Documented by Mcdonald and Harbaugh (1988) Was Used for This Sirrulation
Total Page:16
File Type:pdf, Size:1020Kb
srATE OF UTAH DEPAR'IMENI' OF NATURAL RESCURCES Tedmical Publication lb. 102 GROUND-WATER HYrROLCGY OF THE UPPER SE.VIER RIVER BASIN, SClJIH-cENrnAL UTAH, AID SIMULATION OF GROUND-WATER F'I.(W IN THE VALLEY-FILL AlJJIFER IN PAN:lliI'ICH VALLEY By Susan A. 'Ihiros am William C. Brothers Prepared by the Uni ted States Geological Survey in cooperation with the Utah Departnent of Natural Resources Division of water Rights 1993 Page Abstract 1 Introduction ••••••• I Purp:>se arrl soope 3 Methods of investigation . 3 Ackoowledgnents 3 Numberi~ system for hydrologic-data sites •••••••••••••• 3 Description of the study area ................................... 4 Geologic setti~ ........................................... 6 Climate .................................................... 8 vegetation . 9 Iarrluse ................................................... 10 Surface-water hydrology .................................... 10 Ground-water hydrology of oonsolidated rocks 11 Ground-water hydrology of the valley-fill aquifer in Panguitch Valley 13 Recharge 14 seepage fran streams 14 seepage fran caIla.1s ••••••••••••••••••••••••••••••••••••••••• 15 seepage fran unconsuned irrigation water ••••••••••••••••• 16 Infiltration of precipitation •••••••••••••••••••••••• 22 seepage fran consolidated rock ....................... 22 Movanent 22 Discharge 23 seepage to the Sevier River and canals ••••••••••••••••••• 23 E.Va]?CJtraIlSpiration . 24 Springs 25 wells 25 Slll:::surfare outfl~ •••••••••..•.••••••.•••••••••••••••••.••• 26 Water-level fluctuations 26 seasonal fluctuations ...................................... 26 lD~-terrn fluctuations 29 Hydraulic properties · . 33 Valley-fill aquifers in Circle, Grass, arrl East Fbrk Valleys ••••••••• 33 Recharge ........................................................ 35 Movanent •••••••••••••••• . 36 Discharge ....................................................... 37 Water-level fluctuations 38 Hydraulic properties · . 42 O1anical quality of water · . 43 Sinulation of grourrl-water flow in the valley-fill aquifer in Partgllitch Valley . 45 ~el design and oonstruction . 48 r:at:a entry ...•........................................•.... 50 FstablislTnent of initial conditions 64 Transient-state calibration 69 Sensitivity analysis · . 74 Simulated effects of changing from flood irrigation to sprinkler irrigation -- . 77 Simulated effects of increased ground-water develq;:nent ••••••••• 80 Limitations of the model .................................... 83 Surrmary .......................................................... 85 References cited .................................................. 86 iii ILLUSTRATI~S (Plate is in pocket) Plate 1. Map slx>wing elevation of the potentiaretric surface for the valley fill at selected wells in CCtober 1989, location of hydrologic-data sites, and water~ality diagrams for groom water in the upper sevier River basin, Utah Page Figure 1. Map shaving location of the upper sevier River basin in utah am the geographic setting of the study area ••••••• 2 2. Diagram shaving ru.urDer ing system used in this report for hydrolcx;Jic-data sites 5 3. Graphs slx>wing annual precipitation, 1931-89, and cunulative departure fran 1931-89 average annual precipitation, at Panguitch •••••.•••..••.•••••••••••••.• 9 4. Hydrogra{i1s shaving water-level fluctuations fran 1988 to 1989 in t\\O wells canpleted in oonsolidated rocks •••••• 13 S. HydrograID srowiI'¥3 water-level chaI'¥3es in well (C-34-S}16dca-l caused by flood irrigation ••••••••••••• 18 6. Graphs slx>wing soil-moisture content am water-level changes in neutron-probe access tubes and wells (A) (C-34-S}16dca-1 am (B) (C-34-5)10bab-l fran November 1988 to 'tthverrber 1989 19 7-10. HydrograIDs shaving: 7. Seasonal water-level fluctuations fran 1962 to 1963 and fran 1988 to 1989 in foor wells in Panguitch Valley 27 8. Seasonal water-level fluctuations from 1988 to 1989 in six wells in Panguitch Valley...................... 28 9. Marcn or April water levels measured fran 19S1 to 1989 in four wells in Panguitch Valley am cumulative departure of the annual Peak snav-water content fran the 1951-89 average at the Harris Flat snav coorse. 30 10. Long-teon water-level fluctuations fran 1951 to 1989 in four wells in Panguitch Valley.................. 32 11. Graph shaving currulative average IOOnthly mean flav from Decerrber throogh March at sevier River in Circleville canyon (streamflow-gaging station 10180000), 1950-89 •••• 34 12. HydrograIDs shaving seasonal water-level fluctuations fran 1988 to 1989 in four wells in Circle, Grass, Johns, and .Bnery Valleys 39 13. Hydrogra{i1s shaving long-term water-level fluctuations fran 1951 to 1989 in eight wells in Circle, Grass, Antimony, Johns, and Emery Valleys ••..•••••••••••••••••• 40 14. Graph shaving SPeCific conductance of the sevier River and selected inflows to the river fran ground water in Panguitch Valley 46 15-25. Map:; slx>wing: 15. Grid and extent of the three layers used in the digital-camputer model representing Panguitch Valley 47 16. Location of cells in layer 1 of the digital-camputer IOOde1 simulating head~ependent flux boundaries.... 52 iv ILWSTRATlrns Figures Page 15-25. Map:> srowing:--continued 17. Distribution of hydraulic conductivity used in layer 1 of the digital-computer model.................... 54 18. Distribution of specific yield used in layer 1 of the digital-camputer model............................. 55 19. Distribution of transmissivity used in layer 2 of the digital-canp.1ter rn:>Clel 56 20. Distribution of storage coefficient used in layer 2 of the digital-computer model...................... 57 21. Distribution of vertical leakance used between layers 1 and 2 of the digital-computer model.............. 58 22. Distribution of transmissivity used in layer 3 of the digital--carpiter nodel .....••.••.•••••••••••••••••• 59 23. Distribution of vertical leakance used between layers 2 and 3 of the digital-computer model.............. 60 24. Location of cells in layer 1 of the digital-canp.1ter model that receive recharge fran seepage fran perennial and e};i1eneral strearrs, canals, and unconsumed irrigation water; and infiltration of precipi'tation 62 25. Location of wells measured during the irrigation sease>n of 1988 65 26. Hydrogra};i1s shCMing reasured and simulated water-level dlanges for 13 selected observation wells in panguitch Valley 70 27. Map shCMing rrodel-camputed potentianetric surface of layer 1 in OCtober 1961 (stress period 12 of transient-state simulation) and the difference between nodel-camputed and measured water levels in OCtober 1961 at selected wells 76 28. Map shCMing nodel-camputed water-level changes in layer 1 caused by the simulated conversion fran flocrl to sprinkler irrigation 78 29. Hydrogra};i1s shCMing sinulated water-level changes in layer 1 for two cells in the Panguitch Valley nodel that represent areas oonverted fran flocrl to sprinkler irriga.tioo 80 30. Map shCMing nodel-cmputed water-level changes in layer 1 caused by the sinulated increase in ground-water developrtent 81 31. HydrograP1s shCMing sinulated water-level d'1anges in two cells in the Panguitdl Valley rn:>Clel that represent withdrawals fran wells 83 v Page Table l. Area of irrigated creps in the main valleys of the ug>er sevier River 'basin 10 2. Measured am IOOdel-caIlfUted gains and losses in the Sevier River, McEwen canal, am Long-East Bench Canal in PaIlgUitch Valley 67 3. Model-oomputed ground-water budgets for initial and transient-state comitions am ground-water budget for estimated initial comitions for Panguitch Valley........ 68 4. Tines and rates of recharge and discharge applied in the transient-state sinulation .........••••...••••.......... 75 5. Records of selected springs in the ug>er Sevier River basin 89 6. Records of selected wells in the ug>er Sevier River basin • 90 7. water levels in selected wells in the upper Sevier River 1:Jclsin •••••••••••••••.••••••••••••••••••••••••.•••••••••. 100 8. Results of chemical analysis of groom water fran selected sites in the ug>er Sevier River basin ••••••••••••••.•••• 116 9. Results of chemical analysis of surface water fran selected sites in the upper Sevier River basin •••••••••••••.••••• 120 vi CCMlERSION FACKRS, VERTICAL ffi'IUM, AN) ABBREVIATED WATER-QUALITY UNITS IlJ.ltiply By 'lb obtain acre 0.4047 hectaneter 4,047 square meter acre-foot (acre-ft) 0.001233 cubic hectaneter 1,233 cubic neter acre-foot per year (acre-ft/yr) 1,233 cubic neter per year cubic foot per second (ft3/S ) 0.02832 cubic neter per second foot (ft) 0.3048 neter foot per year (ft/yr) 0.3048 neter per year foot per day (ft/d) 0.3048 neter per day foot per day per foot (ft/d/ft) 0.3048 neter per day per neter foot squared per day (fe/d) 1 0.0929 neter squared per day foot squared per second (ft2 /s) 0.0929 neter squared per serond gallon per minute (gal/min) 0.06309 liter per serond inch (in.) 25.4 millimeter 0.0254 neter inch per year (in/yr) 0.0254 neter per year mile (mi) 1.609 kilareter square mile (mi 2 ) 2.59 square kilaneter Water temperature is reported in degrees Celsius (OC), which can be ronverted to degrees Fahrenheit (OF) by the follooing equation: OF = 1.8 (OC) + 32. Sea level: In this report, "sea level" refers to the National Geodetic Vertical Datum of 1929-a geodetic datum derived frcm a general adjustment of the first-order level nets of the United States and Canada, fornerly called sea ~vel D3.tum of 1929. Chemical concentration and water temperature are reported only in netric units. O1emical concentration