IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe

Total Page:16

File Type:pdf, Size:1020Kb

IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe J Pest Sci DOI 10.1007/s10340-014-0583-5 ORIGINAL PAPER IPM thresholds for Agriotes wireworm species in maize in Southern Europe Lorenzo Furlan Received: 3 November 2013 / Accepted: 16 March 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Currently, integrated pest management (IPM) Keywords Wireworms Á A. brevis Á A. sordidus Á of wireworms is not widespread in Europe. Therefore, to A. ustulatus Á IPM Á Bait traps estimate the densities of three major wireworm species in southern Europe (Agriotes brevis Candeze, A. sordidus Il- liger, and A. ustulatus Scha¨ller), bait traps were deployed Introduction pre-seeding in maize fields in north-eastern Italy between 1993 and 2011. Research discovered that there was a sig- EU Directive 2009/128/EC on the sustainable use of pes- nificant correlation between all three wireworm species ticides makes it compulsory to implement integrated pest caught in the bait traps and damage to maize plants, but management (IPM) for annual crops in Europe from Jan- damage symptoms varied. Wherever A. ustulatus was the uary 2014. IPM strategies have not played a significant role main species caught, there was no significant damage to in these crops to date, yet they have been widely used for maize plants, but seeds were damaged. Most of the crops such as orchards and vineyards. Therefore, accurate symptoms caused by A. brevis and A. sordidus were to the information about IPM strategies for annual crops is nee- central leaf/leaves, which wilted because of feeding on the ded urgently, but this information must take into account collar. A. brevis was the most harmful species; when more that arable farming has few resources in terms of income, than one A. brevis wireworm was caught per trap, plant labour and technology. Since the use of soil insecticides is damage sometimes resulted in reduced yield. Five A. widespread, this paper intends to provide reliable IPM ustulatus larvae per trap caused the same damage to maize information to tackle wireworms, the main soil pest in as one A. brevis. A. sordidus came second (threshold two Europe (Furlan 2005). It has proved difficult to implement larvae/trap). These thresholds are reliable for: (1) bare soil IPM strategies for wireworms in Europe due to a shortage in which there are no alternative food sources; (2) average of reliable information on how to assess population levels soil temperature 10 cm beneath the surface of above 8 °C and the relative thresholds (Furlan 2005). Wireworms are for 10 days; (3) soil humidity near to field water capacity, the larvae of click beetles (Coleoptera: Elateridae), but but days of flooding have not been considered. The damage-causing genera and species vary with geographic implementation of the practical method described herein location (Furlan et al. 2000, 2001b, 2007a; Rusek 1972; may lead to effective IPM of wireworms in maize and to a Staudacher et al. 2013). In Europe, most larvae in agri- significant reduction in the number of fields treated with cultural land belong to the Agriotes genus, but the specific soil insecticides. species must be established if we are to predict the potential damage to crops. For example, high populations of Agriotes ustulatus do not damage maize late in the Communicated by M. Traugott. spring (late May–June) because most of the larvae are in a non-feeding phase (Furlan 1998); in the same period, & L. Furlan ( ) however, Agriotes sordidus or A. brevis can seriously Veneto Agricoltura, Agripolis, via dell’Universita` 14, Legnaro, PD, Italy reduce the stand of maize crops (Furlan 2004). The adults e-mail: [email protected] (click beetles) of these species can be divided into two 123 J Pest Sci main groups: (i) adults that do not overwinter and lay eggs accordance with official USDA methods. Soil pH was basic a few days after swarming (A. ustulatus Scha¨ller and A. for all the fields and ranged between 7.9 and 8.3. litigiosus Rossi); and (ii) adults that overwinter, live for months, and lay eggs for a long period after adult hard- Agronomic practices ening (A. sordidus Illiger, A. brevis Candeze, A. lineatus L., A. sputator L., A. obscurus L., A. rufipalpis Brulle`, and A. Conventional agronomic practices were applied to all of the proximus Schwarz) (Furlan 2005). The life cycle of the fields studied (i.e. ploughing, harrowing, fertilization with species in both groups is about 24–36 months. In spring, 240–300 N kg, 70,000–76,000 seeds/ha, interrow width the larvae of group (i) entering the bait traps come from 75 cm, pre-emergence plus post-emergence herbicide eggs laid two years before, but group (ii) larvae come treatments causing very low weed densities, and planting mainly from eggs laid the previous year. Unfortunately, the date from late March to late April). The following com- vast majority of literature on this matter does not report mercial hybrids were used: ANITA, COSTANZA, ALICIA, which species were involved (Hinkin 1976; Chabert and SENEGAL (1993–2001); TEVERE (2002–2004); Blot 1992). Therefore, this present research assesses the DKC6530 (2005–2006); DKC 6530, MITIC, KERMESS, effect of various Agriotes species on maize and looks at KLAXON (2007–2008); DKC6666, NK FAMOSO, thresholds based on wireworms caught in bait traps in order PR31A34, PR32G44 (2009–2010); and DKC6677, to establish a range of IPM strategies. The ultimate aim of PR32G44 and NK FAMOSO (2011). the research is to provide practical information so that European farmers can implement reliable, feasible and Estimation of wireworm population level affordable IPM strategies to prevent wireworms damaging their maize. Bait traps made and used in accordance with Chabert and Blot (1992) were deployed to estimate wireworm popula- tion densities from late February to mid April. These and Materials and methods similar traps were found to be efficient at capturing wire- worms after research in UK conditions (Parker 1994, Field sites 1996). Each trap comprised a plastic pot 10 cm in diameter with holes in the bottom. The pots were filled with ver- Research was conducted in north-east Italy (area covered: miculite, 30 ml of wheat seeds and 30 ml of maize seeds; 45.64N, 12.96E and 45.05N 11.88E) from 1993 to 2011 they were then moistened before being placed into the soil (19 consecutive years) on fields with the following char- 4–5 cm below the soil surface, after which they were acteristics: (1) soil at field water capacity, i.e. no more covered with an 18-cm diameter plastic lid placed 1–2 cm water can be stably retained; after winter, all of the fields above the pot rim. Traps were hand-sorted after 10 days studied, and particularly the bare ones, i.e. no crops con- when the average temperature 10 cm beneath the surface suming water, are usually very humid due to rainfall, was above 8 °C (Furlan 1998, 2004) to ensure that the bait negligible evaporation and transpiration. Sometimes strong traps stayed in the soil for an equal period of wireworm winds dried up the soil, but only the top-most layer and not activity. Agriotes larvae do not feed, or feed very little, at where the traps were placed. Therefore, the soil layer lower temperatures. Generally, the traps were removed containing the traps was always at field water capacity; (2) from the fields 2 to 8 days before maize seeding. No bare soil (no plants growing), since traps perform reliably considerable differences in wireworm feeding activity were when they do not have to compete with plants whose roots observed between 8 and 13 °C, which is the usual tem- produce carbon dioxide, which attracts larvae (Doane et al. perature range in early spring in northern Italy (Furlan 1975); (3) several previous crops had been sown, such as 1998, 2004). Previous investigations (unpublished data) maize, soybean, winter cereals and meadow (e.g. alfalfa, found that only a negligible number of larvae escaped from festuca); meadow must be ploughed at least three months the traps since it was noted that numbers tended to increase before the bait traps are placed in order to make sure that as days passed (Furlan personal observation). The final all ploughed-up meadow plants have died (it was observed number of larvae was assessed under the aforementioned that this takes about three months); the main reason for this conditions, regardless of larvae behaviour on individual procedure is that it allows the bait traps to attract wire- days. Population levels were calculated only on days when worms without the competition of plants, as described humidity was close to field water capacity. Dry top-soil above. Each year, monitoring was conducted in fields forces larvae to burrow deep beneath the surface, away representing a balanced sample of agronomic conditions in from the bait traps (Furlan 1998), and high humidity north-east Italy. Part of the soils was classified with the (flooding in extreme cases) prevents larvae activity since USDA soil texture triangle based on analyses carried out in all the soil pores are full of water and contain no oxygen. 123 J Pest Sci Therefore, any days on which these conditions occurred were counted; the plots covered an area of were excluded from calculations, regardless of the soil 15–18 m 9 1.5 m. The location and the number of the sub- temperature. This obviously resulted in traps sometimes plots were the same in both the untreated/treated strips and being kept in the soil for longer than 10 days. In the UK, completely untreated field. In order to assess wireworm Parker (1994) caught large numbers of Agriotes wireworms damage on emerged plants, plants with typical symptoms in average soil temperatures that ranged from 5 to 10 °C.
Recommended publications
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
    Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas.
    [Show full text]
  • Alternative Strategies for Controlling Wireworms in Field Crops: a Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan
    Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan To cite this version: Sylvain Poggi, Ronan Le Cointe, Jörn Lehmhus, Manuel Plantegenest, Lorenzo Furlan. Alternative Strategies for Controlling Wireworms in Field Crops: A Review. Agriculture, MDPI, 2021, 11 (436), 10.3390/agriculture11050436. hal-03227675 HAL Id: hal-03227675 https://hal-agrocampus-ouest.archives-ouvertes.fr/hal-03227675 Submitted on 17 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes.
    [Show full text]
  • Worldwide Integrated Assessment of the Impacts of Systemic Pesticides
    WORLDWIDE INTEGRATED ASSESSMENT OF THE IMPACTS OF SYSTEMIC PESTICIDES ON BIODIVERSITY AND ECOSYSTEMS http://www.tfsp.info/assets/WIA_2015.pdf Report in brief The Task Force on Systemic Pesticides is an independent group of scientists from all over the globe, who came together to work on the Worldwide Integrated Assessment of the Impact of Systemic Pesticides on Biodiversity and Ecosystems. The mandate of the Task Force on Systemic Pesticides (TFSP) has been “to carry out a comprehensive, objective, scientific review and assessment of the impact of systemic pesticides on biodiversity, and on the basis of the results of this review to make any recommendations that might be needed with regard to risk management procedures, governmental approval of new pesticides, and any other relevant issues that should be brought to the attention of decision makers, policy developers and society in general” (see appendix 2). The Task Force has adopted a science-based approach and aims to promote better informed, evidence-based, decision-making. The method followed is Integrated Assessment (IA) which aims to provide policy-relevant but not policy-prescriptive information on key aspects of the issue at hand. To this end a highly multidisciplinary team of 30 scientists from all over the globe jointly made a synthesis of 1,121 published peer-reviewed studies spanning the last five years, including industry-sponsored ones. All publications of the TFSP have been subject to the standard scientific peer review procedures of the journal (http://www.springer.com/environment/journal/11356). Key findings of the Task Force have been presented in a special issue of the peer reviewed Springer journal “Environmental Science and Pollution Research” entitled “Worldwide Integrated Assessment of the Impacts of Systemic Pesticides on Biodiversity and Ecosystems” and consists of eight scientific papers, reproduced here with permission of Springer.
    [Show full text]
  • The Role of Ecological Compensation Areas in Conservation Biological Control
    The role of ecological compensation areas in conservation biological control ______________________________ Promotor: Prof.dr. J.C. van Lenteren Hoogleraar in de Entomologie Promotiecommissie: Prof.dr.ir. A.H.C. van Bruggen Wageningen Universiteit Prof.dr. G.R. de Snoo Wageningen Universiteit Prof.dr. H.J.P. Eijsackers Vrije Universiteit Amsterdam Prof.dr. N. Isidoro Università Politecnica delle Marche, Ancona, Italië Dit onderzoek is uitgevoerd binnen de onderzoekschool Production Ecology and Resource Conservation Giovanni Burgio The role of ecological compensation areas in conservation biological control ______________________________ Proefschrift ter verkrijging van de graad van doctor op gezag van de rector magnificus van Wageningen Universiteit, Prof. dr. M.J. Kropff, in het openbaar te verdedigen op maandag 3 september 2007 des namiddags te 13.30 in de Aula Burgio, Giovanni (2007) The role of ecological compensation areas in conservation biological control ISBN: 978-90-8504-698-1 to Giorgio Multaque tum interiisse animantum saecla necessest nec potuisse propagando procudere prolem. nam quaecumque vides vesci vitalibus auris aut dolus aut virtus aut denique mobilitas est ex ineunte aevo genus id tutata reservans. multaque sunt, nobis ex utilitate sua quae commendata manent, tutelae tradita nostrae. principio genus acre leonum saevaque saecla tutatast virus, vulpis dolus et gfuga cervos. at levisomma canum fido cum pectore corda et genus omne quod est veterino semine partum lanigeraeque simul pecudes et bucera saecla omnia sunt hominum tutelae tradita, Memmi. nam cupide fugere feras pacemque secuta sunt et larga suo sine pabula parta labore, quae damus utilitatiseorum praemia causa. at quis nil horum tribuit natura, nec ipsa sponte sua possent ut vivere nec dare nobis praesidio nostro pasci genus esseque tatum, scilicet haec aliis praedae lucroque iacebant indupedita suis fatalibus omnia vinclis, donec ad interutum genus id natura redegit.
    [Show full text]
  • A Comprehensive DNA Barcode Database for Central European Beetles with a Focus on Germany: Adding More Than 3500 Identified Species to BOLD
    Molecular Ecology Resources (2015) 15, 795–818 doi: 10.1111/1755-0998.12354 A comprehensive DNA barcode database for Central European beetles with a focus on Germany: adding more than 3500 identified species to BOLD 1 ^ 1 LARS HENDRICH,* JEROME MORINIERE,* GERHARD HASZPRUNAR,*† PAUL D. N. HEBERT,‡ € AXEL HAUSMANN,*† FRANK KOHLER,§ andMICHAEL BALKE,*† *Bavarian State Collection of Zoology (SNSB – ZSM), Munchhausenstrasse€ 21, 81247 Munchen,€ Germany, †Department of Biology II and GeoBioCenter, Ludwig-Maximilians-University, Richard-Wagner-Strabe 10, 80333 Munchen,€ Germany, ‡Biodiversity Institute of Ontario (BIO), University of Guelph, Guelph, ON N1G 2W1, Canada, §Coleopterological Science Office – Frank K€ohler, Strombergstrasse 22a, 53332 Bornheim, Germany Abstract Beetles are the most diverse group of animals and are crucial for ecosystem functioning. In many countries, they are well established for environmental impact assessment, but even in the well-studied Central European fauna, species identification can be very difficult. A comprehensive and taxonomically well-curated DNA barcode library could remedy this deficit and could also link hundreds of years of traditional knowledge with next generation sequencing technology. However, such a beetle library is missing to date. This study provides the globally largest DNA barcode reference library for Coleoptera for 15 948 individuals belonging to 3514 well-identified species (53% of the German fauna) with representatives from 97 of 103 families (94%). This study is the first comprehensive regional test of the efficiency of DNA barcoding for beetles with a focus on Germany. Sequences ≥500 bp were recovered from 63% of the specimens analysed (15 948 of 25 294) with short sequences from another 997 specimens.
    [Show full text]
  • Optimization of Agriotes Sordidus Monitoring in Northern Italy Rural Landscape, Using a Spatial Approach
    Bulletin of Insectology 65 (1): 123-131, 2012 ISSN 1721-8861 Optimization of Agriotes sordidus monitoring in northern Italy rural landscape, using a spatial approach 1 2 2 3 3 Giovanni BURGIO , Giorgio RAGAGLINI , Ruggero PETACCHI , Roberto FERRARI , Marco POZZATI , 4 Lorenzo FURLAN 1Dipartimento di Scienze e Tecnologie Agroambientali - Entomologia, Università di Bologna, Italy 2Scuola Superiore Sant’Anna, Istituto Scienze della Vita, Pisa, Italy 3Centro Agricoltura Ambiente “Giorgio Nicoli”, Crevalcore, Bologna, Italy 4Veneto Agricoltura, Agripolis, Legnaro, Padova, Italy Abstract A spatial analysis of Agriotes sordidus (Illiger) (Coleoptera Elateridae) was carried out on data collected by means of pheromone traps in a farm of 500 hectares in northern Italy. The main objective of the paper was to analyse the spatial distribution of this eco- nomic pest, in order to optimise the monitoring; another aim was to understanding the spatial patterns of this insect in relation to the geographic and agronomic management of the site investigated. Spatial distribution was studied by means of geostatistical analysis of the total number of captured individuals per year (variable Sum) and the peak of population density (variable Peak). Data were analysed using the total of traps and reduced datasets by means of re-sampling simulations. The semi-variograms showed that adults of A. sordidus exhibited a strong aggregative pattern in the investigated area, confirming previous preliminary studies. Kriging contour maps were used to describe spatial aggregation of A. sordidus. Cross-validation analysis demonstrated that the simulations with 50% of the total of traps produced maps with a good concordance between estimated and measured val- ues, with the caution to maintain a uniform distribution of the sample points within the monitored area.
    [Show full text]
  • Monitoring of Six Agriotes Wire Worms In
    Volume 19(1), 91- 97, 2015 JOURNAL of Horticulture, Forestry and Biotechnology www.journal-hfb.usab-tm.ro Monitoring of six Agriotes click beetles in areas suitable for the installing of shelterbelts in Banat’s plain region Fora C.G.1, Zellner M.2, Lauer K.F.1, Stanciu S.3, Moatăr M.1, Berar C.1 1Faculty of Horticulture and Forestry Timişoara; 2Bavarian State Research Center for Agriculture, Institute for Plant Protection; 3Faculty of Farm Management Timişoara *Corresponding author.Email:[email protected] Abstract Evaluation of click beetles population in the moment that it Key words decided it to install protective shelterbelts is a “sine qua non” condition. The easier method is to evaluate the beetles number by using the pheromone wire worms, populations, traps. In Banat’s plain region, 6 species of click beetles are more pheromone trap representative: A. brevis, A. lineatus, A. obscurus, A. sordidus, A. sputator, A. ustulatus. From all of them, A. sordidus and A. ustulatus formed the majority of Agriotes population. The lowest numerical species was A. lineatus. The genus Agriotes Esch. (Coleoptera: Elateridae: is often heavily damaged by a rich complex of pests Elaterinae) is one of the richest genus of the tribe that attack in the soil, or at the level of soil [10]. Agriotini Champion [3]. According to present literature Taking into account these aspects in our paper we want [15]; [4]; [13]; [8];[7]; [17]; [5],[6]; [11]; [16], there to know which is the click beetle behavior and are 59 species of this genus in Romania, main species potential in study area.
    [Show full text]
  • BHS Guidelines for Site Selection May 2018
    These Guidelines have been subject to revision since their original publication. The pages covering the revised sections have been inserted into this document. Lancashire County Heritage Sites Scheme Biological Heritage Sites Guidelines for Site Selection Errata Page Guideline Error 34 Po1 Entries in Table 4. For U and V have been swapped (V appears before U). 43 Ff3 Add: Stellaria palustris Marsh Stitchwort 44 Ff3 Persicaria minor Small Water-pepper should read: Persicaria minor Small Water-pepper 44 Ff3 Plantanthera bifolia Lesser Butterfly-orchid should read: Plantanthera bifolia Lesser Butterfly-orchid 45 Ff4(a) Rhinanthus minor ssp. stenophyllusa Yellow-rattle should read: Rhinanthus minor ssp. stenophyllus a Yellow-rattle 46 Ff4b Polstichum setiferum should read Polystichum setiferum 51 Li6 The species listed under Application should form part of the Guideline. The Application text should read “All sites with six or more of the species listed above recorded since 1987 should be included.“ 60 Ma3 Delete the first sentence of the Justification which refers to water vole. 70 Am1a Guideline should read “...”good” or “exceptional” population...”. 71 Am2 Application reads: “...amphibians not included in (see Guideline Am1a or Am1b), as defined in Table 7.” Should read: “...amphibians (not included in Guideline Am1a or Am1b), as defined in Table 7.” 80 Mo4 Zenobiella Subrufescens now Perforatella subrufescens 82 In2 Add Hydroporus longicornis. 22/1/01 Lancashire County Heritage Sites Scheme Biological Heritage Sites Guidelines for Site
    [Show full text]
  • Alternative Strategies for Controlling Wireworms in Field Crops: a Review
    agriculture Review Alternative Strategies for Controlling Wireworms in Field Crops: A Review Sylvain Poggi 1,* , Ronan Le Cointe 1, Jörn Lehmhus 2, Manuel Plantegenest 1 and Lorenzo Furlan 3 1 INRAE, Institute for Genetics, Environment and Plant Protection (IGEPP), Agrocampus Ouest, Université de Rennes, 35650 Le Rheu, France; [email protected] (R.L.C.); [email protected] (M.P.) 2 Institute for Plant Protection in Field Crops and Grassland, Julius Kühn-Institute, 38104 Braunschweig, Germany; [email protected] 3 Veneto Agricoltura, 35020 Legnaro, Italy; [email protected] * Correspondence: [email protected] Abstract: Wireworms, the soil-dwelling larvae of click beetles (Coleoptera: Elateridae), comprise major pests of several crops worldwide, including maize and potatoes. The current trend towards the reduction in pesticides use has resulted in strong demand for alternative methods to control wireworm populations. This review provides a state-of-the-art of current theory and practice in order to develop new agroecological strategies. The first step should be to conduct a risk assessment based on the production context (e.g., crop, climate, soil characteristics, and landscape) and on adult and/or larval population monitoring. When damage risk appears significant, prophylactic practices can be applied to reduce wireworm abundance (e.g., low risk rotations, tilling, and irrigation). Additionally, curative methods based on natural enemies and on naturally derived insecticides are, respectively, under development or in practice in some countries. Alternatively, practices may target a reduction in crop damage instead of pest abundance through the adoption of selected cultural practices (e.g., Citation: Poggi, S.; Le Cointe, R.; Lehmhus, J.; Plantegenest, M.; Furlan, resistant varieties, planting and harvesting time) or through the manipulation of wireworm behavior L.
    [Show full text]
  • Table of Contents : Page
    Organisation Internationale de International Organization for Lutte Biologique et Intégrée Contre les Biological and Integrated Control of Animaux et les Plantes Nuisibles (OILB) Noxious Animals and Plants (IOBC) www.iobc -global.org www.iobc-global.org NEWSLETTER VOLUME XXVI SEMI -ANNUALLY NUMBER 1 MAY 2005 TABLE OF CONTENTS : PAGE BERGER, H. K. Editorial 1 KUHLMANN, U. Where do we go from here? 2 ABS TRACTS 3 Of 8 th the FAO/TCP Meeting in Engelberg, Switzerland LIST OF PARTICIPANTS 10 Of the 11 th IWGO Diabrotica - Subgroup Meeting in Bratislava, Slovak Rep. ABSTRACTS 17 Of the 11 th IWGO Diabrotica - Subgroup Meeting in Bratislava, Slovak Rep. H.K. BERGER; U. KUHLMANN 47 IWGO – M ATTER PHOTO - GALLERY 57 From the XI th IWGO Diabrotica Subgroup Meeting in Bratislava February, 2005 Editor & Publisher Harald K. BERGER c/o AGES Spargelfeldstraße 191 ; P.O.B. 400 A - 1226 WIEN - VIENNA AUSTRIA – EUROPE E - mail: [email protected] Home – page : http://www .IWGO.org IWGO –NEWSLETTER XXVI / 1 EDITORIAL After having edited the IWGO -Newsletter for more than twenty years (the first issue was released in October 1980), this issue will be the last hard copy version. After having retired as IWGO – Convenor, after having leaded the group for 12 years, it is also time to adapt the NEWSLETTER to more modern means of publication. The new IWGO Convenor, Dr. Ulrich KUHLMANN (more about the new convenor see in IWGO - MATTER on page 48) at the end of this journal), has decided, and I think it is a very good and necessary decision, to publish the NEWSLETTER by means of the internet.
    [Show full text]
  • Vertical Stratification of Xylobiontic Beetles in Floodplain Forests of the Donau-Auen National Park, Lower Austria
    Potential effects of box elder control measures and vertical stratification of xylobiontic beetles in floodplain forests of the Donau-Auen National Park, Lower Austria Kathrin Stürzenbaum Department of Tropical Ecology and Animal Biodiversity, University of Vienna, Austria Abstract Xylobiontic beetles represent a substantial fraction of the biodiversity of forest ecosystems and are useful bioindicators for evaluating effects of forest management measures. This study was conducted in the Donau-Auen National Park in Lower Austria, one of the largest remaining semi-natural floodplain forests in Central Europe. There, for five months in summer 2012, beetles were sampled using flight interception traps, a widely used method for inventorying the fauna of wood inhabiting beetles. The aims of the study were to investigate the differences of xylobiontic beetle assemblages between two forest strata (understory and canopy) and the possible effects of an abruptly increased volume of fresh dead wood on them. The dead wood originated from the neophytic Box Elder (Acer negundo), that is becoming more and more widespread in riparian landscapes, and was girdled or felled at several locations in the national park to prevent a further dispersal. At five sites where such control measures had been applied beetles were sampled with one flight interception trap in the understorey and one in the canopy, the same was done at five reference sites without management. In total, 267 species of xylobiontic beetles (of 49 families) were recorded. Species richness, total abundance and also the composition of beetle assemblages differed significantly between forest strata. Total abundance was higher in the understorey, whereas species richness was higher in the canopy.
    [Show full text]