Invertebrate Pest Management for Pacific Northwest Pastures
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W. -
A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete. -
197 Section 9 Sunflower (Helianthus
SECTION 9 SUNFLOWER (HELIANTHUS ANNUUS L.) 1. Taxonomy of the Genus Helianthus, Natural Habitat and Origins of the Cultivated Sunflower A. Taxonomy of the genus Helianthus The sunflower belongs to the genus Helianthus in the Composite family (Asterales order), which includes species with very diverse morphologies (herbs, shrubs, lianas, etc.). The genus Helianthus belongs to the Heliantheae tribe. This includes approximately 50 species originating in North and Central America. The basis for the botanical classification of the genus Helianthus was proposed by Heiser et al. (1969) and refined subsequently using new phenological, cladistic and biosystematic methods, (Robinson, 1979; Anashchenko, 1974, 1979; Schilling and Heiser, 1981) or molecular markers (Sossey-Alaoui et al., 1998). This approach splits Helianthus into four sections: Helianthus, Agrestes, Ciliares and Atrorubens. This classification is set out in Table 1.18. Section Helianthus This section comprises 12 species, including H. annuus, the cultivated sunflower. These species, which are diploid (2n = 34), are interfertile and annual in almost all cases. For the majority, the natural distribution is central and western North America. They are generally well adapted to dry or even arid areas and sandy soils. The widespread H. annuus L. species includes (Heiser et al., 1969) plants cultivated for seed or fodder referred to as H. annuus var. macrocarpus (D.C), or cultivated for ornament (H. annuus subsp. annuus), and uncultivated wild and weedy plants (H. annuus subsp. lenticularis, H. annuus subsp. Texanus, etc.). Leaves of these species are usually alternate, ovoid and with a long petiole. Flower heads, or capitula, consist of tubular and ligulate florets, which may be deep purple, red or yellow. -
New Species and New Records of Click Beetles from the Palearctic Region (Coleoptera, Elateridae)
Boletín de la Sociedad Entomológica Aragonesa (S.E.A.), nº 48 (30/06/2011): 47‒60. NEW SPECIES AND NEW RECORDS OF CLICK BEETLES FROM THE PALEARCTIC REGION (COLEOPTERA, ELATERIDAE) Giuseppe Platia Via Molino Vecchio, 21/a, 47043 Gatteo (FC), Italia – [email protected] Abstract: Fourteen new species of click beetles belonging to the genera Cardiophorus (Turkey), Dicronychus (Syria), Dima (Greece), Hemicrepidius (Azerbaijan), Athous (Orthathous) (Azerbaijan), Agriotes (Lebanon), Ampedus (Sardinia, It- aly), Ctenicera (Slovenia), Anostirus (Azerbaijan), Selatosomus (Warchalowskia) (Turkey), Adrastus (Azerbaijan) and Melanotus (Lebanon) are described. New chorological data for fifty-one species from the Palaearctic region are given. Key words: Coleoptera, Elateridae, new species, new records, Palaearctic region. Nuevas species y registros de elatéridos paleárticos (Coleoptera, Elateridae) Resumen: Se describen catorce nuevas especies de elatéridos de los géneros Cardiophorus (Turquía), Dicronychus (Siria), Dima (Grecia), Hemicrepidius (Azerbayán), Athous (Orthathous) (Azerbayán), Agriotes (Líbano), Ampedus (Cerdeña, Italia), Ctenicera (Eslovenia), Anostirus (Azerbayán), Selatosomus (Warchalowskia) (Turquía), Adrastus (Azerbayán) and Melanotus (Líbano). Se aportan además cincuenta y una nuevas citas de la región Paleártica. Palabras clave: Coleoptera, Elateridae, especies nuevas, cita nueva, región Paleártica. Taxonomy / Taxonomía: Adrastus azerbaijanicus n. sp. Athous (Orthathous) lasoni n. sp. Hemicrepidius kroliki n. sp. Agriotes kairouzi -
Wireworms' Management
Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management. -
The Taxonomy of Utah Orthoptera
Great Basin Naturalist Volume 14 Number 3 – Number 4 Article 1 12-30-1954 The taxonomy of Utah Orthoptera Andrew H. Barnum Brigham Young University Follow this and additional works at: https://scholarsarchive.byu.edu/gbn Recommended Citation Barnum, Andrew H. (1954) "The taxonomy of Utah Orthoptera," Great Basin Naturalist: Vol. 14 : No. 3 , Article 1. Available at: https://scholarsarchive.byu.edu/gbn/vol14/iss3/1 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Great Basin Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. IMUS.COMP.ZSOL iU6 1 195^ The Great Basin Naturalist harvard Published by the HWIilIijM i Department of Zoology and Entomology Brigham Young University, Provo, Utah Volum e XIV DECEMBER 30, 1954 Nos. 3 & 4 THE TAXONOMY OF UTAH ORTHOPTERA^ ANDREW H. BARNUM- Grand Junction, Colorado INTRODUCTION During the years of 1950 to 1952 a study of the taxonomy and distribution of the Utah Orthoptera was made at the Brigham Young University by the author under the direction of Dr. Vasco M. Tan- ner. This resulted in a listing of the species found in the State. Taxonomic keys were made and compiled covering these species. Distributional notes where available were made with the brief des- criptions of the species. The work was based on the material in the entomological col- lection of the Brigham Young University, with additional records obtained from the collection of the Utah State Agricultural College. -
Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas. -
Soil Type Mediates the Effectiveness of Biological Control Against Limonius Californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W
Journal of Economic Entomology, 111(5), 2018, 2053–2058 doi: 10.1093/jee/toy196 Advance Access Publication Date: 6 July 2018 Biological and Microbial Control Research Article Soil Type Mediates the Effectiveness of Biological Control Against Limonius californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W. Crowder,2 Aaron D. Esser,3 Zhiguo Zhao,4 Juliet M. Marshall,1 and Arash Rashed1,5,6 1Department of Entomology, Plant Pathology and Nematology, Aberdeen Research and Extension Center, University of Idaho, 2 3 Aberdeen, ID 83210, Department of Entomology, Washington State University Extension, Ritzville, WA 99164, Washington Downloaded from https://academic.oup.com/jee/article/111/5/2053/5049656 by guest on 24 September 2021 State University, Extension, Ritzville, WA 99169, 4Department of Entomology, Shanxi Agricultural University, Taigu 030801, China, 5Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, and 6Corresponding author, e-mail: [email protected] Subject Editor: Surendra Dara Received 22 March 2018; Editorial decision 18 June 2018 Abstract Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are a considerable threat to cereal and vegetable production in the Pacific Northwest and Intermountain regions of the United States. As insecticides are generally ineffective, alternative controls are needed to improve wireworm management. Wireworms are continuously exposed to a wide range of subterranean pathogenic organisms in the soil; identifying these organisms and determining their impact would contribute to the development of biological control for wireworms. Here, we evaluated the efficacy of an entomopathogenic nematode, Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and a fungus, Metarhizium brunneum Petch (strain F52) (Hypocreales: Clavicipitaceae), for control of the Pacific Northwest predominant wireworm speciesLimonius californicus, in two different soil media. -
Table of Contents I
Comparison of the gut microbiome of a generalist insect, Spodoptera littoralis and a specialist, leaf and root feeder one, Melolontha hippocastani Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty Of Biology and Pharmacy of the Friedrich Schiller University By Master of Science of Horticulture Erika Arias Cordero Born on 01.11.1977 in San José, Costa Rica Gutachter: 1. ___________________________ 2. ___________________________ 3. ___________________________ Tag der öffentlichen verteidigung:……………………………………. Table of Contents i Table of Contents 1. General Introduction 1 1.1 Insect-bacteria associations ......................................................................................... 1 1.1.1 Intracellular endosymbiotic associations ........................................................... 2 1.1.2 Exoskeleton-ectosymbiotic associations ........................................................... 4 1.1.3 Gut lining ectosymbiotic symbiosis ................................................................... 4 1.2 Description of the insect species ................................................................................ 12 1.2.1 Biology of Spodoptera littoralis ............................................................................ 12 1.2.2 Biology of Melolontha hippocastani, the forest cockchafer ................................... 14 1.3 Goals of this study .................................................................................................... -
Insects and Related Arthropods Associated with of Agriculture
USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H. -
Wireworm (Coleoptera: Elateridae) Genomic Analysis Reveals Putative Cryptic Species, Population Structure, and Adaptation to Pest Control ✉ Kimberly R
ARTICLE https://doi.org/10.1038/s42003-020-01169-9 OPEN Wireworm (Coleoptera: Elateridae) genomic analysis reveals putative cryptic species, population structure, and adaptation to pest control ✉ Kimberly R. Andrews 1 , Alida Gerritsen2, Arash Rashed 3, David W. Crowder4, Silvia I. Rondon 5, 1234567890():,; Willem G. van Herk6, Robert Vernon7, Kevin W. Wanner8, Cathy M. Wilson9, Daniel D. New1, Matthew W. Fagnan1, Paul A. Hohenlohe1 & Samuel S. Hunter 1 The larvae of click beetles (Coleoptera: Elateridae), known as “wireworms,” are agricultural pests that pose a substantial economic threat worldwide. We produced one of the first wireworm genome assemblies (Limonius californicus), and investigated population structure and phylogenetic relationships of three species (L. californicus, L. infuscatus, L. canus) across the northwest US and southwest Canada using genome-wide markers (RADseq) and genome skimming. We found two species (L. californicus and L. infuscatus) are comprised of multi- ple genetically distinct groups that diverged in the Pleistocene but have no known distin- guishing morphological characters, and therefore could be considered cryptic species complexes. We also found within-species population structure across relatively short geo- graphic distances. Genome scans for selection provided preliminary evidence for signatures of adaptation associated with different pesticide treatments in an agricultural field trial for L. canus. We demonstrate that genomic tools can be a strong asset in developing effective wireworm control strategies. 1 Institute for Bioinformatics and Evolutionary Studies (IBEST), University of Idaho, Moscow, ID 83844, USA. 2 Computational Sciences Center, National Renewable Energy Laboratory, Golden, CO 80401, USA. 3 Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, USA. -
Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba
87 Chapter 2 Click Beetles and Wireworms (Coleoptera: Elateridae) of Alberta, Saskatchewan, and Manitoba Willem G. van Herk and Robert S. Vernon Pacific Agri-Food Research Centre, Agriculture and Agri-Food Canada, 6947 #7 Hwy, Agassiz, British Columbia Email: [email protected] Abstract. This chapter describes the Elateridae of Alberta (144 species), Saskatchewan (108 species), and Manitoba (109 species). It provides current names for species, as well as synonymized names that persist in the literature. Also discussed are the species that have been left out during recent changes to elaterid renaming and classification, although no new name combinations are given. The chapter outlines species distributions, biogeography where known, and the life histories of five common species: Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), and Selatosomus aeripennis destructor (Brown). An examination of the seasonal movements and activity of larvae in response to soil temperature and moisture and moulting cycles is followed by an overview of past research on Prairie Province species. The chapter concludes with a discussion of current research needs and management issues. Résumé. Le présent chapitre décrit les Elateridae de l’Alberta (138 espèces), de la Saskatchewan (76 espèces) et du Manitoba (104 espèces). Il fournit les noms actuels de ces espèces, ainsi que les synonymes qui persistent dans la documentation spécialisée. Il se penche également sur les espèces qui ont été laissées de côté lors des récents changements apportés à la nomenclature et à la classification des élatéridés, sans toutefois s’attarder aux nouvelles combinaisons de noms. Le chapitre décrit la répartition des espèces, leur caractéristiques biogéographiques — lorsqu’elles sont connues — ainsi que le cycle de vie de cinq espèces communes : Aeolus mellillus (Say), Agriotes mancus (Say), Hypnoidus bicolor (Eschscholtz), Limonius californicus (Mannerheim), et Selatosomus aeripennis destructor (Brown).