Communication Protocol for Wir

Total Page:16

File Type:pdf, Size:1020Kb

Communication Protocol for Wir A COMMUNICATION PROTOCOL FOR WIRELESS SENSOR NETWORKS by Edgar H. Callaway, Jr. A Thesis Submitted to the Faculty of the College of Engineering in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, Florida August 2002 Copyright by Edgar H. Callaway, Jr. 2002 ii A COMMUNICATION PROTOCOL FOR WIRELESS SENSOR NETWORKS by Edgar H. Callaway, Jr. This dissertation was prepared under the direction of the candidate's dissertation advisor, Dr. Ravi Shankar, Department of Computer Science and Engineering, and has been approved by the members of his supervisory committee. It was submitted to the faculty of the College of Engineering and was accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. SUPERVISORY COMMITTEE: Chairman Chairman, Department of Computer Science and En~ ·ng Vice Provost Date lll Acknowledgements I thank the chairman of my committee, Dr. Ravi Shankar, for his guidance and optimism. If, as Newton said, a body remains at rest until acted upon by an external force, his was the force that moved me to return to school and complete my education. I also thank the other members of my committee, Dr. Valentine Aalo, Dr. Raymond Barrett, Dr. Borko Furht, Dr. Sam Hsu, and Dr. Fred Martin, for consenting to serve on the committee and their constructive criticism of this text. This research was done while I was employed at the Florida Communication Research Laboratory, Motorola Labs. I am indebted to the laboratory director, Dr. Larry Dworsky, and my immediate superior, Dr. Bob O'Dea, for their support, which went far beyond Corporate SOP. I also benefited from many useful technical discussions with my coworkers, including Anthony Allen, Monique Bourgeois, Priscilla Chen, Dr. Neiyer Correal, Dr. Lance Hester, Dr. Jian Huang, Dr. Y an Huang, Masahiro Maeda, Qicai Shi, and especially Paul Gorday, Sumit Talwalkar, and David Taubenheim for SPW consultations. I also thank Clint Powell, for supporting my return to school (and overlooking my many forced absences). iv My parents, Pat and Ed, deserve special thanks for emphasizing the value of education to a young man more often interested in other things. I also recognize my greatest debt of gratitude: to my wife, Jan. Without her support and understanding, this work would not have been possible. v ABSTRACT Author: Edgar H. Callaway, Jr. Title: A Communication Protocol for Wireless Sensor Networks Institution: Florida Atlantic University Dissertation Advisor: Dr. Ravi Shankar Degree: Doctor of Philosophy Year: 2002 Many wireless network applications, such as wireless computing on local area networks, employ data throughput as a primary perfonnance metric. The data throughput on such networks has therefore been increasing in recent years. However, there are other potential wireless network applications, such as industrial monitoring and control, consumer home automation, and military remote sensing, that have relaxed throughput requirements, often measured in bits/day. Such networks have power consumption and cost as primary performance metrics, rather than data throughput, and have been called wireless sensor networks. This work describes a physical layer, a data link layer, and a network layer design suitable for use in wireless sensor networks. To minimize node duty cycle and therefore average power consumption, while minimizing the symbol rate, the proposed physical layer employs a form of orthogonal vi multilevel signaling in a direct sequence spread spectrum format. Results of Signal Processing Worksystem (SPW, Cadence, Inc.) simulations are presented showing a 4-dB sensitivity advantage of the proposed modulation method compared to binary signaling, in agreement with theory. Since the proposed band of operation is the 2.4 GHz unlicensed band, interference from other services is possible; to address this, SPW simulations of the proposed modulation method in the presence of Bluetooth interference are presented. The processing gain inherent in the proposed spread spectrum scheme is shown to require the interferer to be significantly stronger than the desired signal before materially affecting the received bit error rate. The proposed data link layer employs a novel distributed mediation device (MD) technique to enable networked nodes to synchronize to each other, even when the node duty cycle is arbitrarily low (e.g., < 0.1 %). This technique enables low-cost devices, which may employ only low-stability time bases, to remain asynchronous to one another, becoming synchronized only when communication is necessary between them. Finally, a wireless sensor network design is presented. A cluster-type architecture is chosen; the clusters are organized in a hierarchical tree to simplify the routing algorithm. Results of several network performance metrics simulations, including the effects of the distributed MD dynamic synchronization scheme, are presented, including the average message latency, node duty cycle, and data throughput. The architecture is shown to represent a practical alternative for the design of wireless sensor networks. VII To Jan Table of Contents Chapter I: Introduction to Wireless Sensor Networks . 1 1.1: Motivation and Objectives . 1 1.1.1 : Low Power Consumption . 2 1.1.2: Low Cost . 3 1.1.3: Worldwide Availability 5 1.1.4: Network Type 6 1.1.5: Data Throughput . 6 1.1.6: Message Latency 7 1.1.7: Mobility . ..... 7 1.2: Contributions of this Research . 8 1.3: Organization of the Dissertation . 8 Chapter 2: Related Work . 10 2.1: Early Wireless Networks . 10 2.2: Wireless Data Networks . 21 2.2.1: The ALOHA System . 21 2.2.2: The PRNET System . 22 2.2.3: Amateur Packet Radio Networks . 23 2.2.4: Wireless Local Area Networks (WLANs). 24 2.2.5: Wireless Personal Area Networks (WPANs) 25 2.3: Wireless Sensor and Related Networks . 27 2.3.1: WINS . 27 2.3.2: PicoRadio . 28 2.3 .3: J.1AMPS . 30 2.3.4: Tenninodes, MANET, and Other Mobile Ad Hoc Networks. 30 2.3.5: Underwater Acoustic and Deep Space Networks 31 2.4: Conclusion . 31 Chapter 3: Physical Layer . 33 3.1: Introduction . 33 3.2: Related Work . 34 3 .2.1 : Bluetooth . 35 3.2.2: IEEE 802.llb . 36 3.2.3: Wireless Sensor Networks . 37 viii Pi co Radio 38 WINS .. 38 JlAMPS . 38 3.3: This work 39 3.3.1: Cost . 39 3.3 .2: Power 43 Power Source 44 Power Consumption 45 3.4: Simulations and Results 52 3.4.1: Simulations 52 3.4.2: Results 54 3.5: Conclusion . 61 Chapter 4: Data Link Layer 62 4.1: Introduction . .. 62 4.2: Related work . 65 4.2.1: ALOHA . 65 4.2.2: Carrier Sense Multiple Access . 66 4.2.3: Access Techniques in Wireless Sensor Networks 69 WINS . 70 Pi co Radio 70 Others 71 4.3 The Mediation Device 72 4.3.1: The Mediation Device Protocol 72 4.3.2: The Distributed MD Protocol 76 4.3.3: "Emergency" Mode 80 4.3.4: Channel Access 81 4.4: System Analysis and Simulation 82 4.4.1 : Duty Cycle 82 4.4.2: Latency 83 4.5: Conclusion 86 Chapter 5: Network Layer 88 5.1: Introduction 88 5.2: Related Work 89 5.2.1: Structure 89 5.2.2: Routing 93 5.3: This Work . 100 5.3.1: Network Design . 100 5.3.2: Network Association . 103 5.3.3: Network Maintenance . 105 5.3.4: Routing . 107 5.4: Simulations . 108 5.5: Results . 116 ix 5.5.1: Throughput (Cumulative Percentage of Messages Arriving at the DD vs. Time) . 116 5.5.2: Throughput (Cumulative Percentage of Messages Arriving at the DD vs. Node Level) . 117 5.5.3: Average Message Transmission Time . 118 5.5.4: Average Message Latency vs. Node Level . 119 5.5.5: Packet Collisions vs. Time . 120 5.5.6: Duty Cycle . 121 5.5. 7: Duty Cycle vs. Level . 122 5.5.8: Message Latency vs. MD Period . 124 5.5.9: Maximum Network Throughput vs. MD Period 125 5.5.1 0: Maximum Network Throughput vs. Node Density 126 5.6: Conclusion . 127 Chapter 6: Summary and Future Work . 129 6. 1: Summary . 129 6.2: Future work . 132 Appendix A: SPW . 136 Appendix 8: WinneuRFon . 137 8.1: Motivation . 137 8.2: System Requirements . 138 8.3: Supported Features . 140 8.4: Current Status and Achievement • . 140 8.5: Simulation Method and More Potential Functionalities . 143 8.6: Proposal for Future Work . 146 8.7: Summary . 146 Reference Bibliography . 147 X List of Tables Table 5.3.1: Sample routing table for node 7, cluster 1 . 106 Table 5.4.1: Network simulation parameters for wireless thermostat application . 114 Table 5.4.2: Network simulation parameters for supermarket price tag application . • . 114 Table 5.4.3: Network simulation parameters for consumer electronic application . 115 xi List of Illustrations Figure 2.1.1: The Army Amateur Radio System (1925) . 13 Figure 2.1.2: Organization of the National Traffic System, Central Area 18 Figure 3.3.1: Code position modulation so Figure 3 .4.1: Code position modulation simulation in SPW . 55 Figure 3.4.2: SPW simulation ofCPM modulator . 56 Figure 3.4.3: SPW simulation ofCPM demodulator . 57 Figure 3.4.4: SPW simulation ofBluetooth interference scenario 58 Figure 3.4.5: BER performance of code position modulation vs. Et/No 60 Figure 3.4.6: BER performance of code position modulation in the presence of Bluetooth interference . 6 0 Figure 4.2.1: The hidden and exposed terminal problems . 6 a Figure 4.3.1: Mediation Device operation . 73 Figure 4.3.2: Timing schedule for the Mediation Device protocol . 7 6 Figure 4.3.3: Timing schedule for the distributed Mediation Device protocol 78 Figure 4.4.1: A typical timing schedule for a node employing the distributed Mediation Device protocol .
Recommended publications
  • Packet Radio
    Amateurfunk-Kurs DH2MIC DARC-Ortsverband C01, Vaterstetten 13.11.05 PR 1 Packet Radio 1. Prinzip Packet Radio ist eine digitale Betriebsart, die rund 50 % aller Funkamateure betreiben. Sie ermöglicht, mit Hilfe eines Computers, der im einfachsten Fall ein ANSI-Terminal sein kann, mit anderen Funkamateuren zu kommunizieren. Die Verbindung kann direkt oder über Relais erfolgen, die Digipeater (Digitale Repeater) genannt werden. Dabei arbeiten im einfachsten Fall alle OMs und der Digipeater auf der gleichen QRG. Jede Station sendet ihre Daten paketweise. Da jeder TX nur für die Dauer der Aussendung eines oder mehrerer 'Packets' kurzzeitig 'on air' ist und dann auf die Quittierung seiner Aussendung wartet, können die unvermeidlichen Kollisionen sehr einfach durch Wiederholung eines nicht bestätigten Packets zugelassen werden. Das verwendete Protokoll heißt AX.25 und basiert auf dem leitungsgebundenen CCITT-Protokoll X.25. 2. Die Stationsausrüstung im Überblick Antenne Terminal- TNC PC Programm 70 cm Modem AX.25- Transceiver Prozessor Die prinzipielle Stationsausrüstung besteht aus folgenden fünf Hard- und Software-Kompo- nenten: • 70cm-Antenne eine vertikal polarisierte Antenne (ev. auch 2 m oder 23 cm) • Transceiver im einfachsten Fall ein Handfunkgerät • TNC Terminal Node Controller, ein Modem, das einen Mikroprozessor enthält, auf dem das AX.25-Protokoll läuft. Der TNC übernimmt auch die Modulation und Demodulation der Sende- und Empfangssignale • PC ein IBM- oder Macintosh-Rechner mit seriellem Port, über den die Daten im Kiss-Protokoll vom und zum TNC laufen • Terminal-Programm Software, mit der die empfangenen Daten dargestellt und die Tastatur-Eingaben aufbereitet werden. Amateurfunk-Kurs DH2MIC DARC-Ortsverband C01, Vaterstetten 13.11.05 PR 2 3.
    [Show full text]
  • 1117 M. Stahl Obsoletes Rfcs: 1062, 1020, 997, 990, 960, 943, M
    Network Working Group S. Romano Request for Comments: 1117 M. Stahl Obsoletes RFCs: 1062, 1020, 997, 990, 960, 943, M. Recker 923, 900, 870, 820, 790, 776, 770, 762, SRI-NIC 758, 755, 750, 739, 604, 503, 433, 349 August 1989 Obsoletes IENs: 127, 117, 93 INTERNET NUMBERS Status of this Memo This memo is an official status report on the network numbers and the autonomous system numbers used in the Internet community. Distribution of this memo is unlimited. Introduction This Network Working Group Request for Comments documents the currently assigned network numbers and gateway autonomous systems. This RFC will be updated periodically, and in any case current information can be obtained from Hostmaster at the DDN Network Information Center (NIC). Hostmaster DDN Network Information Center SRI International 333 Ravenswood Avenue Menlo Park, California 94025 Phone: 1-800-235-3155 Network mail: [email protected] Most of the protocols used in the Internet are documented in the RFC series of notes. Some of the items listed are undocumented. Further information on protocols can be found in the memo "Official Internet Protocols" [40]. The more prominent and more generally used are documented in the "DDN Protocol Handbook" [17] prepared by the NIC. Other collections of older or obsolete protocols are contained in the "Internet Protocol Transition Workbook" [18], or in the "ARPANET Protocol Transition Handbook" [19]. For further information on ordering the complete 1985 DDN Protocol Handbook, contact the Hostmaster. Also, the Internet Activities Board (IAB) publishes the "IAB Official Protocol Standards" [52], which describes the state of standardization of protocols used in the Internet.
    [Show full text]
  • On-Demand Routing in Multi-Hop Wireless Mobile Ad Hoc Networks
    Available Online at www.ijcsmc.com International Journal of Computer Science and Mobile Computing A Monthly Journal of Computer Science and Information Technology ISSN 2320–088X IJCSMC, Vol. 2, Issue. 7, July 2013, pg.317 – 321 RESEARCH ARTICLE ON-DEMAND ROUTING IN MULTI-HOP WIRELESS MOBILE AD HOC NETWORKS P. Umamaheswari 1, K. Ranjith singh 2 1Periyar University, TamilNadu, India 2Professor of PGP College, TamilNadu, India 1 [email protected]; 2 [email protected] Abstract— An ad hoc network is a collection of wireless mobile nodes dynamically forming a temporary network without the use of any preexisting network infrastructure or centralized administration. Routing protocols used in ad hoc networks must automatically adjust to environments that can vary between the extremes of high mobility with low bandwidth, and low mobility with high bandwidth. This thesis argues that such protocols must operate in an on-demand fashion and that they must carefully limit the number of nodes required to react to a given topology change in the network. I have embodied these two principles in a routing protocol called Dynamic Source Routing (DSR). As a result of its unique design, the protocol adapts quickly to routing changes when node movement is frequent, yet requires little or no overhead during periods in which nodes move less frequently. By presenting a detailed analysis of DSR’s behavior in a variety of situations, this thesis generalizes the lessons learned from DSR so that they can be applied to the many other new routing protocols that have adopted the basic DSR framework. The thesis proves the practicality of the DSR protocol through performance results collected from a full-scale 8 node tested, and it demonstrates several methodologies for experimenting with protocols and applications in an ad hoc network environment, including the emulation of ad hoc networks.
    [Show full text]
  • Examining Ambiguities in the Automatic Packet Reporting System
    Examining Ambiguities in the Automatic Packet Reporting System A Thesis Presented to the Faculty of California Polytechnic State University San Luis Obispo In Partial Fulfillment of the Requirements for the Degree Master of Science in Electrical Engineering by Kenneth W. Finnegan December 2014 © 2014 Kenneth W. Finnegan ALL RIGHTS RESERVED ii COMMITTEE MEMBERSHIP TITLE: Examining Ambiguities in the Automatic Packet Reporting System AUTHOR: Kenneth W. Finnegan DATE SUBMITTED: December 2014 REVISION: 1.2 COMMITTEE CHAIR: Bridget Benson, Ph.D. Assistant Professor, Electrical Engineering COMMITTEE MEMBER: John Bellardo, Ph.D. Associate Professor, Computer Science COMMITTEE MEMBER: Dennis Derickson, Ph.D. Department Chair, Electrical Engineering iii ABSTRACT Examining Ambiguities in the Automatic Packet Reporting System Kenneth W. Finnegan The Automatic Packet Reporting System (APRS) is an amateur radio packet network that has evolved over the last several decades in tandem with, and then arguably beyond, the lifetime of other VHF/UHF amateur packet networks, to the point where it is one of very few packet networks left on the amateur VHF/UHF bands. This is proving to be problematic due to the loss of institutional knowledge as older amateur radio operators who designed and built APRS and other AX.25-based packet networks abandon the hobby or pass away. The purpose of this document is to collect and curate a sufficient body of knowledge to ensure the continued usefulness of the APRS network, and re-examining the engineering decisions made during the network's evolution to look for possible improvements and identify deficiencies in documentation of the existing network. iv TABLE OF CONTENTS List of Figures vii 1 Preface 1 2 Introduction 3 2.1 History of APRS .
    [Show full text]
  • Digital Radio Technology and Applications
    it DIGITAL RADIO TECHNOLOGY AND APPLICATIONS Proceedings of an International Workshop organized by the International Development Research Centre, Volunteers in Technical Assistance, and United Nations University, held in Nairobi, Kenya, 24-26 August 1992 Edited by Harun Baiya (VITA, Kenya) David Balson (IDRC, Canada) Gary Garriott (VITA, USA) 1 1 X 1594 F SN % , IleCl- -.01 INTERNATIONAL DEVELOPMENT RESEARCH CENTRE Ottawa Cairo Dakar Johannesburg Montevideo Nairobi New Delhi 0 Singapore 141 V /IL s 0 /'A- 0 . Preface The International Workshop on Digital Radio Technology and Applications was a milestone event. For the first time, it brought together many of those using low-cost radio systems for development and humanitarian-based computer communications in Africa and Asia, in both terrestrial and satellite environments. Ten years ago the prospect of seeing all these people in one place to share their experiences was only a far-off dream. At that time no one really had a clue whether there would be interest, funding and expertise available to exploit these technologies for relief and development applications. VITA and IDRC are pleased to have been involved in various capacities in these efforts right from the beginning. As mentioned in VITA's welcome at the Workshop, we can all be proud to have participated in a pioneering effort to bring the benefits of modern information and communications technology to those that most need and deserve it. But now the Workshop is history. We hope that the next ten years will take these technologies beyond the realm of experimentation and demonstration into the mainstream of development strategies and programs.
    [Show full text]
  • Mind the Uppercase Letters
    Integration of APRS Network with SDI Tomasz Kubik1,2, Wojciech Penar1 1 Wroclaw University of Technology 2 Wroclaw University of Environmental and Life Sciences Abstract. From the point of view of large information systems designers the most important thing is a certain abstraction enabling integration of heterogeneous solutions. Abstraction is associated with the standardization of protocols and interfaces of appropriate services. Behind this façade any device or sensor system may be hidden, even humans recording their measurements. This study presents selected topics and details related to two families of standards developed by OGC: OpenLS and SWE. It also dis- cusses the technical details of a solution built to intercept radio messages broadcast in the APRS network with telemetric information and weather conditions as payload. The basic assumptions and objectives of a prototype system that integrates elements of the APRS network and SWE are given. Keywords: SWE, OpenLS, APRS, SDI, web services 1. Introduction Modern measuring devices are no longer seen as tools for qualitative and quantitative measurements only. They have become parts of highly special- ized solutions, used for data acquisition and post-processing, offering hardware and software interfaces for communication. In the construction of these solutions the latest technologies from various fields are employed, including optics, precision mechanics, satellite and information technolo- gies. Thanks to the Internet and mobile technologies, several architectural and communication barriers caused by the wiring and placement of the sensors have been broken. Only recently the LBS (Location-Based Services) entered the field of IT. These are information services, available from mo- bile devices via mobile networks, giving possibility of utilization of a mobile This work was supported in part by the Polish Ministry of Science and Higher Edu- cation with funds for research for the years 2010-2013.
    [Show full text]
  • THE EASTNET NETWORK CONTROLLER David W. Borden
    THE EASTNET NETWORK CONTROLLER David W. Borden, K8MMO Director, AMRAD Rt. 2, Box 233B Sterling, VA 22170 Abstract clock s eed, the noisy 74LS138 I/O decoder and slow 27 88 EPROMs. Bill Ashby has been trying toI This paper describes a proposed packet radio get it to function at 9600 baud and has failed. network control computer running at high packet baud rates on the East Coast Amateur Packet The Tucson Amateur Packet Radio (TAPR) Network, EASTNET. Principally discussed is the terminal node controller may go higher speeds than digital hardware, but also mentioned is some crude 1200 baud by not using the on board modem and RF hardware to accompany the control computer. The cranking up the clock speed. However, Tom CPar‘k, digital side uses STD bus hardware developed by W3IWI sa s the interrupt structure may be overrun Jon Bloom, KE3Z to begin testin and eventually at 9600 IT aud. This represents an unknown at this will use the AMRAD Packet Assem% 'ler Disassembler point. There ap ears no way to go 48K bit/second (PAD) board running in an S-100 Bus (IEEE-696) or greater spee cr. computer. The Bill Ashby terminal node controller has Introduction been tested at 96010 baud and works well. It probably will not go faster than that, but Bill is' The basis of a real packet radio network is testing it. the packet switch, which in its simplest implementation is a two port HDLC I/O board The AMRAD Packet Assembler Disassembler (PAD) running in a microcomputer. board, designed by Terry Fox, WB4JF1, exists only as a prototype board currently with plans for A Z80 based, STD bus computer has been making printed circuit boards sometime in the assembled which is capable of sending and future.
    [Show full text]
  • The Internet Development Process: Observations and Reflections
    The Internet Development Process: Observations and Reflections Pål Spilling University Graduate Center (UNIK), Kjeller, Norway [email protected] Abstract. Based on the experience of being part of the team that developed the internet, the author will look back and provide a history of the Norwegian participation. The author will attempt to answer a number of questions such as why was The Norwegian Defense Research Establishment (FFI) invited to participate in the development process, what did Norway contribute to in the project, and what did Norway benefit from its participation? Keywords: ARPANET, DARPA, Ethernet, Internet, PRNET. 1 A Short Historical Résumé The development of the internet went through two main phases. The first one laid the foundation for packet switching in a single network called ARPANET. The main idea behind the development of ARPANET was resource sharing [1]. At that time computers, software, and communication lines were very expensive, meaning that these resources had to be shared among as many users as possible. The development started at the end of 1968. The U.S. Defense Advanced Research Project Agency (DARPA) funded and directed it in a national project. It became operational in 1970; in a few years, it spanned the U.S. from west to east with one arm westward to Hawaii and one arm eastward to Kjeller, Norway, and then onwards to London. The next phase, the “internet project,” started in the latter half of 1974 [2]. The purpose of the project was to develop technologies to interconnect networks based on different communication principles, enabling end-to-end communications between computers connected to different networks.
    [Show full text]
  • Ad Hoc Networks – Design and Performance Issues
    HELSINKI UNIVERSITY OF TECHNOLOGY Department of Electrical and Communications Engineering Networking Laboratory UNIVERSIDAD POLITECNICA´ DE MADRID E.T.S.I. Telecomunicaciones Juan Francisco Redondo Ant´on Ad Hoc Networks – design and performance issues Thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Telecommunications Engineering Espoo, May 2002 Supervisor: Professor Jorma Virtamo Abstract of Master’s Thesis Author: Juan Francisco Redondo Ant´on Thesis Title: Ad hoc networks – design and performance issues Date: May the 28th, 2002 Number of pages: 121 Faculty: Helsinki University of Technology Department: Department of Electrical and Communications Engineering Professorship: S.38 – Networking Laboratory Supervisor: Professor Jorma Virtamo The fast development wireless networks have been experiencing recently offers a set of different possibilities for mobile users, that are bringing us closer to voice and data communications “anytime and anywhere”. Some outstanding solutions in this field are Wireless Local Area Networks, that offer high-speed data rate in small areas, and Wireless Wide Area Networks, that allow a greater mobility for users. In some situations, like in military environment and emergency and rescue operations, the necessity of establishing dynamic communications with no reliance on any kind of infrastructure is essential. Then, the ease of quick deployment ad hoc networks provide becomes of great usefulness. Ad hoc networks are formed by mobile hosts that cooperate with each other in a distributed way for the transmissions of packets over wireless links, their routing, and to manage the network itself. Their features condition their design in several network layers, so that parameters like bandwidth or energy consumption, that appear critical in a multi-layer design, must be carefully taken into account.
    [Show full text]
  • KISS/SLIP TNC Description
    A simple TNC for megabit packet-radio links Matjaž Vidmar, S53MV 1. Computer interfaces for packet-radio Computers were essential parts of packet-radio equipment right from its beginning more than two decades ago. Since at that time computers were not easily available and were much less capable than today, most amateurs started their activity on packet-radio with an old ASCII terminal. The ASCII terminal required an interface called TNC (Terminal Node Controller). The TNC interface lead to a standardization of the protocol used and to a worldwide acceptance of the AX.25 standard. Today there are many different interfaces called TNC. The most popular is the TNC2, originally developed by TAPR (Tucson Area Packet Radio) and afterward cloned elsewhere. Lots of software was written for the TNC2 too, ranging from simple terminal interfaces to complex computer interfaces and even network nodes. As more powerful computers became available, some functions of the TNC were no longer required. In fact, some early TNC software, designed to work with dumb ASCII terminals, represented a bottleneck for efficient computer file transfer or multi-connect operation. Most functions of the TNC were therefore transferred to the host computer using the simple KISS protocol, originally developed for TCPIP operation only. Unfortunately, the KISS protocol adds additional delays in any packet-radio connection. Today most computers allow a direct steering of a radio modem up to about 10kbit/s, making the TNC completely unnecessary. For higher speeds, different interface cards were developed. These cards are plugged directly into the ISA bus of IBM PC clones to avoid the delays and other problems caused by external interfaces.
    [Show full text]
  • TNC-X Packet Controller
    TNC-X Packet Controller Model MFJ-1270X INSTRUCTION MANUAL CAUTION: Read All Instructions Before Operating Equipment ! MFJ ENTERPRISES, INC. 300 Industrial Park Road Starkville, MS 39759 USA Tel: 662-323-5869 Fax: 662-323-6551 VERSION 2A COPYRIGHT 2013 MFJ ENTERPRISES, INC. MFJ-1270X Instruction Manual TNC-X Packet Contoller DISCLAIMER Information in this manual is designed for user purposes only and is not intended to supersede information contained in customer regulations, technical manuals/documents, positional handbooks, or other official publications. The copy of this manual provided to the customer will not be updated to reflect current data. Customers using this manual should report errors or omissions, recommendations for improvements, or other comments to MFJ Enterprises, 300 Industrial Park Road, Starkville, MS 39759. Phone: (662) 323-5869; FAX: (662) 323-6551. Business hours: M-F 8-4:30 CST. 2 MFJ-1270X Instruction Manual TNC-X Packet Contoller Introduction................................................................................................4 Power Requirements .........................................................................5 Terminal Speed..................................................................................5 Setup If You Are Using USB..................................................................5 Setup If You Are Using the TNC’s Serial Port .......................................6 Back Connections..................................................................................6 Radio Setup...............................................................................................7
    [Show full text]
  • Internet Infrastructure & Services
    Equity Research Technology Internet Infrastructure & Services Introducing Internet 3.0 Distribution and Decentralization Change Everything n THE RIPPLES CHANGE THEIR SIZE. This report examines the impact of distribution (of assets and resources across geographies) and decentralization (of a network’s assets and resources outward toward “edge” devices) on the Internet. It highlights the companies that will benefit or be hurt by this trend. Finally, it profiles emerging companies that are taking advantage of these trends and pushing the Internet toward its next phase, which we call Internet 3.0. n WHAT HAPPENS IN INTERNET 3.0? Thick client devices dominate the network. Edge devices communicate directly with each other. Increased traffic among devices places strain on networks, forcing network carriers to increase capacity. All of this is driven and guided by the laws of network dynamics. n EXTENDING TRADITIONAL MARKETS, INTRODUCING NEW ONES. We have identified four emerging areas in the field of distribution and decentralization: distributed processing, distributed storage services, distributed network services, and decentralized collaboration. n INTEL, MICROSOFT, SUN: INCUMBENTS TAKE CHARGE. Intel, Microsoft, and Sun Microsystems have emerged as thought leaders, each waving a flag and jockeying for position in Internet 3.0. We also profile a number of private companies that are providing thought leadership on the next phase of the Internet. We highlight their impact on incumbents and existing markets, and quantify new market opportunities.
    [Show full text]