Physics in the Second Half of the Twentieth Century JOSÉ MANUEL SÁNCHEZ RON
the world after the revolution: physics in the second half of the twentieth century JOSÉ MANUEL SÁNCHEZ RON The great revolutions of the twentieth the state of movement of the observer, and mass, m, century is equivalent to energy, E (the famous expression E= m·c2, where c represents the speed of light), opened During the fi rst half of the twentieth century—actually, new doors for understanding the physical world. For the fi rst quarter—there were two major scientifi c example, this theory helped explain how it was possible revolutions. Those cognitive cataclysms took place in that radioactive elements (uranium, polonium, radium, physics, and are known as the relativist and quantum thorium) that had been studied for the fi rst time by revolutions. They are respectively related to the special Henri Becquerel (1852-1908) and Marie (1867-1934) and general theories of relativity (Einstein 1905a, and Pierre Curie (1859-1906), emit radiation in a 1915), and quantum mechanics (Heisenberg 1925, continuous manner with no apparent loss of mass. Schrödinger 1926). And then there was the general theory of relativity, which explained gravity by converting space—actually, Relativity four-dimensional space-time—into something curved, Much has been written, and will be written in the and with variable geometry! It was immediately future, about the importance of those theories apparent that, compared to Newton’s universal and their effect on physics as a whole, even before gravitation, Einstein’s new theory made it much easier to the middle of the century. Created to resolve the understand perceptible phenomena in the solar system increasingly evident “lack of understanding” between (it solved, for example, a century-old anomaly in the Newtonian mechanics and the electrodynamics of movement of Mercury’s perihelion).
[Show full text]