scsi!:

layers. S.,’m:.

t:hansc

density,

‘0)1,15. was

systems

R,1,,,,An&icrson,

of

Vigil.

-ifs, 1

en

in

r characteristics

I’S! inducing

inert’s,’’, nduccd

contrasting

21)0’S

VA.

Data

12cr:.

Prr,r:ont,,-sr:

chat

MT.

AS’l’M

sk

n

water

Continuous

roil,s

content

scone

soils

than

it’.’rn

systems Soil

to..

SOC

s’ysten’is

properties

prim. DR.

more

over

Ion

Lyon.

systems,

ofexcessive

rena

Xe:.

F.

Agron,

elimsiat.

Sd’rett,

Paehepsky’.

)nga::iurri(.’ron.

Continuous

the

for

ASIM

Vigil,

5i:’

eompaeeibii.i.tv

in

Caidemon,

reduction

I.e-lid’

suggest nirganic

tic rh-

SoilTillage

tinder in:

and

a

with

in

liii..

0 f

content

Sb-:

the

eont1nuoua

concentration,

crop-fallow

54.1

organic

the

iP,e’:,

ncicasc

parameter

surface

strongly

Ai’ycnnine.an

cac.cssivceonipa..

management

reinral

j.

no-till

an

Sstrms

the

il—SO’s

R,M.

in

S,•iil

4

may’

West

North

ni’s

ihe

,S’oti of

S937S-L37S.

critics!

‘rest.,

Db9)i

(995,

soils

reduced

which

p 1 ,

Vigil.

two

soil

Lzss:,residr,

crop-fallow

2000.

maitena-rdhr,ik

and

rskc

that

S.:i,

rrlstioi’ship

cropping

no-till

Sri,

ca.rbor,

A’iken,

(‘orishohockeri.

(

(Fig.

he

Rev

nearrao.rfbce than

or

using

rl”’’v

laydi

—07:

A.ppslachiso

mu

.Soii

svstrn’is.

..Sr:s’,lI

TB.

in

in

Soc.

s

cit

cropping.

54.

5,

correlated

Soc.

potential

metes’

elimd

Maaimom

wand

as

of

relation

a

7010

‘-53

so

i’:’srnpar.

of

silt

the

cropping

the

organic ssstems,

Mikir,s,

SD), reduces

Plsior

Sisudarri

standard

soil

and

relative’

thin.

those

s.

Plenty.

or’:

Am.

soil

2F0’iS.

soil

ioi

loam,

.rc.

thee

“‘ii

‘Oh

PG.

can

(:5

I,

no I.

!, 5

55

A

Octet

\k,A1..,.FCgilJ’iAi.sehn 5 .

i.sciaa.

aersnst, K

(loystnan.

nate.

deyl

olsod

snarler

and

and

‘751!

sit.

8 4 t219—126.

ini’Inrnrt

Agron.

201-

Madison.

Al..

LI

it

(-5

and

.A.,

sod

51’.

J.L.

I il—PsI,

/

525./n

analysts.

.11,

RIL

and

Ltpp

Lalsoesnoy

agtnecssiystesa

quality Monogr.

qtata.s

and

jIl

Ps

og

sd unhurt,

koi,

WI.

I)4t’n

and

nitipart

I

F.

dd:

1)

i.t’sasta

PartS.

C

H.

LI.

(.1.

so

ndtca.tors

IC

//

5.

Sissssnsers

Sirtiands

the

Nor

.100.1.

F,

‘/“LstfsL.

methods,

SodA.

idaie,

(.lrnppiog

aade

Reeh.

S/iSA

Great

,7/

sod

a,

A.n and

Par

Mad.iaon.

‘attonase

S..!

I

::f Rook

.

Plains.

5,

5011-i

1990,

GA

p.

1)

ne-oar

ANti.

tar sssi

\\‘tcdnjd

.11)02,

SOP—

sy

nt5er

R,A.

Sec.

rent

Iopp a

inraI

nnflnn

\tas.nnH

Renew,

sos

ilsisi.

-

WL

, 11110,

ilists.

On

aoalsnr

S.

issswosan.iI

inuluc.nee:s

and

rarksn,

CC’

55/iA.

if

i.n

io-si25—-iSS,

75

Agric

densus

it.

i...rtelslt

IS

(N.

Ant-s

C

id..L

not’at

Methods

psa-.:tç’tat

Rahinan. and

p.

nrgaatsa

iso

Food

Spark.s

55--20A.

I.sotnt

A.SA.

and

SdSAiirsak

Met.onkcr,Ia

Plants,

.e

srnl

nt

isis Syw.

50)4.

taehon,

air.

Madi.son,

eise.mtsaai

near

et.

soil

i9aeCaoj

4.nIW2tt4a

‘air

al,

inJ

Ssti

2It26--55.

5

analysis,

rarer,

jed,l

itt

Snil

H.

i:spsiig

Sen

and

ililage

in

:$stIs*n

WI.

Methods

stoaalste

siblins.. lAnai

nea

idedsen.

5.

nrga.ntc

ScsI!

at’Ts’saO

i’an4,

.55CC

‘anus. Las.

/5’-

Sc.i.

and

I.aLaSpAk

fa

I

/i/ian.

Soastsn

S.lsaver,

l5a-5555)5vstr

SAS

sd-ssssga

Pun,

;osnavs 51 .

seloned.

57556—dO.

Sri.

V

and

sonar

drnna

d.ria.nd institute.

apt. ,ela.srd

L.rss[spsn(t

Ret-sew.

ii. 1,1... dIM..

.

1.11.

a

1 6 1t50 2 ’--SOS,

Rca,

S

,,cdn

sil.Lore

Al-i.,

(.0

practical

‘-5 Ks

K

L0ft’Tlte

I

55

‘[air

icA..

Agile.

id:l-a)

nile.

ow

52a21—21i,

C,

/ nta5taacnicfl.t

‘91

2009.

I)

JOsh

ott syos:tss

‘sahoannl

R.Iiadrr.asaiR.i.

eon

5

P.

(SF1.

Psaaene

a

aspeers.

snassnsnrst

Food

-0,.

dsaiMa,sspaazeiisuaLvntied anti

/

Bussds,ariso,

iurspros

\X’snuersclseau

Cnlisw

role

Bsslrsser,

cheo.saaad Syst,

tsae,ss.esnn

of

Soil

F,.

peat

arusl

e.s

2ItiS.-25.

is-gaoL

assopa.ctitiIisy

soil

doe.

i’Ienuarnns.

Tillaqe

and

sues

L.A..

ansI

physical

itS/easier

.sasdetasss

H

0.1.3.

OPansi. so

ott)

Slserrod..

sow

N

Ret.

(‘ sits’

piaa’siaai

tee

RI..

l’s-!nrss,a

5/h’s’,jt

rr

wIns

propertiesi

Available

Ida

Snd

i.ts

is!’

i’5-10.’!hrarisets’stisrstotsrnsatrns

a-

I”

LOGS. C92.tdl, —

iiansnharsis.

stelssnts

‘as-sd soil

soi.is

IsiasAtlO Sri.

f.r55l5’tfic5

ssn

2110)4. s:omparla.lsstst.y:

-S Cropping

sasing

Sew,

at

Re

ntrssutssc

ses’sitsssi.,n P’1°

it.tsps.t./s:i.tpp.srs.sais.assa./

Ato,

resalon Ma.s .

t.ise

itO SAN

[sit

5

Nsssi

l 5 tsasatsr

I-’aun insenssd.easioo

.

astor

N, SLtao2—’aSL,

‘c

issst.,Lao

relations.

ans[snarttssus

S/errol.

sin

Isseat

A

a’.

I

(s,tlk

[rest-s.c

taco,

S/si

l”otns,.

(Otto

315

Scat

of in n