Monitoring of Six Agriotes Wire Worms In

Total Page:16

File Type:pdf, Size:1020Kb

Monitoring of Six Agriotes Wire Worms In Volume 19(1), 91- 97, 2015 JOURNAL of Horticulture, Forestry and Biotechnology www.journal-hfb.usab-tm.ro Monitoring of six Agriotes click beetles in areas suitable for the installing of shelterbelts in Banat’s plain region Fora C.G.1, Zellner M.2, Lauer K.F.1, Stanciu S.3, Moatăr M.1, Berar C.1 1Faculty of Horticulture and Forestry Timişoara; 2Bavarian State Research Center for Agriculture, Institute for Plant Protection; 3Faculty of Farm Management Timişoara *Corresponding author.Email:[email protected] Abstract Evaluation of click beetles population in the moment that it Key words decided it to install protective shelterbelts is a “sine qua non” condition. The easier method is to evaluate the beetles number by using the pheromone wire worms, populations, traps. In Banat’s plain region, 6 species of click beetles are more pheromone trap representative: A. brevis, A. lineatus, A. obscurus, A. sordidus, A. sputator, A. ustulatus. From all of them, A. sordidus and A. ustulatus formed the majority of Agriotes population. The lowest numerical species was A. lineatus. The genus Agriotes Esch. (Coleoptera: Elateridae: is often heavily damaged by a rich complex of pests Elaterinae) is one of the richest genus of the tribe that attack in the soil, or at the level of soil [10]. Agriotini Champion [3]. According to present literature Taking into account these aspects in our paper we want [15]; [4]; [13]; [8];[7]; [17]; [5],[6]; [11]; [16], there to know which is the click beetle behavior and are 59 species of this genus in Romania, main species potential in study area. reported as pest being Agriotes lineatus, Agriotes obscurus, Agriotes sputator, Agriotes ustulatus. Material and Method The multiple benefits of field protective shelterbelts are known [2]; [18]. Even in western part To monitoring the click beetles A. brevis, A. of Romania, in “Câmpia Banatului” region, planting lineatus, A. obscurus, A. sordidus, A. sputator, A. field protective shelterbelts become a necessity. In first ustulatus, was used traps (figure 1) baited with period of shelterbelts life, trees and bushes species are synthetic pheromones produced by Csalomon company host-plants for diverse soil pests, click beetles playing from Hungary. an important role by the point of damage potential. For example, in the forestry nurseries, biological material Fig.1. Csalomon trap for click beetles At the beginning of the season, in April, traps and caught beetles token in plastic boxes and analyzed have been installed in field, in 3 different locations, in laboratory. The description of Chernozem soil from area named “Câmpia Banatului” and were active conditions in researches areas Grabat, Lovrin and until September. Traps have been visited periodically Voiteg is presented in table 1. 91 Table 1 Soil characteristics in research plots (Marinca et al., 2009) Location Grabat Lovrin Voiteg Parameters Sand (%) 52 33 29 Clay (%) 36 52 54 Compaction (%) -4 11 15 pH 8.2 7.3 6.2 Humus (%) 3.1 3.4 3 Results and Discussions brevis, A. lineatus, A. obscurus, A. sordidus, A. sputator, A. ustulatus. Presence of adult click beetle is the indicator Click beetles studied in our research were of biological reserve of wireworms in the soil [12]; [1]. found in all sampling plots in different levels, its flight The use the pheromone traps allow us to capture a being irregular on all growing season. Results of number of 4.458 beetles belonging to 6 species: A. captures are presented in table 2. Table 2 Species composition in research plots from “Câmpia Banatului” Species Caught Average+Sd % beetles no. from total Grabat A. brevis 84 10,5+17,4601 4,8 A. lineatus 5 0,625+1,4078 0,3 A. obscurus 79 9,875+17,8840 4,6 A. sordidus 1330 166,25+253,3764 76,6 A. sputator 3 0,375+0,7440 0,2 A. ustulatus 234 29,25+65,2659 13,5 Lovrin A. brevis 28 3,5+3,9641 1,3 A. lineatus 14 1,75+3,1052 0,7 A. obscurus 172 21,5+39,1042 8,2 A. sordidus 1657 207,125+198,8354 78,6 A. sputator 11 1,375+2,5035 0,5 A. ustulatus 226 28,25+41,9753 10,7 Voiteg A. brevis 65 8,125+17,8280 10,6 A. lineatus 7 0,875+0,9910 1,1 A. obscurus 36 4,5+9,1807 5,9 A. sordidus 152 19+27,4746 24,7 A. sputator 201 25,125+61,2942 32,7 A. ustulatus 154 19,25+48,4701 25 A. brevis have intense flight between middle found in flight to the middle of April to the end of July. of April and middle of May (figure 2). Beetles can be The pick of flight was is 29 of April. 92 A. brevis 60 50 40 Grabat 30 Lovrin Voiteg 20 Caught betles no. betles Caught 10 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 2. Agriotes brevis flight in 2014 A. lineatus have intense flight between Beetles can be found in flight to the middle of April to beginning of June and beginning of July (figure 3). the end of July. The pick of flight was is 23 of June. A. lineatus 10 9 8 7 6 Grabat 5 Lovrin 4 Voiteg 3 2 Caught beetles no. beetles Caught 1 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 3. Agriotes lineatus flight in 2014 A. obscurus have intense flight between Beetles can be found in flight to the middle of April to beginning of June and beginning of July (figure 4). the end of July. The pick of flight was is 23 of June. 93 A. obscurus 120 100 80 Grabat 60 Lovrin Voiteg 40 Caught beetles no. beetles Caught 20 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 4. Agriotes obscurus flight in 2014 A. sordidus have intense flight between of May. A possible explanation for this behavior is middle of May and middle of July (figure 5), with existence in proximity of our research plot of old exception of Lovrin place, where the flight was intense shelterbelt, where pest can find good condition for almost on all season. Beetles can be found in flight to wintertime, even if in agricultural field the intensive the middle of April to the end of July. The pick of plant protection measures are applied. Otherwise, in flight was is 23 of June. The exception was in Lovrin, Lovrin site, majority of studied click beetles found where in addition recorded first pick of flight was in 29 good conditions for life cycle. A. sordidus 700 600 500 Grabat 400 Lovrin 300 Voiteg 200 Caught beetes no. beetes Caught 100 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 5. Agriotes sordidus flight in 2014 A. sputator have intense flight between middle found in flight to the middle of April to the end of July. of April and middle of May (figure 6). Beetles can be The pick of flight was is 29 of April. 94 A. sputator 200 180 160 140 120 Grabat 100 Lovrin 80 Voiteg 60 40 Caught beetles no. beetles Caught 20 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 6. Agriotes sputator flight in 2014 A. ustulatus have intense flight between the be found in flight to the middle of April to the end of end of May and middle of July (figure 7). Beetles can July. The pick of flight was is 23 of June. A. ustulatus 200 180 160 140 120 Grabat 100 Lovrin 80 Voiteg 60 40 caught beetles no. beetles caught 20 0 15.04. 29.04. 09.05. 22.05. 06.06. 23.06. 07.07. 21.07. Fig. 7. Agriotes ustulatus flight in 2014 Intensive appearance time is different on studied middle of July). The other species like, A. brevis and A. species. The first ones by this point of view are A. sputator develop intensive flight in about 30 days from brevis and A. sputator according with Rădescu and the middle of April to middle of May, or A. obscurus Roşca (2010). That was followed by A. sordidus and A. and A. lineatus in about 30 days from the middle of ustulatus and late by A. lineatus and A. obscurus. June to middle of July. This behavior is reflected in The flight activity show that the development population levels. of species is different in time and is an example of From all studied species better represented survives strategy and optimum using of life spacing. was A. sordidus (70%), followed by A. ustulatus The longest intensive flight had A. sordidus (about 60 (14%), the others being each under 10% (figure 8). The days from middle of May to middle of July) and A. lowest participation of beetles in population had it A. ustulatus (about 45 days from the end of May to lineatus (under 1%). 95 3,90,7 13,8 6,4 A. brevis 4,8 A. lineatus A. obscurus A. sordidus A. sputator A. ustulatus 70,4 Fig. 8. The participation of click beetles in population One of the reason that A. sordidus is better Acknowledgment represented is his biology. Rădescu and Roşca (2010), show that A. sordidus close life cycle in 2-3 years; A. This study was financed by the project no. 8432- obscurus in 4-5 years; A.
Recommended publications
  • Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition
    Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition AKA exotic, alien, non-native, introduced, non-indigenous, or foreign sp. National Invasive Species Council definition: (1) “a non-native (alien) to the ecosystem” (2) “a species likely to cause economic or harm to human health or environment” Not all invasive species are foreign origin (Spartina, bullfrog) Not all foreign species are invasive (Most US ag species are not native) Definition increasingly includes exotic diseases (West Nile virus, anthrax etc.) Can include genetically modified/ engineered and transgenic organisms Executive Order 13112 (1999) Directed Federal agencies to make IS a priority, and: “Identify any actions which could affect the status of invasive species; use their respective programs & authorities to prevent introductions; detect & respond rapidly to invasions; monitor populations restore native species & habitats in invaded ecosystems conduct research; and promote public education.” Not authorize, fund, or carry out actions that cause/promote IS intro/spread Political, Social, Habitat, Ecological, Environmental, Economic, Health, Trade & Commerce, & Climate Change Considerations Historical Perspective Native Americans – Early explorers – Plant explorers in Europe Pioneers moving across the US Food - Plants – Stored products – Crops – renegade seed Animals – Insects – ants, slugs Travelers – gardeners exchanging plants with friends Invasive Species… …can also be moved by • Household goods • Vehicles
    [Show full text]
  • Biosecurity Plan for the Vegetable Industry
    Biosecurity Plan for the Vegetable Industry A shared responsibility between government and industry Version 3.0 May 2018 Plant Health AUSTRALIA Location: Level 1 1 Phipps Close DEAKIN ACT 2600 Phone: +61 2 6215 7700 Fax: +61 2 6260 4321 E-mail: [email protected] Visit our web site: www.planthealthaustralia.com.au An electronic copy of this plan is available through the email address listed above. © Plant Health Australia Limited 2018 Copyright in this publication is owned by Plant Health Australia Limited, except when content has been provided by other contributors, in which case copyright may be owned by another person. With the exception of any material protected by a trade mark, this publication is licensed under a Creative Commons Attribution-No Derivs 3.0 Australia licence. Any use of this publication, other than as authorised under this licence or copyright law, is prohibited. http://creativecommons.org/licenses/by-nd/3.0/ - This details the relevant licence conditions, including the full legal code. This licence allows for redistribution, commercial and non-commercial, as long as it is passed along unchanged and in whole, with credit to Plant Health Australia (as below). In referencing this document, the preferred citation is: Plant Health Australia Ltd (2018) Biosecurity Plan for the Vegetable Industry (Version 3.0 – 2018) Plant Health Australia, Canberra, ACT. This project has been funded by Hort Innovation, using the vegetable research and development levy and contributions from the Australian Government. Hort Innovation is the grower-owned, not for profit research and development corporation for Australian horticulture Disclaimer: The material contained in this publication is produced for general information only.
    [Show full text]
  • 1 Biological Control of Wireworm (Agriotes Lineatus) Damage To
    1 Biological Control of Wireworm (Agriotes lineatus) damage to potato with Metarhizium brunneum Isabel Aida Stewart [email protected] Kwantlen Polytechnic University 100298609, AGRI 4299, Mike Bomford, 12/11/2017 2 Abstract The larval stage of Agriotes lineatus, wireworm, is a challenging agricultural pest with a broad host range. It is a soil-dwelling arthropod that may live up to 5 years before pupating. Wireworms negatively affect crop yields and render produce un-saleable. Organic production systems have few means of managing this pest and this study explores the use of an entomopathogenic fungus, Metarhizium brunneum, as a bio-control. Three treatments - M. brunneum, M. brunneum with oats, and a non-treated control - were applied beneath seed potatoes. Damage to the tubers was classified by counting tuber hole abundance (Brandl et al., 2017). No statistically significant treatment effects were observed, but the proportion of potatoes that suffered wireworm damage was 33% lower in the M. brunneum and oat treatment than the control treatment and was numerically trending towards significance. Key words: Metarhizium, biocontrol, potato, wireworm, Agriotes lineatus, entomopathogenic fungi 3 Introduction Pest development of resistance to chemical insecticides is currently a pervasive issue in agriculture and it is paramount to advance alternatives that do not threaten the environment or our future capacity for agriculture. One solution to this issue that will be explored through this study is the use of non-persistent, non-toxic biological controls, often in the form of bacterial, fungal or nematode microbial agents. The pest that our research targets is the wireworm (Agriotes lineatus), the larval stage of the click beetle, which has a broad host range including carrots, cucurbits, rutabagas, onions, sweet corn, potatoes, sugar-beets, beans and peas (Chaput, 2000).
    [Show full text]
  • BD5208 Wide Scale Enhancement of Biodiversity (WEB) Final Report on Phase 2, and Overview of Whole Project Executive Summary
    BD5208 Wide Scale Enhancement of Biodiversity (WEB) Final report on phase 2, and overview of whole project Executive summary Core objective The WEB project aimed to inform the development of new or existing Entry Level (ELS) and Higher Level Stewardship scheme (HLS) options that create grassland of modest biodiversity value, and deliver environmental ecosystem services, on large areas of land with little or no potential for creation or restoration of BAP Priority Habitat grassland. Specific objectives Quantify the success of establishing a limited number of plant species into seedbeds (ELS/HLS creation option) and existing grassland (currently HLS restoration option) to provide pollen, nectar, seed, and/or spatial and structural heterogeneity. Quantify the effects of grassland creation and sward restoration on faunal diversity/abundance, forage production and quality, soil properties and nutrient losses. Develop grazing and cutting management practices to enhance biodiversity, minimise pollution and benefit agronomic performance. Liaise with Natural England to produce specifications for new or modified ES options, and detailed guidance for their successful management. Overview of experiment: The vast majority of lowland grasslands in the UK have been agriculturally improved, receiving inputs of inorganic fertiliser, reseeding, improved drainage and are managed with intensive cutting and grazing regimes. While this has increased livestock productivity it has led to grasslands that are species-poor in both native plants and invertebrates. To rectify this simple Entry Level Stewardship scheme options have been developed that reduce fertiliser inputs; this includes the EK2 and EK3 options. While permanent grasslands receiving low fertiliser inputs account for the largest area of lowland managed under the agri-environment schemes they currently provide only minimal benefits for biodiversity or ecosystem services.
    [Show full text]
  • (Fungi, Entomophthoromycota) Attacking Coleoptera with a Key for Their Identification
    Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Autor(en): Keller, Siegfried Objekttyp: Article Zeitschrift: Mitteilungen der Schweizerischen Entomologischen Gesellschaft = Bulletin de la Société Entomologique Suisse = Journal of the Swiss Entomological Society Band (Jahr): 86 (2013) Heft 3-4 PDF erstellt am: 05.10.2021 Persistenter Link: http://doi.org/10.5169/seals-403074 Nutzungsbedingungen Die ETH-Bibliothek ist Anbieterin der digitalisierten Zeitschriften. Sie besitzt keine Urheberrechte an den Inhalten der Zeitschriften. Die Rechte liegen in der Regel bei den Herausgebern. Die auf der Plattform e-periodica veröffentlichten Dokumente stehen für nicht-kommerzielle Zwecke in Lehre und Forschung sowie für die private Nutzung frei zur Verfügung. Einzelne Dateien oder Ausdrucke aus diesem Angebot können zusammen mit diesen Nutzungsbedingungen und den korrekten Herkunftsbezeichnungen weitergegeben werden. Das Veröffentlichen von Bildern in Print- und Online-Publikationen ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Die systematische Speicherung von Teilen des elektronischen Angebots auf anderen Servern bedarf ebenfalls des schriftlichen Einverständnisses der Rechteinhaber. Haftungsausschluss Alle Angaben erfolgen ohne Gewähr für Vollständigkeit oder Richtigkeit. Es wird keine Haftung übernommen für Schäden durch die Verwendung von Informationen aus diesem Online-Angebot oder durch das Fehlen von Informationen. Dies gilt auch für Inhalte Dritter, die über dieses Angebot zugänglich sind. Ein Dienst der ETH-Bibliothek ETH Zürich, Rämistrasse 101, 8092 Zürich, Schweiz, www.library.ethz.ch http://www.e-periodica.ch MITTEILUNGEN DER SCHWEIZERISCHEN ENTOMOLOGISCHEN GESELLSCHAFT BULLETIN DE LA SOCIÉTÉ ENTOMOLOGIQUE SUISSE 86: 261-279.2013 Entomophthorales (Fungi, Entomophthoromycota) attacking Coleoptera with a key for their identification Siegfried Keller Rheinweg 14, CH-8264 Eschenz; [email protected] A key to 30 species of entomophthoralean fungi is provided.
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • New Species and Records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson South Dakota State University, [email protected] David C. Lightfoot University of New Mexico Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Johnson, Paul J. and Lightfoot, David C., "New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico" (2018). Insecta Mundi. 1177. http://digitalcommons.unl.edu/insectamundi/1177 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0678 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson Insect Biodiversity Lab., Box 2207A South Dakota State University Brookings, SD 57007 David C. Lightfoot Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 Date of issue: December 28, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson and David C. Lightfoot Insecta Mundi 0678: 1–15 ZooBank Registered: urn:lsid:zoobank.org:pub:F47DECC9-A394-4F2E-A66F-D02053F02D0A Published in 2018 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Food Composition and Food Consumption of the Rook Corvus Frugilegus in Agrocoenoses in Poland
    POLSKA AKADEMIA NAUK INSTYTUT ZOOLOGII ACTA ORNITHOLOGICA Tom X V II Warszawa, 30 IX 1980 Nr 17 Jadwiga G bo m a d zk a Food composition and food consumption of the Rook Corvus frugilegus in agrocoenoses in Poland G-romadzka, J. 1980. Food composition and food consumption of the Rook Corvus frugi­ legus in agrocoenoses in Poland. Acta orn. 17: 227-256. Throughout the year Books take vegetable and animal food in nearly equal proportions. Vegetable food consists mainly of grains, and animal food of insects. The author has used a new method for estimating weight proportions of different food items, a method which takes into consideration digestion time for different food types. A high percentage of pests have been found in the Eook’s diet. One Rook takes annually about 13 kg of grain and 16 kg of animal food. J. Gromadzka, Ornithological Station, Institute of Zoology, Polish Academy of Sciences, 80-680 Gdansk 40, Poland. Состав пищи и пищевые потребности грачаCorvus frugilegus в агроценозах Польши. На протяжении всего года грачи питаются как растительным, так и животным кормом, при­ чем оба рода пищи потребляются в сходных количествах. Растительная пища состоит главным образом из зерен злаковых, животная — из насекомых. Автором применен новый метод оценки весовых пропорций отдельных пищевых компонентов в диете птиц, который позволяет учесть период переваривания разного рода кормов. Высокий процент в диете грача составляют вреди­ тели растений. Один грач съедает на протяжении года13 кг зерна и 16 кг животных. INTRODUCTION The object of the study was to determine the composition of the food eaten by the Books in Poland, to estimate the percentage of different types of food in their diet, and the value of their annual food requirement.
    [Show full text]
  • Folk Taxonomy, Nomenclature, Medicinal and Other Uses, Folklore, and Nature Conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3
    Ulicsni et al. Journal of Ethnobiology and Ethnomedicine (2016) 12:47 DOI 10.1186/s13002-016-0118-7 RESEARCH Open Access Folk knowledge of invertebrates in Central Europe - folk taxonomy, nomenclature, medicinal and other uses, folklore, and nature conservation Viktor Ulicsni1* , Ingvar Svanberg2 and Zsolt Molnár3 Abstract Background: There is scarce information about European folk knowledge of wild invertebrate fauna. We have documented such folk knowledge in three regions, in Romania, Slovakia and Croatia. We provide a list of folk taxa, and discuss folk biological classification and nomenclature, salient features, uses, related proverbs and sayings, and conservation. Methods: We collected data among Hungarian-speaking people practising small-scale, traditional agriculture. We studied “all” invertebrate species (species groups) potentially occurring in the vicinity of the settlements. We used photos, held semi-structured interviews, and conducted picture sorting. Results: We documented 208 invertebrate folk taxa. Many species were known which have, to our knowledge, no economic significance. 36 % of the species were known to at least half of the informants. Knowledge reliability was high, although informants were sometimes prone to exaggeration. 93 % of folk taxa had their own individual names, and 90 % of the taxa were embedded in the folk taxonomy. Twenty four species were of direct use to humans (4 medicinal, 5 consumed, 11 as bait, 2 as playthings). Completely new was the discovery that the honey stomachs of black-coloured carpenter bees (Xylocopa violacea, X. valga)were consumed. 30 taxa were associated with a proverb or used for weather forecasting, or predicting harvests. Conscious ideas about conserving invertebrates only occurred with a few taxa, but informants would generally refrain from harming firebugs (Pyrrhocoris apterus), field crickets (Gryllus campestris) and most butterflies.
    [Show full text]
  • Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
    Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas.
    [Show full text]
  • IPM Thresholds for Agriotes Wireworm Species in Maize in Southern Europe
    J Pest Sci DOI 10.1007/s10340-014-0583-5 ORIGINAL PAPER IPM thresholds for Agriotes wireworm species in maize in Southern Europe Lorenzo Furlan Received: 3 November 2013 / Accepted: 16 March 2014 Ó The Author(s) 2014. This article is published with open access at Springerlink.com Abstract Currently, integrated pest management (IPM) Keywords Wireworms Á A. brevis Á A. sordidus Á of wireworms is not widespread in Europe. Therefore, to A. ustulatus Á IPM Á Bait traps estimate the densities of three major wireworm species in southern Europe (Agriotes brevis Candeze, A. sordidus Il- liger, and A. ustulatus Scha¨ller), bait traps were deployed Introduction pre-seeding in maize fields in north-eastern Italy between 1993 and 2011. Research discovered that there was a sig- EU Directive 2009/128/EC on the sustainable use of pes- nificant correlation between all three wireworm species ticides makes it compulsory to implement integrated pest caught in the bait traps and damage to maize plants, but management (IPM) for annual crops in Europe from Jan- damage symptoms varied. Wherever A. ustulatus was the uary 2014. IPM strategies have not played a significant role main species caught, there was no significant damage to in these crops to date, yet they have been widely used for maize plants, but seeds were damaged. Most of the crops such as orchards and vineyards. Therefore, accurate symptoms caused by A. brevis and A. sordidus were to the information about IPM strategies for annual crops is nee- central leaf/leaves, which wilted because of feeding on the ded urgently, but this information must take into account collar.
    [Show full text]