Exploitation of Synergistic Effects Between Semiochemicals and Metarhizium Brunneum Against Soil Pests

Total Page:16

File Type:pdf, Size:1020Kb

Exploitation of Synergistic Effects Between Semiochemicals and Metarhizium Brunneum Against Soil Pests Exploitation of synergistic effects between semiochemicals and Metarhizium brunneum against soil pests Dissertation zur Erlangung des Doktorgrades der Fakultät für Agrarwissenschaften der Georg-August-Universität Göttingen vorgelegt von Michael Albert Brandl geboren in Kempten (Allgäu) Göttingen, Mai 2016 _________________________________________________________________ __________ D7 1. Referent: Prof. Dr. Stefan Vidal 2. Referent: Prof. Dr. Anant Patel Tag der mündlichen Prüfung: 13. Mai 2015 Ich danke dir, Herr, mein Gott, von ganzem Herzen und ehre deinen Namen ewiglich. Psalm 86,12 Table of contents Summary ................................................................................................................ 1 General introduction ............................................................................................... 3 Objectives............................................................................................................... 8 Chapter 1 ............................................................................................................... 9 Screening of botanical extracts for repellence against western corn rootworm larvae ..................................................................................................... Chapter 2 ............................................................................................................. 10 A stress-and-kill approach using a combination of turmeric and Metarhizium brunneum for western corn rootworm larval control .......................................... Abstract ................................................................................................................ 11 Introduction........................................................................................................... 12 Materials and methods ......................................................................................... 13 Results ................................................................................................................. 21 Discussion ............................................................................................................ 26 Conclusion............................................................................................................ 29 Acknowledgements .............................................................................................. 29 References ........................................................................................................... 30 Chapter 3 ............................................................................................................. 37 Wireworm damage reduction in potatoes with an attract-and-kill strategy using Metarhizium brunneum ............................................................................... Abstract ................................................................................................................ 38 Introduction........................................................................................................... 39 Materials and methods ......................................................................................... 41 Results ................................................................................................................. 48 Discussion ............................................................................................................ 57 Conclusion............................................................................................................ 62 Acknowledgements .............................................................................................. 63 References ........................................................................................................... 63 Chapter 4 ............................................................................................................. 73 Technical attract-and-kill formulations for wireworm control with Metarhizium brunneum in potatoes ...................................................................... Abstract ................................................................................................................ 74 Introduction........................................................................................................... 75 Materials and methods ......................................................................................... 77 Results ................................................................................................................. 84 Discussion ............................................................................................................ 92 Conclusion............................................................................................................ 96 Acknowledgements .............................................................................................. 96 References ........................................................................................................... 97 General discussion ............................................................................................. 105 Conclusion.......................................................................................................... 110 References: General introduction and general discussion ................................. 111 Publications ........................................................................................................ 119 Acknowledgements / Danksagung ..................................................................... 121 Summary Summary Root-feeding insects, such as the larvae of the western corn rootworm (WCR), Diabrotica virgifera virgifera LeConte (Coleoptera: Chrysomelidae) and wireworms Agriotes spp. Eschscholtz (Coleoptera: Elateridae), the larvae of click beetles, are widely recognized as major soil pests, which influence agricultural productivity. Environmental concerns and a high risk of insecticide use as well as the lack of other efficient control options require new and effective strategies to target these pests. Two behavioral based control approaches, combining the use of the entomopathogenic fungus Metarhizium brunneum (Metschnikoff) Sorokin from the order Hypocreales (Ascomycota) and semiochemicals as efficacy enhancing agents, were tested to improve biological soil pest control. WCR larval control was evaluated with a “stress-and-kill” (SK) strategy in laboratory and greenhouse experiments using botanical repellents to increase the chance of contact and susceptibility with M. brunneum conidia. Wireworm control was tested with an “attract-and-kill” (AK) strategy in field and laboratory experiments, whereas the pest is lured towards M. brunneum conidia with an artificial carbon dioxide (CO2) source as an attractant. Both strategies were conducted with different formulation techniques to improve shelf-life and practical feasibility for an application in the field. 1. The behavioral and spatial distribution changes of second instar WCR larvae were studied in no-choice tests conducted in Petri dish bioassays and rhizotron experiments to assess the most suitable botanical extract as a stressing agent. a. Garlic and turmeric derived extracts were evaluated as the most promising extracts as WCR larvae avoided garlic / turmeric treated soil. b. Turmeric evaluation in rhizotron experiments revealed WCR larval avoidance of turmeric soil up to 5 cm from its application point in the maize (Zea mays L.) root system resulting in an increased dispersal and larval movement in the soil. c. Turmeric was therefore evaluated as a suitable “stressing” agent for WCR larvae 1 Summary 2. The performance of a SK strategy against neonate WCR larvae was studied in maize planted small containers in the greenhouse to assess potential synergies between formulated M. brunneum conidia and turmeric. a. Repellent effects of turmeric were demonstrated against neonate WCR larvae b. Turmeric did not impact M. brunneum establishment and growth, excluding any negative side effects through turmeric’s antifungal properties with a combination of both SK agents. c. The application of wet M. brunneum formulated beads only or in combination with turmeric failed in larval control. SK is therefore not feasible for WCR control due to the lack of WCR larval control with M. brunneum alone. 3. The performance of an AK strategy against wireworms (Agriotes spp.) was studied under field conditions in organic potato fields across three field seasons. The first two field seasons looked into the interaction between CO2 and M. brunneum to evaluate the enhancement of wireworm control with CO2. Each AK agent was encapsulated in a wet bead and then tested as a co-application through the mixture of “attract” and “kill” beads. The third field season tested a wet and technical dry co-formulation with both AK agents encapsulated within one bead to examine a more practical AK formulation for farmers. The performance of AK agents was tested in different field soil types to assess CO2 emission and M. brunneum virulence and growth. a. CO2 levels in soil increased significantly over 4 – 6 weeks with an application of AK beads. M. brunneum virulence and growth was measured in all tested soil types, but was dependent on the type of AK bead used. b. The combination of CO2 and M. brunneum enhanced wireworm control by up to 35% compared to a M. brunneum treatment alone, but only as a spot application underneath the seed potatoes. A band application of beads could
Recommended publications
  • Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition
    Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition AKA exotic, alien, non-native, introduced, non-indigenous, or foreign sp. National Invasive Species Council definition: (1) “a non-native (alien) to the ecosystem” (2) “a species likely to cause economic or harm to human health or environment” Not all invasive species are foreign origin (Spartina, bullfrog) Not all foreign species are invasive (Most US ag species are not native) Definition increasingly includes exotic diseases (West Nile virus, anthrax etc.) Can include genetically modified/ engineered and transgenic organisms Executive Order 13112 (1999) Directed Federal agencies to make IS a priority, and: “Identify any actions which could affect the status of invasive species; use their respective programs & authorities to prevent introductions; detect & respond rapidly to invasions; monitor populations restore native species & habitats in invaded ecosystems conduct research; and promote public education.” Not authorize, fund, or carry out actions that cause/promote IS intro/spread Political, Social, Habitat, Ecological, Environmental, Economic, Health, Trade & Commerce, & Climate Change Considerations Historical Perspective Native Americans – Early explorers – Plant explorers in Europe Pioneers moving across the US Food - Plants – Stored products – Crops – renegade seed Animals – Insects – ants, slugs Travelers – gardeners exchanging plants with friends Invasive Species… …can also be moved by • Household goods • Vehicles
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • Construction of an Improved Mycoinsecticide Overexpressing a Toxic Protease RAYMOND J
    Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6349-6354, June 1996 Agricultural Sciences Construction of an improved mycoinsecticide overexpressing a toxic protease RAYMOND J. ST. LEGER, LOKESH JOSHI, MICHAEL J. BIDOCHKA, AND DONALD W. ROBERTS Boyce Thompson Institute, Cornell University, Tower Road, Ithaca NY 14853 Communicated by John H. Law, University ofArizona, Tucson, AZ, March 1, 1996 (received for review October 31, 1995) ABSTRACT Mycoinsecticides are being used for the con- Until recently, lack of information on the molecular basis of trol of many insect pests as an environmentally acceptable fungal pathogenicity precluded genetic engineering to improve alternative to chemical insecticides. A key aim of much recent control potential. We have developed molecular biology meth- work has been to increase the speed of kill and so improve ods to elucidate pathogenic processes in the commercially commercial efficacy of these biocontrol agents. This might be important entomopathogen Metarhizium anisopliae and have achieved by adding insecticidal genes to the fungus, an ap- cloned several genes that are expressed when the fungus is proach considered to have enormous potential for the im- induced by starvation stress to alter its saprobic growth habit, provement of biological pesticides. We report here the devel- develop a specialized infection structure (i.e., the appressor- opment of a genetically improved entomopathogenic fungus. ium), and attack its insect host (6). One of these genes encodes Additional copies of the gene encoding a regulated cuticle- a subtilisin-like protease (designated Prl) which solubilizes the degrading protease (Prl) from Metarhizium anisopliae were proteinaceous insect cuticle, assisting penetration of fungal inserted into the genome of M.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Thaumatotibia Leucotreta (Meyrick) (Lepidoptera: Tortricidae) Population Ecology in Citrus Orchards: the Influence of Orchard Age
    Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) population ecology in citrus orchards: the influence of orchard age Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY at RHODES UNIVERSITY by Sonnica Albertyn December 2017 ABSTRACT 1 Anecdotal reports in the South African citrus industry claim higher populations of false codling moth (FCM), Thaumatotibia (Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), in orchards during the first three to five harvesting years of citrus planted in virgin soil, after which, FCM numbers seem to decrease and remain consistent. Various laboratory studies and field surveys were conducted to determine if, and why juvenile orchards (four to eight years old) experience higher FCM infestation than mature orchards (nine years and older). In laboratory trials, Washington Navel oranges and Nova Mandarins from juvenile trees were shown to be significantly more susceptible to FCM damage and significantly more attractive for oviposition in both choice and no-choice trials, than fruit from mature trees. Although fruit from juvenile Cambria Navel trees were significantly more attractive than mature orchards for oviposition, they were not more susceptible to FCM damage. In contrast, fruit from juvenile and mature Midnight Valencia orchards were equally attractive for oviposition, but fruit from juvenile trees were significantly more susceptible to FCM damage than fruit from mature trees. Artificial diets were augmented with powder from fruit from juvenile or mature Washington Navel orchards at 5%, 10%, 15% or 30%. Higher larval survival of 76%, 63%, 50% and 34%, respectively, was recorded on diets containing fruit powder from the juvenile trees than on diets containing fruit powder from the mature trees, at 69%, 57%, 44% and 27% larval survival, respectively.
    [Show full text]
  • Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
    Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas.
    [Show full text]
  • Natural Enemies of Crop Pests Will Feature in the Future of Environmentally Friendly Farming
    Natural enemies of crop pests will feature in the future of environmentally friendly farming Biological control agents are an environmentally-friendly way of controlling pests and diseases on crops and are advocated in the EU’s 16 November 2017 Issue 468 Sustainable Use of Pesticides Directive1. The authors of a new review of the 2 Subscribe to free current state of biological control refer to a recent UN report which states that it is weekly News Alert possible to produce enough food to feed a world population of nine billion with substantially less chemical pesticides — and even without these pesticides if Source: van Lenteren, sufficient effort is made to develop biocontrol-based Integrated Pest Management (IPM) methods. The study suggests that policy measures can speed up the J.C., Bolckmans, K., Köhl, J., Ravensberg, W.J. and development and use of environmentally-friendly crop protection. Urbaneja, A. (2017). Biological control using Augmentative biological control (ABC) involves the mass production of natural invertebrates and enemies of pests and diseases in the form of predators, parasites or micro- microorganisms: plenty of organisms, which are then released to control crop pests (including diseases and new opportunities. weeds). These living pesticides are collectively called ‘biological control agents’. As it offers BioControl: 1–21. an environmentally and economically sound alternative to chemical control, ABC is not just of interest to commercial growers, but to retailers, consumers and policymakers. Contact: [email protected] In this new overview, the researchers describe the important role currently played by Read more about: biological control and list the many hundreds of agents in use.
    [Show full text]
  • IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe
    J Pest Sci DOI 10.1007/s10340-014-0583-5 ORIGINAL PAPER IPM thresholds for Agriotes wireworm species in maize in Southern Europe Lorenzo Furlan Received: 3 November 2013 / Accepted: 16 March 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Currently, integrated pest management (IPM) Keywords Wireworms Á A. brevis Á A. sordidus Á of wireworms is not widespread in Europe. Therefore, to A. ustulatus Á IPM Á Bait traps estimate the densities of three major wireworm species in southern Europe (Agriotes brevis Candeze, A. sordidus Il- liger, and A. ustulatus Scha¨ller), bait traps were deployed Introduction pre-seeding in maize fields in north-eastern Italy between 1993 and 2011. Research discovered that there was a sig- EU Directive 2009/128/EC on the sustainable use of pes- nificant correlation between all three wireworm species ticides makes it compulsory to implement integrated pest caught in the bait traps and damage to maize plants, but management (IPM) for annual crops in Europe from Jan- damage symptoms varied. Wherever A. ustulatus was the uary 2014. IPM strategies have not played a significant role main species caught, there was no significant damage to in these crops to date, yet they have been widely used for maize plants, but seeds were damaged. Most of the crops such as orchards and vineyards. Therefore, accurate symptoms caused by A. brevis and A. sordidus were to the information about IPM strategies for annual crops is nee- central leaf/leaves, which wilted because of feeding on the ded urgently, but this information must take into account collar.
    [Show full text]
  • Metarhizium Anisopliae
    Biological control of the invasive maize pest Diabrotica virgifera virgifera by the entomopathogenic fungus Metarhizium anisopliae Dissertation zur Erlangung des akademischen Grades Dr. nat. techn. ausgeführt am Institut für Forstentomologie, Forstpathologie und Forstschutz, Departement für Wald- und Bodenwissenschaften eingereicht an der Universiät für Bodenkultur Wien von Dipl. Ing. Christina Pilz Erstgutachter: Ao. Univ. Prof. Dr. phil. Rudolf Wegensteiner Zweitgutachter: Dr. Ing. - AgrarETH Siegfried Keller Wien, September 2008 Preface “........Wir träumen von phantastischen außerirdischen Welten. Millionen Lichtjahre entfernt. Dabei haben wir noch nicht einmal begonnen, die Welt zu entdecken, die sich direkt vor unseren Füßen ausbreitet: Galaxien des Kleinen, ein Mikrokosmos in Zentimetermaßstab, in dem Grasbüschel zu undurchdringlichen Wäldern, Tautropfen zu riesigen Ballons werden, ein Tag zu einem halben Leben. Die Welt der Insekten.........” (aus: Claude Nuridsany & Marie Perennou (1997): “Mikrokosmos - Das Volk in den Gräsern”, Scherz Verlag. This thesis has been submitted to the University of Natural Resources and Applied Life Sciences, Boku, Vienna; in partial fulfilment of the requirements for the degree of Dr. nat. techn. The thesis consists of an introductory chapter and additional five scientific papers. The introductory chapter gives background information on the entomopathogenic fungus Metarhizium anisopliae, the maize pest insect Diabrotica virgifera virgifera as well as on control options and the step-by-step approach followed in this thesis. The scientific papers represent the work of the PhD during three years, of partial laboratory work at the research station ART Agroscope Reckenholz-Tänikon, Switzerland, and fieldwork in maize fields in Hodmezòvasarhely, Hungary, during summer seasons. Paper 1 was published in the journal “BioControl”, paper 2 in the journal “Journal of Applied Entomology”, and paper 3 and paper 4 have not yet been submitted for publications, while paper 5 has been submitted to the journal “BioControl”.
    [Show full text]
  • Alternative Strategies for Controlling Wireworms in Field Crops: a Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan
    Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan To cite this version: Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture, MDPI, 2021, 11 (436), 10.3390/agriculture11050436. hal-03227675 HAL Id: hal-03227675 https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-03227675 Submitted on 17 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes.
    [Show full text]
  • Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba
    87 Chapter 2 Click Beetles and Wireworms (Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba Willem G. van Herk and Robert S. Vernon Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 6947 #7 Hwy, Agassiz, British Columbia Email: [email protected] Abstract. This chapter describes the Elateridae of Alberta (144 species), Saskatchewan (108 species), and Manitoba (109 species). It provides current names for species, as well as synonymized names that persist in the literature. Also discussed are the species that have been left out during recent changes to elaterid renaming and classification, although no new name combinations are given. The chapter outlines species distributions, biogeography where known, and the life histories of five common species: Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), and Selatosomus aeripennis destructor (Brown). An examination of the seasonal movements and activity of larvae in response to soil temperature and moisture and moulting cycles is followed by an overview of past research on Prairie Province species. The chapter concludes with a discussion of current research needs and management issues. Résumé. Le présent chapitre décrit les Elateridae de l’Alberta (138 espèces), de la Saskatchewan (76 espèces) et du Manitoba (104 espèces). Il fournit les noms actuels de ces espèces, ainsi que les synonymes qui persistent dans la documentation spécialisée. Il se penche également sur les espèces qui ont été laissées de côté lors des récents changements apportés à la nomenclature et à la classification des élatéridés, sans toutefois s’attarder aux nouvelles combinaisons de noms. Le chapitre décrit la répartition des espèces, leur caractéristiques biogéographiques — lorsqu’elles sont connues — ainsi que le cycle de vie de cinq espèces communes : Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), et Selatosomus aeripennis destructor (Brown).
    [Show full text]
  • Worldwide Integrated Assessment of the Impacts of Systemic Pesticides
    WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACTS OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS http://www.tfsp.info/assets/WIA_2015.pdf Report in brief The Task Force on Systemic Pesticides is an independent group of scientists from all over the globe, who came together to work on the Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems. The mandate of the Task Force on Systemic Pesticides (TFSP) has been “to carry out a comprehensive, objective, scientific review and assessment of the impact of systemic pesticides on biodiversity, and on the basis of the results of this review to make any recommendations that might be needed with regard to risk management procedures, governmental approval of new pesticides, and any other relevant issues that should be brought to the attention of decision makers, policy developers and society in general” (see appendix 2). The Task Force has adopted a science-based approach and aims to promote better informed, evidence-based, decision-making. The method followed is Integrated Assessment (IA) which aims to provide policy-relevant but not policy-prescriptive information on key aspects of the issue at hand. To this end a highly multidisciplinary team of 30 scientists from all over the globe jointly made a synthesis of 1,121 published peer-reviewed studies spanning the last five years, including industry-sponsored ones. All publications of the TFSP have been subject to the standard scientific peer review procedures of the journal (http://www.springer.com/environment/journal/11356). Key findings of the Task Force have been presented in a special issue of the peer reviewed Springer journal “Environmental Science and Pollution Research” entitled “Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems” and consists of eight scientific papers, reproduced here with permission of Springer.
    [Show full text]