The Composition of Wireworm Species in Montana Wheat

Total Page:16

File Type:pdf, Size:1020Kb

The Composition of Wireworm Species in Montana Wheat THE COMPOSITION OF WIREWORM SPECIES IN MONTANA WHEAT AND BARLEY FIELDS AND ITS EFFECT ON DEVELOPING IPM PROGRAMS by Anuar Morales-Rodriguez A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Plant Science Montana State University Bozeman, MT August, 2014 ©COPYRIGHT by Anuar Morales – Rodriguez 2014 All Rights Reserved ii DEDICATION I dedicate this work to the engine of my life, Arcacely, Isabella, Nathalia and Carolina, my family. iii ACKNOWLEDGEMENTS I would like to take this opportunity to thank everyone who has helped me throughout the entire process of my research from the beginning to its completion. First of all, thank you to my advisor, Dr. Kevin W. Wanner, for his invaluable guidance, advice, and support. To my committee members, Drs Michael A. Ivie, David K. Weaver and Robert K. D. Peterson, thank you for all your advice. A huge thank you to our Wanner’s laboratory team who helped me so much including Aracely Ospina – Lopez, Peggy Bunger, and Ruth O’Neill, and our summer helpers Emily Rohwer, Hannah Johnson, Alix Bold, Branden Brelsford, Ammiel Branson, Meghan McGauley, Laura Morales and Diana Florian. Thank you to the superintendents David Wichman, CARC at Moccasin, MT, Grant D. Jackson and Gadi V.P. Reddy, WTARC at Conrad and Dave Gettel, Post Farm at Bozeman for allowing us to collect and conduct wireworm research at their facilities. Also I want to thank John Miller for his invaluable help seeding and harvesting all the different field trials. Thank you to all the helpful people of the Department of Plant Science and Plant Pathology Jim Berg, Ron Ramsfield, Jeff Johnston for all their help in different aspects of my work. A special thank you for all the help and support to Irene Decker, Tamara Parnell and Jill Scarson. Finally, thank you to all my friends and colleagues at Montana State University for making my stay here a memorable. iv VITA Anuar Morales Rodríguez was born in Bogotá, D.C., Colombia on January 8, 1966. He is the eldest of three siblings. After graduation in 1985 from the Instituto Nacional de Educación Media Diversificada, INEM Santiago Pérez El Tunal-Bogotá, he attended the Universidad Distrital “Francisco José de Caldas” in Bogotá, and received his B.S. in Biology with a major in Education in 1995. His undergraduate thesis was titled “Biological control of the coffee berry borer Hypothenemus hampei Ferrari (Coleoptera: Scolytidae) with different propagules of the entomopathogenic fungus Beauveria bassiana (Balsamo) Vuill.” Before and after his graduation from the university, he worked with different agrochemical companies in Colombia until 1995. From 1995 to 2004, he worked at the International Center for Tropical Agriculture (CIAT), Colombia in the beans, forage and IPM entomology programs. From 2000 to 2001, he attended the Universidad del Valle in Cali, Colombia to obtain a “Specialization in Entomology.” He moved to the United States in 2004 as a Visiting Scholar in the Department of Entomology at the New York State Agricultural Experimental Station (NYSAES) of Cornell University in Geneva, NY. In 2006, he was accepted into the graduate program (M.S.) in the Field of Entomology at Cornell University, and conducted his work at the NYSAES. His master thesis was titled “Variation in the Susceptibility of Turf-infesting White Grubs to Different Control Agents and Opportunities for Synergistic Combinations of Biologicals and Neonicotinoids.” In January of 2009, he graduates from his Master in Entomology. In the same year, he was accepted into the graduate program (Ph.D.) in Plant Science and Plant Pathology Department at Montana State University in Bozeman, MT. v TABLE OF CONTENTS 1. GENERAL INTRODUCTION .......................................................................................1 2. A BRIEF REVIEW OF THE WIREWORM IN NORTH AMERICA ...........................3 Wireworm Distribution ...................................................................................................5 Wireworm as a Pest of Field Crops .................................................................................7 Life History .....................................................................................................................8 Taxonomy ......................................................................................................................12 Sampling ........................................................................................................................13 Larvae ....................................................................................................................13 Adults .....................................................................................................................16 Management ..................................................................................................................18 Conventional ..........................................................................................................18 Cultural ..................................................................................................................20 Trap Crops .................................................................................................21 Physical Barriers ........................................................................................21 Light Traps .................................................................................................21 Biological ...............................................................................................................21 Common Species in Montana Wheat and Barley Fields ...............................................22 Limonius californicus (Mannerheim 1843). ..........................................................22 Limonius infuscatus Motschulsky 1859. ................................................................23 Limonius canus LeCount 1853. .............................................................................23 Hypnoidus bicolor (Eschscholtz 1829). .................................................................24 Aeolus mellillus (Saylor 1836). ..............................................................................24 Selatosomus aeripennis (Kirby 1837). ...................................................................25 References .....................................................................................................................33 References Cited in the Table 1 ....................................................................................43 3. AN EVALUATION OF FOUR DIFFERENT BAIT TRAPS FOR SAMPLING WIREWORMS (COLEOPTERA: ELATERIDAE) INFESTING CEREAL CROPS IN MONTANA .........................................................49 Contribution of Authors and Co-Authors ......................................................................49 Manuscript Information Page ........................................................................................50 vi TABLE OF CONTENTS - CONTINUED Abstract ........................................................................................................................51 Introduction ..................................................................................................................52 Materials and Methods .................................................................................................55 Insect Sampling ................................................................................................55 Data Analysis ...................................................................................................57 Results ..........................................................................................................................57 Total Caches.....................................................................................................57 Bozeman ..............................................................................................58 Conrad ..................................................................................................60 Denton ..................................................................................................61 Toston ..................................................................................................62 Relative Variation ............................................................................................63 Species Diversity .............................................................................................64 Discussion ....................................................................................................................65 Acknowledgements ......................................................................................................72 References ....................................................................................................................86 4. DESCRIPTION OF THE LARVAL ACTIVITY OF THREE SPECIES OF WIREWORMS IN THREE COMMERCIAL CEREAL FIELDS IN MONTANA .............................................................................90 Introduction ..................................................................................................................90 Methodology ................................................................................................................92 Data Analysis ...............................................................................................................92 Results ..........................................................................................................................93
Recommended publications
  • Sunday, March 4, 2012
    Joint Meeting of the Southeastern and Southwestern Branches Entomological Society of America 4-7 March 2012 Little Rock, Arkansas 0 Dr. Norman C. Leppla President, Southeastern Branch of the Entomological Society of America, 2011-2012 Dr. Allen E. Knutson President, Southwestern Branch of the Entomological Society of America, 2011-2012 1 2 TABLE OF CONTENTS Presidents Norman C. Leppla (SEB) and Allen E. 1 Knutson (SWB) ESA Section Names and Acronyms 5 PROGRAM SUMMARY 6 Meeting Notices and Policies 11 SEB Officers and Committees: 2011-2012 14 SWB Officers and Committees: 2011-2012 16 SEB Award Recipients 19 SWB Award Recipients 36 SCIENTIFIC PROGRAM SATURDAY AND SUNDAY SUMMARY 44 MONDAY SUMMARY 45 Plenary Session 47 BS Student Oral Competition 48 MS Student Oral Competition I 49 MS Student Oral Competition II 50 MS Student Oral Competition III 52 MS Student Oral Competition IV 53 PhD Student Oral Competition I 54 PhD Student Oral Competition II 56 BS Student Poster Competition 57 MS Student Poster Competition 59 PhD Student Poster Competition 62 Linnaean Games Finals/Student Awards 64 TUESDAY SUMMARY 65 Contributed Papers: P-IE (Soybeans and Stink Bugs) 67 Symposium: Spotted Wing Drosophila in the Southeast 68 Armyworm Symposium 69 Symposium: Functional Genomics of Tick-Pathogen 70 Interface Contributed Papers: PBT and SEB Sections 71 Contributed Papers: P-IE (Cotton and Corn) 72 Turf and Ornamentals Symposium 73 Joint Awards Ceremony, Luncheon, and Photo Salon 74 Contributed Papers: MUVE Section 75 3 Symposium: Biological Control Success
    [Show full text]
  • Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition
    Sharon J. Collman WSU Snohomish County Extension Green Gardening Workshop October 21, 2015 Definition AKA exotic, alien, non-native, introduced, non-indigenous, or foreign sp. National Invasive Species Council definition: (1) “a non-native (alien) to the ecosystem” (2) “a species likely to cause economic or harm to human health or environment” Not all invasive species are foreign origin (Spartina, bullfrog) Not all foreign species are invasive (Most US ag species are not native) Definition increasingly includes exotic diseases (West Nile virus, anthrax etc.) Can include genetically modified/ engineered and transgenic organisms Executive Order 13112 (1999) Directed Federal agencies to make IS a priority, and: “Identify any actions which could affect the status of invasive species; use their respective programs & authorities to prevent introductions; detect & respond rapidly to invasions; monitor populations restore native species & habitats in invaded ecosystems conduct research; and promote public education.” Not authorize, fund, or carry out actions that cause/promote IS intro/spread Political, Social, Habitat, Ecological, Environmental, Economic, Health, Trade & Commerce, & Climate Change Considerations Historical Perspective Native Americans – Early explorers – Plant explorers in Europe Pioneers moving across the US Food - Plants – Stored products – Crops – renegade seed Animals – Insects – ants, slugs Travelers – gardeners exchanging plants with friends Invasive Species… …can also be moved by • Household goods • Vehicles
    [Show full text]
  • Molecular Diagnostics of Economically Important Wireworm Species (Coleoptera: Elateridae) in the Midwestern United States a Thes
    Molecular Diagnostics of Economically Important Wireworm Species (Coleoptera: Elateridae) in the Midwestern United States A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia In Partial Fulfillment of the Requirements for the Degree Master of Science By Erica Lindroth Dr. Thomas Clark, Thesis Supervisor August 2007 The undersigned, appointed by the dean of the Graduate School, have examined the thesis entitled Molecular Diagnostics of Economically Important Wireworm Species (Coleoptera: Elateridae) in the Midwestern United States presented by Erica Lindroth, a candidate for the degree of master of science, and hereby certify that, in their opinion, it is worthy of acceptance. _________________________ Dr. Thomas Clark _________________________ Dr. Robert Sites _________________________ Dr. Brenda Beerntsen _________________________ Dr. George Smith i To my husband, for his patience. ii Acknowledgements I would like to thank my advisor, Dr. Tom Clark, for his support and advice. I would like to thank my committee members, Dr. Bob Sites, Dr. Brenda Beerntsen, and Dr. George Smith. Many thanks to the myriad students, extension workers, entomology professors, and farmers who helped me obtain wireworm samples, including: Tom Kuhar, John Van Duyn, Pat Davis, Chris DiFonzo, Gerald Wilde, Gary Hein, D. Moellenbeck, Lyndon Brush, Ben Puttler, Wayne Bailey, Francis Lloyd, Lisa Meihls, Kevin Steffey, Billy Fuller, Eileen Cullen, Greg Andrews, Greg Kerr, Gary Cramer, and Leslie Loehr. I would like to thank Sandy Briesacher for her help with laboratory procedures. Finally, I would like to thank Akekawat Vitheepradit for helping me learn about phylogenetic analyses and always letting me know when there was free food.
    [Show full text]
  • Green-Tree Retention and Controlled Burning in Restoration and Conservation of Beetle Diversity in Boreal Forests
    Dissertationes Forestales 21 Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Esko Hyvärinen Faculty of Forestry University of Joensuu Academic dissertation To be presented, with the permission of the Faculty of Forestry of the University of Joensuu, for public criticism in auditorium C2 of the University of Joensuu, Yliopistonkatu 4, Joensuu, on 9th June 2006, at 12 o’clock noon. 2 Title: Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests Author: Esko Hyvärinen Dissertationes Forestales 21 Supervisors: Prof. Jari Kouki, Faculty of Forestry, University of Joensuu, Finland Docent Petri Martikainen, Faculty of Forestry, University of Joensuu, Finland Pre-examiners: Docent Jyrki Muona, Finnish Museum of Natural History, Zoological Museum, University of Helsinki, Helsinki, Finland Docent Tomas Roslin, Department of Biological and Environmental Sciences, Division of Population Biology, University of Helsinki, Helsinki, Finland Opponent: Prof. Bengt Gunnar Jonsson, Department of Natural Sciences, Mid Sweden University, Sundsvall, Sweden ISSN 1795-7389 ISBN-13: 978-951-651-130-9 (PDF) ISBN-10: 951-651-130-9 (PDF) Paper copy printed: Joensuun yliopistopaino, 2006 Publishers: The Finnish Society of Forest Science Finnish Forest Research Institute Faculty of Agriculture and Forestry of the University of Helsinki Faculty of Forestry of the University of Joensuu Editorial Office: The Finnish Society of Forest Science Unioninkatu 40A, 00170 Helsinki, Finland http://www.metla.fi/dissertationes 3 Hyvärinen, Esko 2006. Green-tree retention and controlled burning in restoration and conservation of beetle diversity in boreal forests. University of Joensuu, Faculty of Forestry. ABSTRACT The main aim of this thesis was to demonstrate the effects of green-tree retention and controlled burning on beetles (Coleoptera) in order to provide information applicable to the restoration and conservation of beetle species diversity in boreal forests.
    [Show full text]
  • 1 Biological Control of Wireworm (Agriotes Lineatus) Damage To
    1 Biological Control of Wireworm (Agriotes lineatus) damage to potato with Metarhizium brunneum Isabel Aida Stewart [email protected] Kwantlen Polytechnic University 100298609, AGRI 4299, Mike Bomford, 12/11/2017 2 Abstract The larval stage of Agriotes lineatus, wireworm, is a challenging agricultural pest with a broad host range. It is a soil-dwelling arthropod that may live up to 5 years before pupating. Wireworms negatively affect crop yields and render produce un-saleable. Organic production systems have few means of managing this pest and this study explores the use of an entomopathogenic fungus, Metarhizium brunneum, as a bio-control. Three treatments - M. brunneum, M. brunneum with oats, and a non-treated control - were applied beneath seed potatoes. Damage to the tubers was classified by counting tuber hole abundance (Brandl et al., 2017). No statistically significant treatment effects were observed, but the proportion of potatoes that suffered wireworm damage was 33% lower in the M. brunneum and oat treatment than the control treatment and was numerically trending towards significance. Key words: Metarhizium, biocontrol, potato, wireworm, Agriotes lineatus, entomopathogenic fungi 3 Introduction Pest development of resistance to chemical insecticides is currently a pervasive issue in agriculture and it is paramount to advance alternatives that do not threaten the environment or our future capacity for agriculture. One solution to this issue that will be explored through this study is the use of non-persistent, non-toxic biological controls, often in the form of bacterial, fungal or nematode microbial agents. The pest that our research targets is the wireworm (Agriotes lineatus), the larval stage of the click beetle, which has a broad host range including carrots, cucurbits, rutabagas, onions, sweet corn, potatoes, sugar-beets, beans and peas (Chaput, 2000).
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • New Species and Records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson South Dakota State University, [email protected] David C. Lightfoot University of New Mexico Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Johnson, Paul J. and Lightfoot, David C., "New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico" (2018). Insecta Mundi. 1177. http://digitalcommons.unl.edu/insectamundi/1177 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0678 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson Insect Biodiversity Lab., Box 2207A South Dakota State University Brookings, SD 57007 David C. Lightfoot Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 Date of issue: December 28, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson and David C. Lightfoot Insecta Mundi 0678: 1–15 ZooBank Registered: urn:lsid:zoobank.org:pub:F47DECC9-A394-4F2E-A66F-D02053F02D0A Published in 2018 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
    Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas.
    [Show full text]
  • Soil Type Mediates the Effectiveness of Biological Control Against Limonius Californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W
    Journal of Economic Entomology, 111(5), 2018, 2053–2058 doi: 10.1093/jee/toy196 Advance Access Publication Date: 6 July 2018 Biological and Microbial Control Research Article Soil Type Mediates the Effectiveness of Biological Control Against Limonius californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W. Crowder,2 Aaron D. Esser,3 Zhiguo Zhao,4 Juliet M. Marshall,1 and Arash Rashed1,5,6 1Department of Entomology, Plant Pathology and Nematology, Aberdeen Research and Extension Center, University of Idaho, 2 3 Aberdeen, ID 83210, Department of Entomology, Washington State University Extension, Ritzville, WA 99164, Washington Downloaded from https://academic.oup.com/jee/article/111/5/2053/5049656 by guest on 24 September 2021 State University, Extension, Ritzville, WA 99169, 4Department of Entomology, Shanxi Agricultural University, Taigu 030801, China, 5Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, and 6Corresponding author, e-mail: [email protected] Subject Editor: Surendra Dara Received 22 March 2018; Editorial decision 18 June 2018 Abstract Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are a considerable threat to cereal and vegetable production in the Pacific Northwest and Intermountain regions of the United States. As insecticides are generally ineffective, alternative controls are needed to improve wireworm management. Wireworms are continuously exposed to a wide range of subterranean pathogenic organisms in the soil; identifying these organisms and determining their impact would contribute to the development of biological control for wireworms. Here, we evaluated the efficacy of an entomopathogenic nematode, Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and a fungus, Metarhizium brunneum Petch (strain F52) (Hypocreales: Clavicipitaceae), for control of the Pacific Northwest predominant wireworm speciesLimonius californicus, in two different soil media.
    [Show full text]
  • Table of Contents I
    Comparison of the gut microbiome of a generalist insect, Spodoptera littoralis and a specialist, leaf and root feeder one, Melolontha hippocastani Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty Of Biology and Pharmacy of the Friedrich Schiller University By Master of Science of Horticulture Erika Arias Cordero Born on 01.11.1977 in San José, Costa Rica Gutachter: 1. ___________________________ 2. ___________________________ 3. ___________________________ Tag der öffentlichen verteidigung:……………………………………. Table of Contents i Table of Contents 1. General Introduction 1 1.1 Insect-bacteria associations ......................................................................................... 1 1.1.1 Intracellular endosymbiotic associations ........................................................... 2 1.1.2 Exoskeleton-ectosymbiotic associations ........................................................... 4 1.1.3 Gut lining ectosymbiotic symbiosis ................................................................... 4 1.2 Description of the insect species ................................................................................ 12 1.2.1 Biology of Spodoptera littoralis ............................................................................ 12 1.2.2 Biology of Melolontha hippocastani, the forest cockchafer ................................... 14 1.3 Goals of this study ....................................................................................................
    [Show full text]
  • Invertebrate Pest Management for Pacific Northwest Pastures
    Invertebrate Pest Management for Pacific Northwest Pastures A.J. Dreves, N. Kaur. M.G. Bohle, D. Hannaway, G.C. Fisher and S.I. Rondon Photo: Mylen Bohle, © Oregon State University Figure 1. A pasture in the Pacific Northwest. Introduction Amy J. Dreves, Extension A well-managed pasture (Figure 1) has several ecological and economic benefits. pest management However, a variety of pests can diminish those benefits. specialist, University of the Virgin Islands; Several species of arthropods (insects, mites and garden symphylans), and gastropods Navneet Kaur, Extension (slugs) inhabit pastures of the Pacific Northwest of the United States. Newly planted entomologist; Mylen Bohle, pastures are more vulnerable to damage caused by invertebrate pests carried over Extension agronomist; from previous rotations if preventative measures such as tillage practices, adjustment David Hannaway, Extension of planting times, removal of infected plant material and healthy plant-management forage specialist; Glenn tactics are not followed. Infestations in established pastures occur when migrating pest Fisher, emeritus Extension populations attack from adjacent areas. entomologist; and Silvia Either way, an invertebrate pest population can reduce a pasture’s productivity and Rondon, Extension yield when damage exceeds an intolerable level generally referred to as an economic entomology specialist, all of threshold level. Pest populations tend to fluctuate in nature and are heavily regulated Oregon State University. by climate, food availability and ecosystem disturbance. Biological factors such as predators, parasites and entomopathogens also play an important role in pest population suppression (Figure 2, page 2). An integrated pest management strategy can maintain pest populations below economically damaging levels. IPM is a holistic approach that relies on knowledge of pest biology and ecology and their interactions with and within systems.
    [Show full text]