IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Wireworms' Management
Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management. -
Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas. -
Alternative Strategies for Controlling Wireworms in Field Crops: a Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan
Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan To cite this version: Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture, MDPI, 2021, 11 (436), 10.3390/agriculture11050436. hal-03227675 HAL Id: hal-03227675 https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-03227675 Submitted on 17 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes. -
Worldwide Integrated Assessment of the Impacts of Systemic Pesticides
WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACTS OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS http://www.tfsp.info/assets/WIA_2015.pdf Report in brief The Task Force on Systemic Pesticides is an independent group of scientists from all over the globe, who came together to work on the Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems. The mandate of the Task Force on Systemic Pesticides (TFSP) has been “to carry out a comprehensive, objective, scientific review and assessment of the impact of systemic pesticides on biodiversity, and on the basis of the results of this review to make any recommendations that might be needed with regard to risk management procedures, governmental approval of new pesticides, and any other relevant issues that should be brought to the attention of decision makers, policy developers and society in general” (see appendix 2). The Task Force has adopted a science-based approach and aims to promote better informed, evidence-based, decision-making. The method followed is Integrated Assessment (IA) which aims to provide policy-relevant but not policy-prescriptive information on key aspects of the issue at hand. To this end a highly multidisciplinary team of 30 scientists from all over the globe jointly made a synthesis of 1,121 published peer-reviewed studies spanning the last five years, including industry-sponsored ones. All publications of the TFSP have been subject to the standard scientific peer review procedures of the journal (http://www.springer.com/environment/journal/11356). Key findings of the Task Force have been presented in a special issue of the peer reviewed Springer journal “Environmental Science and Pollution Research” entitled “Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems” and consists of eight scientific papers, reproduced here with permission of Springer. -
The Role of Ecological Compensation Areas in Conservation Biological Control
The role of ecological compensation areas in conservation biological control ______________________________ Promotor: Prof.dr. J.C. van Lenteren Hoogleraar in de Entomologie Promotiecommissie: Prof.dr.ir. A.H.C. van Bruggen Wageningen Universiteit Prof.dr. G.R. de Snoo Wageningen Universiteit Prof.dr. H.J.P. Eijsackers Vrije Universiteit Amsterdam Prof.dr. N. Isidoro Università Politecnica delle Marche, Ancona, Italië Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation Giovanni Burgio The role of ecological compensation areas in conservation biological control ______________________________ Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op maandag 3 september 2007 des namiddags te 13.30 in de Aula Burgio, Giovanni (2007) The role of ecological compensation areas in conservation biological control ISBN: 978-90-8504-698-1 to Giorgio Multaque tum interiisse animantum saecla necessest nec potuisse propagando procudere prolem. nam quaecumque vides vesci vitalibus auris aut dolus aut virtus aut denique mobilitas est ex ineunte aevo genus id tutata reservans. multaque sunt, nobis ex utilitate sua quae commendata manent, tutelae tradita nostrae. principio genus acre leonum saevaque saecla tutatast virus, vulpis dolus et gfuga cervos. at levisomma canum fido cum pectore corda et genus omne quod est veterino semine partum lanigeraeque simul pecudes et bucera saecla omnia sunt hominum tutelae tradita, Memmi. nam cupide fugere feras pacemque secuta sunt et larga suo sine pabula parta labore, quae damus utilitatiseorum praemia causa. at quis nil horum tribuit natura, nec ipsa sponte sua possent ut vivere nec dare nobis praesidio nostro pasci genus esseque tatum, scilicet haec aliis praedae lucroque iacebant indupedita suis fatalibus omnia vinclis, donec ad interutum genus id natura redegit. -
A Comprehensive DNA Barcode Database for Central European Beetles with a Focus on Germany: Adding More Than 3500 Identified Species to BOLD
Molecular Ecology Resources (2015) 15, 795–818 doi: 10.1111/1755-0998.12354 A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD 1 ^ 1 LARS HENDRICH,* JEROME MORINIERE,* GERHARD HASZPRUNAR,*† PAUL D. N. HEBERT,‡ € AXEL HAUSMANN,*† FRANK KOHLER,§ andMICHAEL BALKE,*† *Bavarian State Collection of Zoology (SNSB – ZSM), Munchhausenstrasse€ 21, 81247 Munchen,€ Germany, †Department of Biology II and GeoBioCenter, Ludwig-Maximilians-University, Richard-Wagner-Strabe 10, 80333 Munchen,€ Germany, ‡Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, ON N1G 2W1, Canada, §Coleopterological Science Office – Frank K€ohler, Strombergstrasse 22a, 53332 Bornheim, Germany Abstract Beetles are the most diverse group of animals and are crucial for ecosystem functioning. In many countries, they are well established for environmental impact assessment, but even in the well-studied Central European fauna, species identification can be very difficult. A comprehensive and taxonomically well-curated DNA barcode library could remedy this deficit and could also link hundreds of years of traditional knowledge with next generation sequencing technology. However, such a beetle library is missing to date. This study provides the globally largest DNA barcode reference library for Coleoptera for 15 948 individuals belonging to 3514 well-identified species (53% of the German fauna) with representatives from 97 of 103 families (94%). This study is the first comprehensive regional test of the efficiency of DNA barcoding for beetles with a focus on Germany. Sequences ≥500 bp were recovered from 63% of the specimens analysed (15 948 of 25 294) with short sequences from another 997 specimens. -
Optimization of Agriotes Sordidus Monitoring in Northern Italy Rural Landscape, Using a Spatial Approach
Bulletin of Insectology 65 (1): 123-131, 2012 ISSN 1721-8861 Optimization of Agriotes sordidus monitoring in northern Italy rural landscape, using a spatial approach 1 2 2 3 3 Giovanni BURGIO , Giorgio RAGAGLINI , Ruggero PETACCHI , Roberto FERRARI , Marco POZZATI , 4 Lorenzo FURLAN 1Dipartimento di Scienze e Tecnologie Agroambientali - Entomologia, Università di Bologna, Italy 2Scuola Superiore Sant’Anna, Istituto Scienze della Vita, Pisa, Italy 3Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Bologna, Italy 4Veneto Agricoltura, Agripolis, Legnaro, Padova, Italy Abstract A spatial analysis of Agriotes sordidus (Illiger) (Coleoptera Elateridae) was carried out on data collected by means of pheromone traps in a farm of 500 hectares in northern Italy. The main objective of the paper was to analyse the spatial distribution of this eco- nomic pest, in order to optimise the monitoring; another aim was to understanding the spatial patterns of this insect in relation to the geographic and agronomic management of the site investigated. Spatial distribution was studied by means of geostatistical analysis of the total number of captured individuals per year (variable Sum) and the peak of population density (variable Peak). Data were analysed using the total of traps and reduced datasets by means of re-sampling simulations. The semi-variograms showed that adults of A. sordidus exhibited a strong aggregative pattern in the investigated area, confirming previous preliminary studies. Kriging contour maps were used to describe spatial aggregation of A. sordidus. Cross-validation analysis demonstrated that the simulations with 50% of the total of traps produced maps with a good concordance between estimated and measured val- ues, with the caution to maintain a uniform distribution of the sample points within the monitored area. -
Monitoring of Six Agriotes Wire Worms In
Volume 19(1), 91- 97, 2015 JOURNAL of Horticulture, Forestry and Biotechnology www.journal-hfb.usab-tm.ro Monitoring of six Agriotes click beetles in areas suitable for the installing of shelterbelts in Banat’s plain region Fora C.G.1, Zellner M.2, Lauer K.F.1, Stanciu S.3, Moatăr M.1, Berar C.1 1Faculty of Horticulture and Forestry Timişoara; 2Bavarian State Research Center for Agriculture, Institute for Plant Protection; 3Faculty of Farm Management Timişoara *Corresponding author.Email:[email protected] Abstract Evaluation of click beetles population in the moment that it Key words decided it to install protective shelterbelts is a “sine qua non” condition. The easier method is to evaluate the beetles number by using the pheromone wire worms, populations, traps. In Banat’s plain region, 6 species of click beetles are more pheromone trap representative: A. brevis, A. lineatus, A. obscurus, A. sordidus, A. sputator, A. ustulatus. From all of them, A. sordidus and A. ustulatus formed the majority of Agriotes population. The lowest numerical species was A. lineatus. The genus Agriotes Esch. (Coleoptera: Elateridae: is often heavily damaged by a rich complex of pests Elaterinae) is one of the richest genus of the tribe that attack in the soil, or at the level of soil [10]. Agriotini Champion [3]. According to present literature Taking into account these aspects in our paper we want [15]; [4]; [13]; [8];[7]; [17]; [5],[6]; [11]; [16], there to know which is the click beetle behavior and are 59 species of this genus in Romania, main species potential in study area. -
BHS Guidelines for Site Selection May 2018
These Guidelines have been subject to revision since their original publication. The pages covering the revised sections have been inserted into this document. Lancashire County Heritage Sites Scheme Biological Heritage Sites Guidelines for Site Selection Errata Page Guideline Error 34 Po1 Entries in Table 4. For U and V have been swapped (V appears before U). 43 Ff3 Add: Stellaria palustris Marsh Stitchwort 44 Ff3 Persicaria minor Small Water-pepper should read: Persicaria minor Small Water-pepper 44 Ff3 Plantanthera bifolia Lesser Butterfly-orchid should read: Plantanthera bifolia Lesser Butterfly-orchid 45 Ff4(a) Rhinanthus minor ssp. stenophyllusa Yellow-rattle should read: Rhinanthus minor ssp. stenophyllus a Yellow-rattle 46 Ff4b Polstichum setiferum should read Polystichum setiferum 51 Li6 The species listed under Application should form part of the Guideline. The Application text should read “All sites with six or more of the species listed above recorded since 1987 should be included.“ 60 Ma3 Delete the first sentence of the Justification which refers to water vole. 70 Am1a Guideline should read “...”good” or “exceptional” population...”. 71 Am2 Application reads: “...amphibians not included in (see Guideline Am1a or Am1b), as defined in Table 7.” Should read: “...amphibians (not included in Guideline Am1a or Am1b), as defined in Table 7.” 80 Mo4 Zenobiella Subrufescens now Perforatella subrufescens 82 In2 Add Hydroporus longicornis. 22/1/01 Lancashire County Heritage Sites Scheme Biological Heritage Sites Guidelines for Site -
Alternative Strategies for Controlling Wireworms in Field Crops: a Review
agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes. The current trend towards the reduction in pesticides use has resulted in strong demand for alternative methods to control wireworm populations. This review provides a state-of-the-art of current theory and practice in order to develop new agroecological strategies. The first step should be to conduct a risk assessment based on the production context (e.g., crop, climate, soil characteristics, and landscape) and on adult and/or larval population monitoring. When damage risk appears significant, prophylactic practices can be applied to reduce wireworm abundance (e.g., low risk rotations, tilling, and irrigation). Additionally, curative methods based on natural enemies and on naturally derived insecticides are, respectively, under development or in practice in some countries. Alternatively, practices may target a reduction in crop damage instead of pest abundance through the adoption of selected cultural practices (e.g., Citation: Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, resistant varieties, planting and harvesting time) or through the manipulation of wireworm behavior L. -
Table of Contents : Page
Organisation Internationale de International Organization for Lutte Biologique et Intégrée Contre les Biological and Integrated Control of Animaux et les Plantes Nuisibles (OILB) Noxious Animals and Plants (IOBC) www.iobc -global.org www.iobc-global.org NEWSLETTER VOLUME XXVI SEMI -ANNUALLY NUMBER 1 MAY 2005 TABLE OF CONTENTS : PAGE BERGER, H. K. Editorial 1 KUHLMANN, U. Where do we go from here? 2 ABS TRACTS 3 Of 8 th the FAO/TCP Meeting in Engelberg, Switzerland LIST OF PARTICIPANTS 10 Of the 11 th IWGO Diabrotica - Subgroup Meeting in Bratislava, Slovak Rep. ABSTRACTS 17 Of the 11 th IWGO Diabrotica - Subgroup Meeting in Bratislava, Slovak Rep. H.K. BERGER; U. KUHLMANN 47 IWGO – M ATTER PHOTO - GALLERY 57 From the XI th IWGO Diabrotica Subgroup Meeting in Bratislava February, 2005 Editor & Publisher Harald K. BERGER c/o AGES Spargelfeldstraße 191 ; P.O.B. 400 A - 1226 WIEN - VIENNA AUSTRIA – EUROPE E - mail: [email protected] Home – page : http://www .IWGO.org IWGO –NEWSLETTER XXVI / 1 EDITORIAL After having edited the IWGO -Newsletter for more than twenty years (the first issue was released in October 1980), this issue will be the last hard copy version. After having retired as IWGO – Convenor, after having leaded the group for 12 years, it is also time to adapt the NEWSLETTER to more modern means of publication. The new IWGO Convenor, Dr. Ulrich KUHLMANN (more about the new convenor see in IWGO - MATTER on page 48) at the end of this journal), has decided, and I think it is a very good and necessary decision, to publish the NEWSLETTER by means of the internet. -
Vertical Stratification of Xylobiontic Beetles in Floodplain Forests of the Donau-Auen National Park, Lower Austria
Potential effects of box elder control measures and vertical stratification of xylobiontic beetles in floodplain forests of the Donau-Auen National Park, Lower Austria Kathrin Stürzenbaum Department of Tropical Ecology and Animal Biodiversity, University of Vienna, Austria Abstract Xylobiontic beetles represent a substantial fraction of the biodiversity of forest ecosystems and are useful bioindicators for evaluating effects of forest management measures. This study was conducted in the Donau-Auen National Park in Lower Austria, one of the largest remaining semi-natural floodplain forests in Central Europe. There, for five months in summer 2012, beetles were sampled using flight interception traps, a widely used method for inventorying the fauna of wood inhabiting beetles. The aims of the study were to investigate the differences of xylobiontic beetle assemblages between two forest strata (understory and canopy) and the possible effects of an abruptly increased volume of fresh dead wood on them. The dead wood originated from the neophytic Box Elder (Acer negundo), that is becoming more and more widespread in riparian landscapes, and was girdled or felled at several locations in the national park to prevent a further dispersal. At five sites where such control measures had been applied beetles were sampled with one flight interception trap in the understorey and one in the canopy, the same was done at five reference sites without management. In total, 267 species of xylobiontic beetles (of 49 families) were recorded. Species richness, total abundance and also the composition of beetle assemblages differed significantly between forest strata. Total abundance was higher in the understorey, whereas species richness was higher in the canopy.