INTERIM GEOLOGIC MAP of the NORTHWESTERN QUARTER of the BEAVER 30' X 60' QUADRANGLE, BEAVER and PIUTE COUNTIES, UTAH

Total Page:16

File Type:pdf, Size:1020Kb

INTERIM GEOLOGIC MAP of the NORTHWESTERN QUARTER of the BEAVER 30' X 60' QUADRANGLE, BEAVER and PIUTE COUNTIES, UTAH Utah Geological Survey Plate 1 a division of Utah Geological Survey Open-File Report 729DM Interim Geologic Map of the Northwestern Quarter of the Beaver 30' x 60' Quadrangle Utah Department of Natural Resources 113˚00' 112˚30' 38˚30' E MB Qal1 Qlae Xg Qs QTs SB 38˚30' Qaf3 Tm(Tbct) To Qaf2 QTs Trg Qaf1 SB E Tir Tm(To) Qms Tig To Tmj Qms Qaf3 Tig Qal1 Qaf1 QTs Tm(Tbc) Qafy Tig Qafy Qafo E Qs E E E Qaf1 E Qbr Qafy E Tic Tm SB E E Tm G (To) SB Tbct E E (Tbcd) G E — Tm G Qbk Qaf1 E E E Qs Tbc Qaf2 Tm(Tbc) (Tbc) E Trg Tbc E Tm Qafo SB Tm SB E Tic E E E Tic E (To) (Tbc) Qms Qaf3 Tm SB MNR ILE VILL MINERS E (Tbc) Tig QTs Trg QTs E E E Tm E (Tbc) Tbc E E Tm Tig Qrl (To) Tm(Tbc) G SB G E E Qms Xg E E QTs Tic MB Tmb Qaf1 E Tm Tmb Qes E (Tbcd) E E Tm(Tbc) Qms E E Tm(Tbc) Tm Tbc MB E SB (Tbc) Xg Qlae Tic E SB E Tbc Tm Tm(Tbcd) Tm(Tbc) E E QTs RL F To Qaf (Tbc) E E SB E 3 E Tbc E E E EE Tm(Tbc) Tm Qms E (Tbcd) SB MB E Tm(Tbcd) Tic Tig — E E Tbc Qs Qs E E SB Tig E Tmb Qaf2 Tig Tmv E QTs Tig Qbk Pq 32 Qll Tm(Tbcd) Qlg b E Qms QTs E E Qafy E Qaf3 Qrt Qms Qafy Tm(Tbcd) Qs Xg E E E Qafo E Qms E Tic E E FAUL T E E E Tbc E E QTs QTs Tic QTs E Tm(Tbcd) Tmv Trg b E Tbc Tmv Qlg Qaf1 — Trg 15 E E Pq QTs b Xg E Tig Qrd — — Tm(Tbc) 25 Qms E QTs — E Tic E E Tbc w Tig Qrt E Qaf1 E E E — E MB E Xg Qrd E E Qrl Qaf2 QTs Tmbl EE EE Qaf2 E E Qrt — E Pzc Qaf4 E Pq E E E E E E E E E Qrd Qaf Tbc Qaf2 1 — E QTs Tm(Tbc) E Qaf2 E QTs S B E Tir QTs Xg MB Qbk E Tmb E E Qaf2 Qaf2 Xg E Qal1 E Qaf1 Xg Trg Tir Tir Tic Qaf Qal1 Pzc 2 Qlg Tig E Xg Pq E Qaf Tmb Qms Tmv E 4 Tir Qaf E Tmm Z ONE E 2 E Qrt QTs E QTs Tm(Tic) FAU L T E w Tic E E Qaf3 Xg QTs Qaf Qes Qafy Trg 1 CANY ON E Tir QTs Tm Tic Qbk E Qal1 E Qat3 Qal E 1 (Tbc) E E Qes HORS E E E Qaf4 Tmbl Qlg Qrd — Qrt E QTs Qaf WILD E Qaf 1 Tir QTs 3 Qbk Qal1 Qaf1 Qafo Qat2 Tm(Tbc) Tm(Tbc) E Qaf Qrt Tm E 3 E E Qal (Tbc) E Qes 1 E E Qlae E E Qaf Qaf E 3 1 E Qaf3 E Trg E Tig QTs Qaf4 E Qaf1 E E QTs Tig Qrt — Qat3 Qaf E Tm(Tbc) 3 Tig Qrt E E b Tmm QTs Qaf1 Tm(Tic) 10 b E Qaf1 8 E Qaf3 Tmb E Qaf4 Tmv Tmb Qaf1 Qaf3 c QTs E Qaf2 QTs E E Qrd Tm(Tbc) E E 68 QTs QTs — Pq Tm E Qal1 Try E (Tbc) Tig Qaf Qaf3 Qal1 Tig E 4 E Tm(Tbc) Try Qaf1 Qaf2 Qaf2 E Qaf4 E Qaf1 Qaf2 Qms Qaf Pq Qal1 E 1 Qaf2 E E Qaf3 Qaf2 E E QTs Qaf4 b Qaf E 1 E Tir E Qbc 26 b Pk Tm b E E E E Qaf Pq 46 1 (Tbc) Tig QTs Qaf4 38 Qaf2 E E Qrt E QTs Qs E E Pq Pp E Qaf4 Qlae E QTs E Tmb Qaf1 Qaf2 Qaf1 E Tig Tig Qms Qaf2 E Qat1 E E Tmb Qms E Qaf4 Qaf2 E E Qbc Qaf2 E E E E E Qaf E E E Qaf Dcs E 2 E 3 E E Tmb E Qat2 Tm(Tbc) Pp E Qlg E E Qal Qll Dcs QTs 1 b Qaf Qll E Pq 68 E 2 E E QTs Pt Qbc Mr E Qaf1 Qaf4 Tig E QTs b QTs Qaf1 E QTs Qaf4 E E E Qms E *c E Qaf E E Qaf4 Qaf 3 4 Qal1 Qaf3 Qaf1 b Pt E Qaf1 Tmb Qaf1 E Qaf1 67 E QTs E E Tm(Tbc) E QTs Pp E Qaf1 QTs E Qms E E 12 ^m E E Qms E QTs EMr Qaf3 Tig Qbc Tm(Tbc) E E QTs Tig TigE E 10 Ppk QTs Qaf2 E E E Qaf2 Qaf3 b Tmj Tig E Qaf1 E E E Qaf1 Qaf1 E Tig E E Qaf2 Qaf4 Tm(Tbc) E Qal1 Tm(Tbc) E E E Tm(To) E Qaf1 E Qaf1 E E E Qaf Qal1 Qms G E Qaf2 3 E E E Tig Qaf2 QTs Tig Qaf1 Qaf2 E E E Qaf Qaf2 E 3 E Qaf1 Tm(To) E Qaf RL F Qaf1 2 E E QTs Qaf2 Tm Z ONE Qaf4 QTs E (Tbc) Tig E Qaf E 3 Qaf3 QTs E QTs Tig Tig Qaf4 Qal1 QTs Tm(Tbc) Qaf3 Qaf2 QTs E Qaf Tig E E QTs 3 QTs Qaf2 QTs E Pzc QTs Qaf3 QTs E Qms Qaf QTs 2 QTs E Qaf E 2 E E Qaf Tm(To) 8 E 3 QTs Tm FAUL T Qaf2 E GG b E E (To) Qaf3 b E Qaf1 Qal1 E Qaf Qaf3 E E 2 Qat3 E 8 Qaf3 E 12 Qaf4 E Qaf4 Tm(Tbc) Tm E E Qal1 QTs Qaf Qaf2 3 Qat1 QTs (Tbc) Tm b Qaf Qal1 E Tig 1 QTs E Tm (To) E E QTs Qaf E Qaf3 *c 3 E E Mr E (To) E E E G 21 E E Qat1 Tm E Tig E Tig QTs (Tlf) F Tig E b QTs Tm(To) Tm E Tm(Tbc) E E MINERS VILL E E Tig E (Tbc) E E EE Qms E Qal Qaf Qaf4 E Qaf1 1 Qaf4 1 Tm(Tbc) Tig Qaf2 E QTs E Qat1 Qaf Qaf QTs Tm E Qaf1 E 4 4 Tm E b Qaf4 E E Mr QTs E (To) (Tlj) E QTs E Qal1 Tig *c QTs 6 E QTs RL F F Qaf EE Qat2 4 E Qms Qat3 Tmj Mr Qaf E Tig E Mr Ppt 1 QTs QTs Tig E Qat3 F E E Tm(Tlj) E E QTs E Qaf2 b Qal1 Qaf E Tm E EE E 2 E E Tig E Tmj Qms F (Tlf) E E E E E F Tig Tig *c Pp QTs E Qaf2 E Tm(Tlj) Qaf1 Tig Tig Qat3 Tir EE E Qaf2 44 Qaf2 E E E E Tir Qaf Qms Tig E 1 QmsE E Tm(Tlf) E Mr Qaf1 E F Pp G Qaf1 E E Qat2 QTs E Tig E Qms E Qaf4 Tig E E E E E E Mr E Ppt b E E Tig Qat1 E E Pk E E P*c Tig Tir Mr Qaf4 Tm(Tlf) E *c 24 Qaf4 Qaf E 4 E E Tm(Tlj) E AF E *c Tkl E *c *c Qaf2 E Mr E b Qat1 E Pk E Pp E Qat3 b *c G E 49 E G G Qaf4 Qaf Qal1 Tig Qms Tir Pp 1 E Mr Tig 85 E E 35 E E b Pp E Tir QTs Qat1 Tkl Qlae Qaf1 E *c E EPq ^m QTs E G Tkl E G E Qat Mr E E Pp Pq E 1 Mr Pq Qal1 E ^cs E E Qat E Tm(Tlj) Tig E 2 E E Tir E E Pp Tm(Tlf) E E Qaf Pt b G 2 E Tm Tir E GTir G E Qaf b 2 E Mr Pp ^m E QTs 7 Tm(Tlf) E E E (Tlj) E Tm(Tlf) E Pp E E E E Tig Tig E E Tig Qal QTs Tm(Tlf) Tic Tic 37 1 AF Pq E Qaf1 Qat1 QTs Qms Mr E Tm(Tlf) E Tbm Qaf1 E Pp E E ^m Tic Pq (Jn) E E QTs E Pp b E Tkl E E Tm E Mr E Pq EE E Qal E EE F E 1 E ^m ^cs Tm(Tlj) LB Tig 66 E *c Pt ^cs G Qaf2 Qaf (Tlj) E Tir ^cs 3 8 Tir E b Tkl Mr Tbm(Jc) E E *c E Qms E *c E Dcs E Pp Ppk Tbm Qaf E Tkl Mr E QTs 4 Tir E E b E E E ^csE (Jn) Tbm(Jn) Tbm(Jc)E CHERRY E Qal1 CHERRYCREEK E Pp LB Qaf3 *c b E Pk Ppk E E E FAU L T E ^m Tir LB E E ^m T RANS VERSFAUL E T CREEK Qaf2 E E Qaf E E QTs 2 Tm E E Tic L B T RANS VERSG E b E E b E 38 47 ^cs Tbm ^m LB E E E Tbm(Jn) E (Tdv) 51 ^cs E Tm(Tlj) E (Jc) Tbm(Jc) E MINERS VILL E E VILL MINERS Ppk Pp Tir E FAU L T QTs E Qlg E ^cs E Qaf E ^m 48E Tbm(Jn) 3 E^m E LB LB E E E E Dcs E ^cs E E ^cs Qaf4 Pq Tbm(Jn) E E E Pt b E E E Tbm(Jc) E Tbm(Jn) Qaf E Qat2 Qat1 AF Qaf3 3 Qat Mr CANY ON Tbm(Jn) E E E 1 E E Tir *c E E E E ^cs Tbm(Jn) E MBM MBM E ^m E ^m E b ^cs F Tbm Qal1 E E 35 Dcs E E Tbm(Tcg) (Jc) Qaf4 E E E Tm E Tm(Tlf) E E E 59 E Pt ^m ^m QTs E ^cs Tbm(Jc) E E E Pp E LB (Jn) E b ^csE LB E 5 b E QTs E Pp ^m E Tbm E E E E ^cs E E QTs E E E Qaf3 LB Qaf2 E Tm(Tlf) Tbm LB ^cs Tbm E (Tdv) E E 65 ^m b (Jc) ^m MBM MBM b Tm(Tlf) Tkl (Jn) E FAUL T ZONE FAUL T LB E E E Ppk E E GU Y O Tbm(Jc) E E Ticl Mr E E E Qaf4 Tkl LB 6 FAU L T E E 44 E Mr Tbm(Jn) E ^cs FAU L T E Qat1 MBM Qaf E E 4 E Qat Qal1 Pq ^cs ^m E 3 E Tir E Tir Tm(Tlj) E Qaf E ^m 3 E E E E ^m ^m Pt E E E Qaf E E 2 E EE ^m E E E GU L CH E E E E Tm(Tlj) E *c Ppk Pt Tbm(Jc) E E Qaf2 Qaf2 F ETbm (Jn) Tbm(Tdv) E Qat2 Tm(To) Pt Pq ^m E Qaf2 E E S PRING E Qal1 Tm(Tdv) E E E Qaf E E 4 E QTs E Qaf4 Qaf1 E Mr Pq E ^cs F Qaf1 Pp b L INCOL N Qat1 OAK Pq Tbm E Tm(Tlf) Tm(Tdv) Tm(Tdv) E E E E (Ticl) Qaf4 Pp LB Qaf3 E E Qs 33 E E FPt ^m Tbm E E AF Qaf4 Ticl E (Jn) Tbm(Tdv) b Tbm(Tdv) Tbm(Tdv) Qms E E E E E 10 Qaf Ticl E 3 E U PPER L INCOL N Tm(Tlf) E E E E E Qaf2 E E Qaf1 E LB b E F E E FAU L T Qal1 E QTs LLF Tm(Tdv) Tkl PtE Qaf3 E E Tm(Tlf) L OWER Ticl ^cs QTs Qaf4 Qaf1 Tbm E Qal1 4 Tbc Qal2 GU L CH (Tdv) E E E Qaf4 Qaf 2 E Qaf1 Qaf3 ^m E QTs F E E Qat1 Tm(To) Tbm(Tdv) Ticl E E E E Qaf2 E Ticl Tbm(Tdv) E b E E E E Qms Tm(To) Tbm(Tdv) E Qms Pq 65 E E Qaf3 b ^m E *c E E E Tm E E Qaf2 b Pt E E (To) Tm E Qat3 Qat3 F E 31 E E Qal1 QTs Tbm Qaf4 QTs E (Tdv) E Qaf4 E Tbm(Tdv) 55 Tbm E (Tin) QTs E E^m E Qat3 (Jn) Qaf4 Qat1 Tm(Tbcd) Qms Tbm Qal1 Qat2 E Tm(Tdv) E E Pt LB Tbm Tbm(Ticl) Minersville Qms E (Tda) Qat2 Tm(Tlb) E Tbm(Tdv) Ppk ^cm (Tdv) Reservoir Qaf E E QTs QTs Qaf 1 QTs Qaf2 Tm(Tdv) Tm(Tdb) *c Tb 1 Qat1 E Qaf1 Qat1 Qaf3 E 38˚15' 38˚15' 113˚00' 112˚30' S CALE 1:62,500 1 0.5 0 1 2 3 4 5 6 Kilom eters 1 0.5 0 1 2 3 4 Miles CONTOU RINTERVAL METERS40 SU - PPLEMENTARYCONTOU RSMETERS10 RICHFIELD Disclaimer Basefrom US GSBeaver xQuadrangle60’ 30' (1980) S hadedrelief derived from US GS10-meter NED Ranch Pole Mount Marysvale T hisopen-file release makes information available tothe public during the review and production period INTERIM GEOLOGIC MAP OF THE NORTHWESTERN QUARTER Bearskin GilliesHill Mount Marysvale Projection:UT MZone 12 Canyon Mountain Brigham Peak necessaryformala for UGS publication.
Recommended publications
  • Composition and Accretion of the Terrestrial Planets
    Lunar and Planetary Science XXXI 1546.pdf COMPOSITION AND ACCRETION OF THE TERRESTRIAL PLANETS. Edward R. D. Scott and G. Jeffrey Taylor, Hawai’i Institute of Geophysics and Planetology, School of Ocean and Earth Science and Technology, Univer- sity of Hawai’i at Manoa, Honolulu, Hawai’i 96822, USA; [email protected] Abstract: Compositional variations among the spread gravitational mixing of the embryos and their four terrestrial planets are generally attributed to giant 20 impacts [1] rather than to primordial chemical varia- Fig. 2 tions among planetesimals [e.g., 2]. This is largely be- Mars cause modeling suggests that each terrestrial planet ac- 15 creted material from the whole of the inner solar sys- tem [1], and because Mercury’s high density is attrib- 10 Venus Earth uted to mantle stripping in a giant impact [3] and not to its position as the innermost planet [4]. However, Mer- Mercury cury’s high concentration of metallic iron and low con- 5 centration of oxidized iron are comparable to those in recently discovered metal-rich chondrites [5-7]. Since E 0 chondrites are linked isotopically with the Earth, we 0 0.5 1 1.5 2 suggest that Mercury may have formed from metal-rich chondritic material. Venus and Earth have similar con- Semi-major Axis (AU) centrations of metallic and oxidized iron that are inter- fragments, which ensured that each terrestrial planet mediate between those of Mercury and Mars consistent formed from material originally located throughout the with wide, overlapping accretion zones [1]. However, inner solar system (0.5 to 2.5 AU).
    [Show full text]
  • POSSIBLE STRUCTURE MODELS for the TRANSITING SUPER-EARTHS:KEPLER-10B and 11B
    43rd Lunar and Planetary Science Conference (2012) 1290.pdf POSSIBLE STRUCTURE MODELS FOR THE TRANSITING SUPER-EARTHS:KEPLER-10b AND 11b. P. Futó1 1 Department of Physical Geography, University of West Hungary, Szombathely, Károlyi Gáspár tér, H- 9700, Hungary ([email protected]) Introduction:Up to january of 2012,10 super- The planet Kepler-11b has a large radius (1.97 R⊕) for Earths have been announced by Kepler-mission [1] its mass (4.3 M⊕),therefore this planet must have a that is designed to detect hundreds of transiting exo- spherical shell that is composed of low-density materi- planets.Kepler was launched on 6th March,2009 and the als.Considering the planet's average density,it must primary purpose of its scientific program is to search have a metallic core with different possible fractional for terrestrial-sized planets in the habitable zone of mass.Accordinghly,I have made a possible structure Solar-like stars.For the case of high number of discov- model for Kepler-11b in which the selected core mass eries we will be able to estimate the frequency of fraction is 32.59% (similarly to that of Earth) and the Earth-sized planets in our galaxy.Results of the Kepler- water ice layer has a relatively great fractional 's measurements show that the small-sized planets are volume.For case of the selected composition, the icy frequent in the spiral galaxies.A catalog of planetary surface sublimated to form a water vapor as the planet candidates,including objects with small-sized candidate moved inward the central star during its migration.
    [Show full text]
  • Planetary Science
    Scientific Research National Aeronautics and Space Administration Planetary Science MSFC planetary scientists are active in Peering into the history The centerpiece of the Marshall efforts is research at Marshall, building on a long history of the solar system the Marshall Noble Gas Research Laboratory of scientific support to NASA’s human explo- (MNGRL), a unique facility within NASA. Noble- ration program planning, whether focused Marshall planetary scientists use multiple anal- gas isotopes are a well-established technique on the Moon, asteroids, or Mars. Research ysis techniques to understand the formation, for providing detailed temperature-time histories areas of expertise include planetary sample modification, and age of planetary materials of rocks and meteorites. The MNGRL lab uses analysis, planetary interior modeling, and to learn about their parent planets. Sample Ar-Ar and I-Xe radioactive dating to find the planetary atmosphere observations. Scientists analysis of this type is well-aligned with the formation age of rocks and meteorites, and at Marshall are involved in several ongoing priorities for scientific research and analysis Ar/Kr/Ne cosmic-ray exposure ages to under- planetary science missions, including the Mars in NASA’s Planetary Science Division. Multiple stand when the meteorites were launched from Exploration Rovers, the Cassini mission to future missions are poised to provide new their parent planets. Saturn, and the Gravity Recovery and Interior sample-analysis opportunities. Laboratory (GRAIL) mission to the Moon. Marshall is the center for program manage- ment for the Agency’s Discovery and New Frontiers programs, providing programmatic oversight into a variety of missions to various planetary science destinations throughout the solar system, from MESSENGER’s investiga- tions of Mercury to New Frontiers’ forthcoming examination of the Pluto system.
    [Show full text]
  • On the Use of Planetary Science Data for Studying Extrasolar Planets a Science Frontier White Paper Submitted to the Astronomy & Astrophysics 2020 Decadal Survey
    On the Use of Planetary Science Data for Studying Extrasolar Planets A science frontier white paper submitted to the Astronomy & Astrophysics 2020 Decadal Survey Thematic Area: Planetary Systems Principal Author Daniel J. Crichton Jet Propulsion Laboratory, California Institute of Technology [email protected] 818-354-9155 Co-Authors: J. Steve Hughes, Gael Roudier, Robert West, Jeffrey Jewell, Geoffrey Bryden, Mark Swain, T. Joseph W. Lazio (Jet Propulsion Laboratory, California Institute of Technology) There is an opportunity to advance both solar system and extrasolar planetary studies that does not require the construction of new telescopes or new missions but better use and access to inter-disciplinary data sets. This approach leverages significant investment from NASA and international space agencies in exploring this solar system and using those discoveries as “ground truth” for the study of extrasolar planets. This white paper illustrates the potential, using phase curves and atmospheric modeling as specific examples. A key advance required to realize this potential is to enable seamless discovery and access within and between planetary science and astronomical data sets. Further, seamless data discovery and access also expands the availability of science, allowing researchers and students at a variety of institutions, equipped only with Internet access and a decent computer to conduct cutting-edge research. © 2019 California Institute of Technology. Government sponsorship acknowledged. Pre-decisional - For planning
    [Show full text]
  • PDF— Granite-Greenstone Belts Separated by Porcupine-Destor
    C G E S NT N A ER S e B EC w o TIO ok N Vol. 8, No. 10 October 1998 es st t or INSIDE Rel e • 1999 Section Meetings ea GSA TODAY Rocky Mountain, p. 25 ses North-Central, p. 27 A Publication of the Geological Society of America • Honorary Fellows, p. 8 Lithoprobe Leads to New Perspectives on 70˚ -140˚ 70˚ Continental Evolution -40˚ Ron M. Clowes, Lithoprobe, University -120˚ of British Columbia, 6339 Stores Road, -60˚ -100˚ -80˚ Vancouver, BC V6T 1Z4, Canada, 60˚ Wopmay 60˚ [email protected] Slave SNORCLE Fred A. Cook, Department of Geology & Thelon Rae Geophysics, University of Calgary, Calgary, Nain Province AB T2N 1N4, Canada 50˚ ECSOOT John N. Ludden, Centre de Recherches Hearne Pétrographiques et Géochimiques, Taltson Vandoeuvre-les-Nancy, Cedex, France AB Trans-Hudson Orogen SC THOT LE WS Superior Province ABSTRACT Cordillera AG Lithoprobe, Canada’s national earth KSZ o MRS 40 40 science research project, was established o Grenville Province in 1984 to develop a comprehensive Wyoming Penokean GL -60˚ understanding of the evolution of the -120˚ Yavapai Province Orogen Appalachians northern North American continent. With rocks representing 4 b.y. of Earth -100˚ -80˚ history, the Canadian landmass and off- Phanerozoic Proterozoic Archean shore margins provide an exceptional 200 Ma - present 1100 Ma 3200 - 2650 Ma opportunity to gain new perspectives on continental evolution. Lithoprobe’s 470 - 275 Ma 1300 - 1000 Ma 3400 - 2600 Ma 10 study areas span the country and 1800 - 1600 Ma 3800 - 2800 Ma geological time. A pan-Lithoprobe syn- 1900 - 1800 Ma 4000 - 2500 Ma thesis will bring the project to a formal conclusion in 2003.
    [Show full text]
  • The Science Behind Volcanoes
    The Science Behind Volcanoes A volcano is an opening, or rupture, in a planet's surface or crust, which allows hot magma, volcanic ash and gases to escape from the magma chamber below the surface. Volcanoes are generally found where tectonic plates are diverging or converging. A mid-oceanic ridge, for example the Mid-Atlantic Ridge, has examples of volcanoes caused by divergent tectonic plates pulling apart; the Pacific Ring of Fire has examples of volcanoes caused by convergent tectonic plates coming together. By contrast, volcanoes are usually not created where two tectonic plates slide past one another. Volcanoes can also form where there is stretching and thinning of the Earth's crust in the interiors of plates, e.g., in the East African Rift, the Wells Gray-Clearwater volcanic field and the Rio Grande Rift in North America. This type of volcanism falls under the umbrella of "Plate hypothesis" volcanism. Volcanism away from plate boundaries has also been explained as mantle plumes. These so- called "hotspots", for example Hawaii, are postulated to arise from upwelling diapirs with magma from the core–mantle boundary, 3,000 km deep in the Earth. Erupting volcanoes can pose many hazards, not only in the immediate vicinity of the eruption. Volcanic ash can be a threat to aircraft, in particular those with jet engines where ash particles can be melted by the high operating temperature. Large eruptions can affect temperature as ash and droplets of sulfuric acid obscure the sun and cool the Earth's lower atmosphere or troposphere; however, they also absorb heat radiated up from the Earth, thereby warming the stratosphere.
    [Show full text]
  • Hydrothermal Uranium Deposits Containing Molybdenum and Fluorite in the Marysvale Volcanic Field, West-Central Utah
    Mineralium Deposita (199K) 33 : 4774'14 ( . srl'lllt!~r-V~rlag 199X ARTICLE C. G. Cunningham' J. D. Rasmussen' T. A. Stcycn R. O. Rye' P. D. Rowley S. B. Romberger' J. Selverstone Hydrothermal uranium deposits containing molybdenum and fluorite in the Marysvale volcanic field, west-central Utah Received: 23 June 1997 I Accepted: 15 October 1997 Abstract Uranium deposits containing molybdenum \9-1 ~ Ma in a I km2 area. above a cupola of a com­ and fluorite occur in the Central Mining Area. near posite, recurrent. magma chamber at least 24 x 5 km Marysvale, Utah. and formed in an epithermal vein across that fed a sequence of 21- to 14-Ma hypabyssal system that is part of a volcanic/hypabyssal complex. granitic stocks. rhyolite lava flows. ash-flow tuffs. and They represent a known. but uncommon. type of de­ volcanic domes. Formation of the Central Mining Area posit; relative to other commonly described volcanic­ began when the intrusion of a rhyolite stock. and re­ related uranium deposits. they are young. well-exposed lated molybdenite-bearing, uranium-rich. glassy rhyolite and well-documented. Hydrothermal uranium-bearing dikes, lifted the fractured roof above the stock. A quartz and fluorite veins are exposed over a 300 m breccia pipe formed and relieved magmatic pressures. vertical range in the mines. Molybdenum. as jordisite and as blocks of the fractured roof began to settle back (amorphous MoS2), together with fluorite and pyrite, in place, flat-lying, concave-downward. "pull-apart" increase with depth. and uranium decreases with depth. fractures were formed. Uranium-bearing, quartz and The veins cut 23-Ma quartz monzonite, 20-Ma granite.
    [Show full text]
  • Documented by Mcdonald and Harbaugh (1988) Was Used for This Sirrulation
    srATE OF UTAH DEPAR'IMENI' OF NATURAL RESCURCES Tedmical Publication lb. 102 GROUND-WATER HYrROLCGY OF THE UPPER SE.VIER RIVER BASIN, SClJIH-cENrnAL UTAH, AID SIMULATION OF GROUND-WATER F'I.(W IN THE VALLEY-FILL AlJJIFER IN PAN:lliI'ICH VALLEY By Susan A. 'Ihiros am William C. Brothers Prepared by the Uni ted States Geological Survey in cooperation with the Utah Departnent of Natural Resources Division of water Rights 1993 Page Abstract 1 Introduction ••••••• I Purp:>se arrl soope 3 Methods of investigation . 3 Ackoowledgnents 3 Numberi~ system for hydrologic-data sites •••••••••••••• 3 Description of the study area ................................... 4 Geologic setti~ ........................................... 6 Climate .................................................... 8 vegetation . 9 Iarrluse ................................................... 10 Surface-water hydrology .................................... 10 Ground-water hydrology of oonsolidated rocks 11 Ground-water hydrology of the valley-fill aquifer in Panguitch Valley 13 Recharge 14 seepage fran streams 14 seepage fran caIla.1s ••••••••••••••••••••••••••••••••••••••••• 15 seepage fran unconsuned irrigation water ••••••••••••••••• 16 Infiltration of precipitation •••••••••••••••••••••••• 22 seepage fran consolidated rock ....................... 22 Movanent 22 Discharge 23 seepage to the Sevier River and canals ••••••••••••••••••• 23 E.Va]?CJtraIlSpiration . 24 Springs 25 wells 25 Slll:::surfare outfl~ •••••••••..•.••••••.•••••••••••••••••.••• 26 Water-level fluctuations 26
    [Show full text]
  • Factors Affecting Cottonwood Recruitment in Zion National Park
    Factors Affecting Cottonwood Recruitment in Zion National Park Final Report to National Park Service CPCESU, Project number OSU 3 and OSU 4 Cooperative Agreement CA# H1200040002 By William J. Ripple1 and Robert L. Beschta College of Forestry Oregon State University, Corvallis, OR 97331 E-mail: [email protected] Phone: (541) 737-3956 Fax: (541) 737-3049 January 29, 2007 1 Corresponding author 1 Factors Affecting Cottonwood Recruitment in Zion National Park Abstract The strength of top-down forces in terrestrial food webs is highly debated as there are few examples illustrating the role of large mammalian carnivores in structuring biotic and abiotic systems. Based on the results of this study we hypothesize that an increase in human visitation within Zion Canyon of Zion National Park ultimately resulted in a catastrophic regime shift through pathways involving trophic cascades and abiotic environmental changes. Increases in human visitors in Zion canyon apparently reduced cougar (Puma concolor) densities, which subsequently led to higher mule deer (Odocoileus hemionus) densities, higher browsing intensities and reduced recruitment of riparian cottonwood trees (Populus fremontii), increased bank erosion, and reductions in both terrestrial and aquatic species abundance. These results may have broad implications with regard to our understanding of alternative ecosystem states where large carnivores have been removed or are being recovered. Key Words: predator, cottonwood, deer, stream, biodiversity, Leopold 2 Introduction Humans can have a major role in food web dynamics by displacing or extirpating top predators. Over a half century ago, the iconoclast Aldo Leopold was among the first to argue that elimination of large mammalian predators had strong top-down influences on ecosystems (Leopold et al., 1947).
    [Show full text]
  • Detrital Zircon U-Pb Provenance of the Colorado River: a 5 M.Y
    Research Paper THEMED ISSUE: CRevolution 2: Origin and Evolution of the Colorado River System II GEOSPHERE Detrital zircon U-Pb provenance of the Colorado River: A 5 m.y. record of incision into cover strata overlying the GEOSPHERE; v. 11, no. 6 doi:10.1130/GES00982.1 Colorado Plateau and adjacent regions David L. Kimbrough1, Marty Grove2, George E. Gehrels3, Rebecca J. Dorsey4, Keith A. Howard5, Oscar Lovera6, Andres Aslan7, P. Kyle House8, 19 figures; 5 tables; 1 supplemental file and Philip A. Pearthree9 1Department of Geological Sciences, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA CORRESPONDENCE: [email protected] 2School of Earth, Energy & Environmental Sciences, Stanford University, 450 Serra Mall, Building 320, Stanford, California 94305, USA 3Department of Geosciences, University of Arizona, 1040 4th Street, Tucson, Arizona 85721, USA CITATION: Kimbrough, D.L., Grove, M., Gehrels, 4Department of Geological Sciences, 1272 University of Oregon, Eugene, Oregon 97403-1272, USA G.E., Dorsey, R.J., Howard, K.A., Lovera, O., Aslan, 5U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025-3591, USA A., House, P.K., and Pearthree, P.A., 2015, Detrital 6Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, 595 Charles Young Drive East, Los Angeles, California 90095, USA zircon U-Pb provenance of the Colorado River: A 7Colorado Mesa University, 1100 North Avenue, Grand Junction, Colorado 81501, USA 5 m.y. record of incision into cover strata overlying the 8U.S. Geological Survey, 2255 N. Gemini Drive, Flagstaff, Arizona 86001, USA Colorado Plateau and adjacent regions: Geosphere, 9Arizona Geological Survey, 416 W.
    [Show full text]
  • Brian Head Peak, Iron County
    Brian Head Peak, Iron County Robert F. Biek1 and Peter D. Rowley2 1Utah Geological Survey, P.O. Box 146100, Salt Lake City, UT 84114-6100, [email protected] 2Geologic Mapping Inc., P.O. Box 651, New Harmony, UT 84757 Utah Geosites 2019 Utah Geological Association Publication 48 M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors Cover Image: Th e type section of the Brian Head Formation (Tbh) is on the ridge just right of center (by the Tbh label). Brian Head peak is capped by the Leach Canyon Formation (Tql), which overlies the Isom Formation (Ti). A modern landslide (Qms) is west and south of the peak. M. Milligan, R.F. Biek, P. Inkenbrandt, and P. Nielsen, editors 2019 Utah Geological Association Publication 48 Presidents Message I have had the pleasure of working with many diff erent geologists from all around the world. As I have traveled around Utah for work and pleasure, many times I have observed vehicles parked alongside the road with many people climbing around an outcrop or walking up a trail in a canyon. Whether these people are from Utah or from another state or country, they all are quick to mention to me how wonderful our geology is here in Utah. Utah Geosites 2019 Utah is at the junction of several diff erent geological provinces. We have the Basin and Range to the west and the Central Utah Utah Geological Association Publication 48 Hingeline and Th rust Belt down the middle. Th e Uinta Mountains M. Milligan, R.F. Biek, P. Inkenbrandt, and P.
    [Show full text]
  • Interim Geologic Map of the Southwestern Quarter of the Beaver 30' X 60' Quadrangle Utah Department of Natural Resources
    Plate 1 UTAH GEOLOGICAL SURVEY Utah Geological Survey Open-File Report 686DM a division of Interim Geologic Map of the Southwestern Quarter of the Beaver 30' x 60' Quadrangle Utah Department of Natural Resources 113°00'00" 112°52'30" 112°45'00" 112°37'30" 112°30'00" b E E E E E ! ! E ! E ! E E ! ! E E ! ! ! ! F ! E ! 38°15'00" ! ! 38°15'00" ! ! ! ! ! ! ! ! ! ! ! ! ! ! Tm (Ticl) QTs Qms *c ! Qal1 1 Ppk ! Qat ! Tm (Jn) E QTs Qal1 ! Qaf1 Qaf3 Tm (Tdv) Qat1 ! E ! E Qal1 Tm (Tlk) ! Pt M Tm (Tdv) ! Qaf ! E E 4 ! Qaf2 ! Qat1 E Qms A ! ! E ! E ! Qal1 Tm ! ! R ! Qal1 ! ! Tm ! E ! ! Qat1 ! Qaf1 31 K ! ! ! ! ! ! ^m ! ! A ! Pp ! 1 ! ! Qat ! (Tda) G ! ! ! ! ! (Tdv) ! E ! E ! E ! U ! ! ! E 1 E ! ! Qat ! ! ! N ! ! Tm (Tdv) ! ! ! ! E ! ! ! ! T ! ! QTs ! ! Qat2 2 ! Qaf ! ! Tm ! E E ! ! Qaf2 Tm (Tdv) ! ! ! Qaf1 Qat1 ! ! ! Tm (Tlk) ! E E ! ! E Tm (Ticl) ! ! Qat1 ! ! E ! ! ! ! ! ! (Tda) b ! Qat1 ! E ! ! Qaf3 ! ! ! Qaf1 ! ! E ! 7 ! E ! E ! ! ! ! Qaf3 Pt E 1 ! ! Qaf ! ! Tm (Tin) Tb Qat2 ! ! ! ! ^cm ! ! E E 1 ! ! ! Qaf ! Qaf2 Qaf3 ! ! ! E Qaf3 ! E ! Tm (Tlk) ! ! ! ! ! ! ! ! Ppk E ! ! E ! ! ! ! ! ! ! E 3 ! Qaf E Qaf3 ! ! 1 ! E Qaf ! ! E ! ! ! ! ! ! E ! ! ! ! Qaf1 ! ! ! ! ! ! ! ! Tm (Tlb) ! ! ! ! ! E ! Tm (Tdb) ! ! ! ! E Tm ! ! ! E Qaf2 ! E ! ! Tm (Tda) E ! ! ! ! 2 ! ! Qaf Pq ! E ! ! ! E E ! ! E ! ! ! ! ! ! ! ! Tm (Tdv) E Qaf3 ! ! ! (Tin) ! Qaf2 ! ! ! E ! E ! Qaf2 E ! ! ! ! ! ! Qaf2 ! Tm (Tdv) ! ! ! ! ! E ! ! ! Tm E ! ! Qat1 ! ! Tm (Tdv) ! Qaf1 ! ! E ! ! ! ! E ! E ! Qal ! 2 ! ! ! E E! ! Tm (Tda) ! ! ! ! ! Tm (Tdv) ! ! ! ! ! ! E E E ! ! E ! ! ! ! Tm (Tdv) ! !
    [Show full text]