Real Or Not Real That Is the Question
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Dear Fellow Quantum Mechanics;
Dear Fellow Quantum Mechanics Jeremy Bernstein Abstract: This is a letter of inquiry about the nature of quantum mechanics. I have been reflecting on the sociology of our little group and as is my wont here are a few notes. I see our community divided up into various subgroups. I will try to describe them beginning with a small group of elderly but distinguished physicist who either believe that there is no problem with the quantum theory and that the young are wasting their time or that there is a problem and that they have solved it. In the former category is Rudolf Peierls and in the latter Phil Anderson. I will begin with Peierls. In the January 1991 issue of Physics World Peierls published a paper entitled “In defence of ‘measurement’”. It was one of the last papers he wrote. It was in response to his former pupil John Bell’s essay “Against measurement” which he had published in the same journal in August of 1990. Bell, who had died before Peierls’ paper was published, had tried to explain some of the difficulties of quantum mechanics. Peierls would have none of it.” But I do not agree with John Bell,” he wrote,” that these problems are very difficult. I think it is easy to give an acceptable account…” In the rest of his short paper this is what he sets out to do. He begins, “In my view the most fundamental statement of quantum mechanics is that the wave function or more generally the density matrix represents our knowledge of the system we are trying to describe.” Of course the wave function collapses when this knowledge is altered. -
Concerning Stephen Hawking's Claim That Philosophy Is Dead1
Filozofski vestnik | Volume XXXIII | Number 2 | 2012 | 11–22 Graham Harman* Concerning Stephen Hawking’s Claim that Philosophy is Dead1 The relations at present between philosophy and the sciences are not especially good. Let’s begin with Stephen Hawking’s famous words at the May 2011 Google Zeitgeist conference in England:1 […] almost all of us must sometimes wonder: Why are we here? Where do we come from? Traditionally, these are questions for philosophy, but philosophy is dead. Philosophers have not kept up with modern developments in science. Particularly physics. Scientists have become the bearers of the torch of discovery in our quest for knowledge.2 According to Hawking, philosophy is dead. Others are more generous and claim only that philosophy will be dead in the near future, and only partly dead. For example, brain researcher Wolf Singer tells us that he is interested in philoso- phy for two reasons: !rst because “progress in neurobiology will provide some answers to the classic questions in philosophy,” and second because “progress in the neurosciences raises a large number of new ethical problems, and these need to be addressed not only by neurobiologists but also by representatives of the humanities.”3 In other words, Singer is interested in philosophy as a poten- tial takeover target for the neurosciences, though he reassures us that philoso- phers should not fear this ambition, since Singer still needs ethics panels that will “also” include representatives of the humanities alongside neurobiologists. 11 Having escaped its medieval status as the handmaid of theology, philosophy will enter a new era as the ethical handmaid of the hard sciences. -
Multi-Dimensional Entanglement Transport Through Single-Mode Fibre
Multi-dimensional entanglement transport through single-mode fibre Jun Liu,1, ∗ Isaac Nape,2, ∗ Qianke Wang,1 Adam Vall´es,2 Jian Wang,1 and Andrew Forbes2 1Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China. 2School of Physics, University of the Witwatersrand, Private Bag 3, Wits 2050, South Africa (Dated: April 8, 2019) The global quantum network requires the distribution of entangled states over long distances, with significant advances already demonstrated using entangled polarisation states, reaching approxi- mately 1200 km in free space and 100 km in optical fibre. Packing more information into each photon requires Hilbert spaces with higher dimensionality, for example, that of spatial modes of light. However spatial mode entanglement transport requires custom multimode fibre and is lim- ited by decoherence induced mode coupling. Here we transport multi-dimensional entangled states down conventional single-mode fibre (SMF). We achieve this by entangling the spin-orbit degrees of freedom of a bi-photon pair, passing the polarisation (spin) photon down the SMF while ac- cessing multi-dimensional orbital angular momentum (orbital) subspaces with the other. We show high fidelity hybrid entanglement preservation down 250 m of SMF across multiple 2 × 2 dimen- sions, demonstrating quantum key distribution protocols, quantum state tomographies and quantum erasers. This work offers an alternative approach to spatial mode entanglement transport that fa- cilitates deployment in legacy networks across conventional fibre. Entanglement is an intriguing aspect of quantum me- chanics with well-known quantum paradoxes such as those of Einstein-Podolsky-Rosen (EPR) [1], Hardy [2], and Leggett [3]. -
The Secret Hans2.Doc Italicized Paragraphs Not Presented September 19, 2005
091805 The Secret Hans2.doc Italicized paragraphs not presented September 19, 2005 The Secret Hans Richard L. Garwin at Celebrating an Exemplary Life September 19, 2005 Cornell University I recount1 some early interactions I had with Hans, beginning in 1951. Hans had led the Theoretical Division at Los Alamos from 1943 to 1945, and despite his antagonism to the hydrogen bomb, was willing to turn his talents to learning whether it could be done or not, which was his role when we interacted in the summer of 1951. In May of 1951 my wife and I and our infant son went to Los Alamos for the second summer, where I would continue to work mostly on nuclear weapons. I was at that time an Assistant Professor at the University of Chicago and had spent the summer of 1950 at the Los Alamos Laboratory, sharing an office with my colleague and mentor Enrico Fermi—Hans Bethe's mentor in Rome as well. When I returned in 1951, and asked Edward Teller, another University of Chicago colleague, what was new and what I could do, he asked me to devise an experiment to confirm the principle of "radiation implosion," then very secret, that he and Ulam had invented that February. In May 1951, the young physicists Marshall Rosenbluth and Conrad Longmire were trying to do actual calculations on this method for using the energy from an ordinary fission bomb to compress and heat fusion fuel-- that is, heavy hydrogen (deuterium). I decided that the most convincing experiment would be a full-scale hydrogen bomb, so I set about designing that. -
On Monte Carlo Time-Dependent Variational Principles
On Monte Carlo Time-Dependent Variational Principles Von der QUEST-Leibniz-Forschungsschule der Gottfried Wilhelm Leibniz Universit¨atHannover zur Erlangung des akademischen Grades Doktor der Naturwissenschaften { Doctor rerum naturalium { genehmigte Dissertation von FABIANWOLFGANGG UNTERTRANSCHEL¨ Geboren am 10.01.1987 in Gehrden 2016 0 Erstpr¨ufer : Prof. Dr. Reinhard F. Werner Zweitpr¨ufer : Prof. Dr. Klemens Hammerer Beratendes Mitglied des Pr¨ufungsausschusses : Prof. Dr. Tobias J. Osborne Vorsitzender des Pr¨ufungsausschusses : Prof. Dr. Rolf Haug Tag der Promotion: 17. Dezember 2015 On Monte Carlo Time-Dependent Variational Principles Fabian W. G. Transchel Abstract The present dissertation is concerned with the development and implementation of a novel scheme for quantitative, numeric approximation of the dynamics of quantum lattice systems based on the Time-Dependent Variational Principle together with Monte Carlo techniques in order to include dissipative interactions. The specific implementation is demonstrated on both common and not yet in-detail explored Heisenberg- and Fermi-Hubbard models in one and two dimensions. Additionally, the technical requirements regarding computational complexity and capacity are discussed, especially with regards toward parallelizable components of the imple- mentation. Concluding remarks include prospects with respect to application and extension of the presented methods. Keywords: Monte Carlo method, Dissipative Dynamics, Lindblad Equation iii Zusammenfassung Die vorliegende Dissertation befasst sich mit der Entwicklung und Umsetzung eines neuartigen Schemas zur quantitativen numerischen N¨aherung der Dynamik von Quantengittersystemen auf Grundlage des zeitabh¨angigenVariationsprinzips unter Zuhilfenahme von Monte-Carlo-Techniken zur Einbeziehung von dissipativen Wech- selwirkungen. Die Implementierung wird anhand von Beispielen f¨urHeisenberg- und Fermi-Hubbard-Modellen in einer und zwei Dimensionen gezeigt und erl¨autert. -
2005 Annual Report American Physical Society
1 2005 Annual Report American Physical Society APS 20052 APS OFFICERS 2006 APS OFFICERS PRESIDENT: PRESIDENT: Marvin L. Cohen John J. Hopfield University of California, Berkeley Princeton University PRESIDENT ELECT: PRESIDENT ELECT: John N. Bahcall Leo P. Kadanoff Institue for Advanced Study, Princeton University of Chicago VICE PRESIDENT: VICE PRESIDENT: John J. Hopfield Arthur Bienenstock Princeton University Stanford University PAST PRESIDENT: PAST PRESIDENT: Helen R. Quinn Marvin L. Cohen Stanford University, (SLAC) University of California, Berkeley EXECUTIVE OFFICER: EXECUTIVE OFFICER: Judy R. Franz Judy R. Franz University of Alabama, Huntsville University of Alabama, Huntsville TREASURER: TREASURER: Thomas McIlrath Thomas McIlrath University of Maryland (Emeritus) University of Maryland (Emeritus) EDITOR-IN-CHIEF: EDITOR-IN-CHIEF: Martin Blume Martin Blume Brookhaven National Laboratory (Emeritus) Brookhaven National Laboratory (Emeritus) PHOTO CREDITS: Cover (l-r): 1Diffraction patterns of a GaN quantum dot particle—UCLA; Spring-8/Riken, Japan; Stanford Synchrotron Radiation Lab, SLAC & UC Davis, Phys. Rev. Lett. 95 085503 (2005) 2TESLA 9-cell 1.3 GHz SRF cavities from ACCEL Corp. in Germany for ILC. (Courtesy Fermilab Visual Media Service 3G0 detector studying strange quarks in the proton—Jefferson Lab 4Sections of a resistive magnet (Florida-Bitter magnet) from NHMFL at Talahassee LETTER FROM THE PRESIDENT APS IN 2005 3 2005 was a very special year for the physics community and the American Physical Society. Declared the World Year of Physics by the United Nations, the year provided a unique opportunity for the international physics community to reach out to the general public while celebrating the centennial of Einstein’s “miraculous year.” The year started with an international Launching Conference in Paris, France that brought together more than 500 students from around the world to interact with leading physicists. -
Toward a New Science of Information
Data Science Journal, Volume 6, Supplement, 7 April 2007 TOWARD A NEW SCIENCE OF INFORMATION D Doucette1*, R Bichler 2, W Hofkirchner2, and C Raffl2 *1 The Science of Information Institute, 1737 Q Street, N.W. Washington, D.C. 20009, USA Email: [email protected] 2 ICT&S Center, University of Salzburg - Center for Advanced Studies and Research in Information and Communication Technologies & Society, Sigmund-Haffner-Gasse 18, 5020 Salzburg, Austria Email: [email protected], [email protected], [email protected] ABSTRACT The concept of information has become a crucial topic in several emerging scientific disciplines, as well as in organizations, in companies and in everyday life. Hence it is legitimate to speak of the so-called information society; but a scientific understanding of the Information Age has not had time to develop. Following this evolution we face the need of a new transdisciplinary understanding of information, encompassing many academic disciplines and new fields of interest. Therefore a Science of Information is required. The goal of this paper is to discuss the aims, the scope, and the tools of a Science of Information. Furthermore we describe the new Science of Information Institute (SOII), which will be established as an international and transdisciplinary organization that takes into consideration a larger perspective of information. Keywords: Information, Science of Information, Information Society, Transdisciplinarity, Science of Information Institute (SOII), Foundations of Information Science (FIS) 1 INTRODUCTION Information is emerging as a new and large prospective area of study. The notion of information has become a crucial topic in several emerging scientific disciplines such as Philosophy of Information, Quantum Information, Bioinformatics and Biosemiotics, Theory of Mind, Systems Theory, Internet Research, and many more. -
Memory Cost of Quantum Contextuality
Master of Science Thesis in Physics Department of Electrical Engineering, Linköping University, 2016 Memory Cost of Quantum Contextuality Patrik Harrysson Master of Science Thesis in Physics Memory Cost of Quantum Contextuality Patrik Harrysson LiTH-ISY-EX--16/4967--SE Supervisor: Jan-Åke Larsson isy, Linköpings universitet Examiner: Jan-Åke Larsson isy, Linköpings universitet Division of Information Coding Department of Electrical Engineering Linköping University SE-581 83 Linköping, Sweden Copyright © 2016 Patrik Harrysson Abstract This is a study taking an information theoretic approach toward quantum contex- tuality. The approach is that of using the memory complexity of finite-state ma- chines to quantify quantum contextuality. These machines simulate the outcome behaviour of sequential measurements on systems of quantum bits as predicted by quantum mechanics. Of interest is the question of whether or not classical representations by finite-state machines are able to effectively represent the state- independent contextual outcome behaviour. Here we consider spatial efficiency, rather than temporal efficiency as considered by D. Gottesmana, for the partic- ular measurement dynamics in systems of quantum bits. Extensions of cases found in the adjacent study of Kleinmann et al.b are established by which upper bounds on memory complexity for particular scenarios are found. Furthermore, an optimal machine structure for simulating any n-partite system of quantum bits is found, by which a lower bound for the memory complexity is found for each n N. Within this finite-state machine approach questions of foundational concerns2 on quantum mechanics were sought to be addressed. Alas, nothing of novel thought on such concerns is here reported on. -
Lecture 8 Measurement-Based Quantum Computing
Introduction to quantum computation and simulability Ernesto F. Galvão Instituto de Física, Universidade Federal Fluminense (Niterói, Brazil) 1−ε 0 + ε 1 q = ε p 0 p 0 U ! 0 ICTP-SAIFR – IFT/UNESP , October 15th-19th, 2018 Introduction to quantum computation and simulability Lecture 8 : Measurement-based QC (MBQC) II Outline: • Applications of MBQC: • models for quantum spacetime • blind quantum computation • Time-ordering in MBQC • MBQC without adaptativity: • Clifford circuits • IQP circuits • Introduction to quantum contextuality • Contextuality as a computational resource • in magic state distillation • in MBQC • For slides and links to related material, see Application: blind quantum computation • Classical/quantum separation in MBQC allow for implementation of novel protocols – such as blind quantum computation • Here, client has limited quantum capabilities, and uses a server to do computation for her. • Blind = server doesn’t know what’s being computed. Broadbent, Fitzsimons, Kashefi, axiv:0807.4154 [quant-ph] Application: model for quantum spacetime • MBQC can serve as a discrete toy model for quantum spacetime: quantum space-time MBQC quantum substrate graph states events measurements principle establishing global determinism requirement space-time structure for computations [Raussendorf et al., arxiv:1108.5774] • Even closed timelike curves (= time travel) have analogues in MBQC! [Dias da Silva, Kashefi, Galvão PRA 83, 012316 (2011)] Time-ordering in MBQC from: Proc. Int. School of Physics "Enrico Fermi" on "Quantum Computers, -
Tribute to Valentine Telegdi
Tribute to Valentine Telegdi who passed away on April 8th in Pasadena by K. Freudenreich, ETHZ/IPP/LHP Plenary CHIPP Meeting, PSI, October 2, 2006 Val Telegdi: years 1922 - 1943 Born on January 11th, 1922 in Budapest, spent only a few years in Hungary. According to his own words in his younger years he was a master of “involuntary tourism” , participating passively in German occupations in three countries: Austria, Belgium and Northern Italy. He attended grammar school in Vienna and then a technical school in Brussels. From 1940 - 1943 he worked in a patent attorney’s office in Milan. He used to say that - contrary to Albert Einstein in Berne - being on the other side of the fence he really had to work hard. When the Germans occupied Northern Italy Val, together with his mother, fled to Switzerland. October 2, 2006, Plenary CHIPP Meeting, PSI, K. Freudenreich, ETHZ 1/20 Val Telegdi: years 1943 - 1946 After a short internment in a refugee camp he joined his father in Lausanne where he studied chemical engineering at the EPUL with a grant from the F onds Europ´een de Secours aux Etudiants. At the EPUL he also attended lectures in theoretical physics given by E.C.G. Stuckelberg¨ von Breidenbach whom he estimated very highly. Ironic telegram by Gell-Mann to “congratulate” Feynman for his Nobel prize: “Now you can give back my notes”, signed Stuckelberg¨ Stuckelberg¨ helped Val to be accepted by P. Scherrer at ETHZ. October 2, 2006, Plenary CHIPP Meeting, PSI, K. Freudenreich, ETHZ 2/20 Val Telegdi: years 1946 - 1951 In 1946 the institute of physics was located at the Gloriastrasse. -
Scientific Report for the Year 2000
The Erwin Schr¨odinger International Boltzmanngasse 9 ESI Institute for Mathematical Physics A-1090 Wien, Austria Scientific Report for the Year 2000 Vienna, ESI-Report 2000 March 1, 2001 Supported by Federal Ministry of Education, Science, and Culture, Austria ESI–Report 2000 ERWIN SCHRODINGER¨ INTERNATIONAL INSTITUTE OF MATHEMATICAL PHYSICS, SCIENTIFIC REPORT FOR THE YEAR 2000 ESI, Boltzmanngasse 9, A-1090 Wien, Austria March 1, 2001 Honorary President: Walter Thirring, Tel. +43-1-4277-51516. President: Jakob Yngvason: +43-1-4277-51506. [email protected] Director: Peter W. Michor: +43-1-3172047-16. [email protected] Director: Klaus Schmidt: +43-1-3172047-14. [email protected] Administration: Ulrike Fischer, Eva Kissler, Ursula Sagmeister: +43-1-3172047-12, [email protected] Computer group: Andreas Cap, Gerald Teschl, Hermann Schichl. International Scientific Advisory board: Jean-Pierre Bourguignon (IHES), Giovanni Gallavotti (Roma), Krzysztof Gawedzki (IHES), Vaughan F.R. Jones (Berkeley), Viktor Kac (MIT), Elliott Lieb (Princeton), Harald Grosse (Vienna), Harald Niederreiter (Vienna), ESI preprints are available via ‘anonymous ftp’ or ‘gopher’: FTP.ESI.AC.AT and via the URL: http://www.esi.ac.at. Table of contents General remarks . 2 Winter School in Geometry and Physics . 2 Wolfgang Pauli und die Physik des 20. Jahrhunderts . 3 Summer Session Seminar Sophus Lie . 3 PROGRAMS IN 2000 . 4 Duality, String Theory, and M-theory . 4 Confinement . 5 Representation theory . 7 Algebraic Groups, Invariant Theory, and Applications . 7 Quantum Measurement and Information . 9 CONTINUATION OF PROGRAMS FROM 1999 and earlier . 10 List of Preprints in 2000 . 13 List of seminars and colloquia outside of conferences . -
Quantum Theory Needs No 'Interpretation'
Quantum Theory Needs No ‘Interpretation’ But ‘Theoretical Formal-Conceptual Unity’ (Or: Escaping Adán Cabello’s “Map of Madness” With the Help of David Deutsch’s Explanations) Christian de Ronde∗ Philosophy Institute Dr. A. Korn, Buenos Aires University - CONICET Engineering Institute - National University Arturo Jauretche, Argentina Federal University of Santa Catarina, Brazil. Center Leo Apostel fot Interdisciplinary Studies, Brussels Free University, Belgium Abstract In the year 2000, in a paper titled Quantum Theory Needs No ‘Interpretation’, Chris Fuchs and Asher Peres presented a series of instrumentalist arguments against the role played by ‘interpretations’ in QM. Since then —quite regardless of the publication of this paper— the number of interpretations has experienced a continuous growth constituting what Adán Cabello has characterized as a “map of madness”. In this work, we discuss the reasons behind this dangerous fragmentation in understanding and provide new arguments against the need of interpretations in QM which —opposite to those of Fuchs and Peres— are derived from a representational realist understanding of theories —grounded in the writings of Einstein, Heisenberg and Pauli. Furthermore, we will argue that there are reasons to believe that the creation of ‘interpretations’ for the theory of quanta has functioned as a trap designed by anti-realists in order to imprison realists in a labyrinth with no exit. Taking as a standpoint the critical analysis by David Deutsch to the anti-realist understanding of physics, we attempt to address the references and roles played by ‘theory’ and ‘observation’. In this respect, we will argue that the key to escape the anti-realist trap of interpretation is to recognize that —as Einstein told Heisenberg almost one century ago— it is only the theory which can tell you what can be observed.