Identification of Economic Wireworms Using Traditional

Total Page:16

File Type:pdf, Size:1020Kb

Identification of Economic Wireworms Using Traditional IDENTIFICATION OF ECONOMIC WIREWORMS USING TRADITIONAL AND MOLECULAR METHODS by Frank Eric Etzler A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology MONTANA STATE UNIVERSITY Bozeman, Montana August 2013 ©COPYRIGHT by Frank Eric Etzler 2013 All Rights Reserved ii APPROVAL of a thesis submitted by Frank Eric Etzler This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citation, bibliographic style, and consistency and is ready for submission to The Graduate School. Dr. Michael A. Ivie Approved for the Department of Plant Sciences and Plant Pathology Dr. John E. Sherwood Approved for The Graduate School Dr. Ronald W. Larsen iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Frank Eric Etzler August 2013 iv DEDICATION This work is dedicated to my mother, father, and sister for always lending an ear even when they didn’t understand what I was talking about. For that, I am forever grateful. v ACKNOWLEDGEMENTS Many thanks go to Dr. Michael Ivie, Dr. Kevin Wanner, and Dr. Kevin O’Neill for providing useful insights for the project and for their teaching along the way. Many thanks are in order to Dr. Paul Johnson and Dr. Hume Douglas for Elateridae taxonomy discussions and helping me understand this complex group. Much appreciation is given to Anuar Morales, Paramjit Gill, Charles Hart, Asa Staven, Peggy Bunger, and Aracely Ospina for their help along the way. Thanks are also given to Dr. Keith Pike and others at Washington State University for their collaborations and expanding the range of our specimens. Much appreciation is given to Ladonna Ivie for keeping me fed, healthy, and giving me mental support. Many thanks are given to all of the producers who participated in the project. All of these people made this project possible. Support for this work was through the USDA Crops At Risk (NISA) grant # 2010-51100-21547. vi TABLE OF CONTENTS 1. INTRODUCTION ..........................................................................................................1 2. DNA BARCODING TO IMPROVE SPECIES LEVEL MANAGEMENT OF WIREWORMS .........................................................................11 Contribution of Author and Co-Authors ........................................................................11 Manuscript Information Page ........................................................................................12 Abstract ..........................................................................................................................13 Materials and Methods ...................................................................................................18 Sampling and Taxonomy .......................................................................................18 Molecular Techniques ............................................................................................18 Data Analysis .........................................................................................................20 Results ...........................................................................................................................20 Discussion .....................................................................................................................23 Acknowledgements .......................................................................................................29 References Cited ...........................................................................................................38 3. KEYS TO MONTANA WIREWORMS .......................................................................42 Characters Used in LUCID Key ...................................................................................44 Characters of the Ninth Abdominal (A9) Segment ................................................44 Character 1: Caudal Notch ..........................................................................44 Character 2: Shape of A9 without Caudal Notch........................................45 Character 3: Muscular Impressions “Eyespots” on A9...............................45 Character 4: Whorls of Setiferous Tubercles ..............................................45 Character 5: Caudal Notch ..........................................................................46 Character 6: Urogomphi .............................................................................46 Character 7: Dorsal Tubercle ......................................................................46 Character 8: Dorsal Tubercle Shape ...........................................................46 Character 9: Dorsal Tubercle Angle ...........................................................47 Character 10: Length of Dorsal Tubercle ...................................................47 Character 11: Hooks on A10.......................................................................47 Character 12: Lateral Margins of A9 ..........................................................47 Character 13: Dorsotergal Setae on A9 ......................................................48 Character 14: Mediodorsal Groove .............................................................48 Characters of the Head ...........................................................................................48 Character 15: Nasale Type ..........................................................................48 Character 16: Submentum Shape ................................................................48 Character 17: Eyes ......................................................................................49 Character 18: Postepicranial Setae..............................................................49 Characters of the Abdomen and Thorax ................................................................49 vii TABLE OF CONTENTS - CONTINUED Character 19: Prosternum ...........................................................................49 Character 20: Punctures ..............................................................................49 Character 21: Anterolateral Impression ......................................................50 Character 22: Medial Anterotergal Setae ....................................................50 Character 23: Anterolateral Carinae ...........................................................50 Character 24: Anterolateral Carinae ...........................................................50 Character 25: Spine-like Setae on the Episternae of Meso- and Metathorax ............................................................................50 Information about Species and Coded Characters ........................................................51 Dichotomous Key to Wireworm Species Found in Montana Agriculture Fields .........62 4. REVIEW OF THE LIMONIUS CANUS LECONTE, 1853 SPECIES-GROUP (COLEOPTERA: ELATERIDAE) ..............................................110 Contribution of Authors and Co-Authors ...................................................................110 Manuscript Information Page .....................................................................................111 Abstract .......................................................................................................................112 Methods.......................................................................................................................117 Results and Discussion ...............................................................................................120 Notes on Key and Description Terminology ..............................................................122 Key to Species.............................................................................................................124 Treatment of Species in the Limonius canus Species-group ......................................127 Limonius agonus (Say), 1839 ..............................................................................127 Limonius californicus (Mannerheim), 1843 ........................................................130 Limonius canus LeConte, 1853............................................................................135 Limonius cf. dubitans LeConte, 1853 ..................................................................139 Limonius ectypus (Say), 1839 ..............................................................................142 Limonius infuscatus Motschulsky, 1859 ..............................................................146 Limonius pilosulus Candèze, 1891 ......................................................................150 Limonius subauratus LeConte, 1853 ...................................................................153 Conclusion .................................................................................................................157 References Cited .......................................................................................................170
Recommended publications
  • WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/023486 Al 9 February 2017 (09.02.2017) P O P C T (51) International Patent Classification: 0552 (US). FENGLER, Kevin; 7250 NW 62nd Ave, P.O. AOlH l/00 (2006.01) C07K 14/195 (2006.01) Box 552, Johnston, IA 5013 1-0552 (US). SCHEPERS, A01H3/00 (2006.01) C12N 15/82 (2006.01) Eric; 7250 NW 62nd Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). UDRANSZKY, Ingrid; 7250 NW 62nd (21) International Application Number: Ave, P.O. Box 552, Johnston, IA 5013 1-0552 (US). PCT/US20 16/04 1452 (74) Agent: BAUER, S., Christopher; Pioneer Hi-Bred Inter (22) International Filing Date: national, Inc., 7100 N.W. 62nd Avenue, Johnston, IA 8 July 2016 (08.07.2016) 5013 1-1014 (US). (25) Filing Language: English (81) Designated States (unless otherwise indicated, for every (26) Publication Language: English kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (30) Priority Data: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, 62/201,977 6 August 2015 (06.08.2015) US DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (71) Applicants: PIONEER HI-BRED INTERNATIONAL, HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, INC. [US/US]; PIONEER HI-BRED INTERNATIONAL, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, INC., 7100 N.W.
    [Show full text]
  • A Faunal Survey of the Elateroidea of Montana by Catherine Elaine
    A faunal survey of the elateroidea of Montana by Catherine Elaine Seibert A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Entomology Montana State University © Copyright by Catherine Elaine Seibert (1993) Abstract: The beetle family Elateridae is a large and taxonomically difficult group of insects that includes many economically important species of cultivated crops. Elaterid larvae, or wireworms, have a history of damaging small grains in Montana. Although chemical seed treatments have controlled wireworm damage since the early 1950's, it is- highly probable that their availability will become limited, if not completely unavailable, in the near future. In that event, information about Montana's elaterid fauna, particularity which species are present and where, will be necessary for renewed research efforts directed at wireworm management. A faunal survey of the superfamily Elateroidea, including the Elateridae and three closely related families, was undertaken to determine the species composition and distribution in Montana. Because elateroid larvae are difficult to collect and identify, the survey concentrated exclusively on adult beetles. This effort involved both the collection of Montana elateroids from the field and extensive borrowing of the same from museum sources. Results from the survey identified one artematopid, 152 elaterid, six throscid, and seven eucnemid species from Montana. County distributions for each species were mapped. In addition, dichotomous keys, and taxonomic and biological information, were compiled for various taxa. Species of potential economic importance were also noted, along with their host plants. Although the knowledge of the superfamily' has been improved significantly, it is not complete.
    [Show full text]
  • New Species and Records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2018 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson South Dakota State University, [email protected] David C. Lightfoot University of New Mexico Follow this and additional works at: http://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Johnson, Paul J. and Lightfoot, David C., "New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico" (2018). Insecta Mundi. 1177. http://digitalcommons.unl.edu/insectamundi/1177 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0678 New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson Insect Biodiversity Lab., Box 2207A South Dakota State University Brookings, SD 57007 David C. Lightfoot Museum of Southwestern Biology University of New Mexico Albuquerque, NM 87131 Date of issue: December 28, 2018 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL New species and records of Elateridae (Coleoptera) from Cuatrociénegas, Coahuila, Mexico Paul J. Johnson and David C. Lightfoot Insecta Mundi 0678: 1–15 ZooBank Registered: urn:lsid:zoobank.org:pub:F47DECC9-A394-4F2E-A66F-D02053F02D0A Published in 2018 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non-marine arthropod.
    [Show full text]
  • Wireworms' Management
    Insects 2013, 4, 117-152; doi:10.3390/insects4010117 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects Review :LUHZRUPV¶Management: An Overview of the Existing Methods, with Particular Regards to Agriotes spp. (Coleoptera: Elateridae) Fanny Barsics *, Eric Haubruge and François J. Verheggen Department of Functional and Evolutionary Entomology, Gembloux Agro-Bio Tech, University of Liege. 2, Passage des Déportés, 5030 Gembloux, Belgium; E-Mails: [email protected] (E.H.); [email protected] (F.J.V.) * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +3281-62-26-63; Fax: +3281-62-23-12. Received: 19 October 2012; in revised form: 13 December 2012 / Accepted: 26 December 2012 / Published: 25 January 2013 Abstract: Wireworms (Coleoptera: Elateridae) are important soil dwelling pests worldwide causing yield losses in many crops. The progressive restrictions in the matter of efficient synthetic chemicals for health and environmental care brought out the need for alternative management techniques. This paper summarizes the main potential tools that have been studied up to now and that could be applied together in integrated pest management systems and suggests guidelines for future research. Keywords: wireworms; click beetles; Agriotes; integrated pest management 1. Introduction Wireworms are the larvae of click beetles (Coleoptera: Elateridae). They consist of more than 9,000 species distributed worldwide, [1] and some are important pests of a wide variety of crops, such as potato, cereals, carrot, sugar beet, sugarcane and soft fruits (e.g., [2±6]). In Europe, damages due to wireworm infestation are mainly attributed to the genus Agriotes Eschscholtz, as witnessed by the numerous studies aiming at their management.
    [Show full text]
  • José I. Recalde Irurzun 1 & Antonio Sánchez-Ruiz 2
    Boletín Sociedad Entomológica Aragonesa, n1 36 (2005) : 241–245. ELATÉRIDOS FORESTALES DE NAVARRA IV. PRESENCIA DE PROCRAERUS TIBIALIS (LACORDAIRE, 1835) EN LA PENÍNSULA IBÉRICA, Y OTRAS APORTACIONES FAUNÍSTICAS SOBRE ESPECIES ASOCIADAS A FRONDOSAS SENESCENTES (COLEOPTERA: ELATERIDAE) José I. Recalde Irurzun 1 & Antonio Sánchez-Ruiz 2 1 Andreszar, 21, 31610-Villava, Navarra, España – [email protected] 2 Médico Solana, 8-B, 02610-El Bonillo, Albacete, España – [email protected] Resumen: Lacon querceus (Herbst, 1784), Calambus bipustulatus (Linnaeus, 1767), Megapenthes lugens (Redtenbacher, 1842), Procraerus tibialis (Lacordaire, 1835), Ischnodes sanguinicollis (Panzer, 1793), Denticollis linearis (Linnaeus, 1758) y Cardiophorus gramineus (Scopoli, 1763), elatéridos que se desarrollan en su mayoría en viejos árboles senescentes, se citan para Navarra (norte de España). Se trata por lo general de especies raras, y de las que se confirma, en varios casos, su presencia en la Península Ibérica. Palabras Clave: Elateridae, árboles huecos, árboles veteranos, saproxílicos, Procraerus tibialis, Coleoptera, Península Ibérica. Forest-dwelling Elateridae (Coleoptera) of Navarre (IV). Presence of Procraerus tibialis (Lacordaire, 1835) in the Iberian Peninsula, and other records on click beetle species dependent upon veteran broad-leaved trees. Abstract: Lacon querceus (Herbst, 1784), Calambus bipustulatus (Linnaeus, 1767), Megapenthes lugens (Redtenbacher, 1842), Procraerus tibialis (Lacordaire, 1835), Ischnodes sanguinicollis (Panzer, 1793), Denticollis linearis (Linnaeus, 1758) and Cardiophorus gramineus (Scopoli, 1763), click beetles most of them developing in old deciduos trees, are reported from Navarra (north Spain). Since most of them are considered as rare species, several records are really confirming the presence of several species in the Iberian Peninsula. Key words: Elateridae, hollow trees, veteran trees, saproxylic, Procraerus tibialis, Coleoptera, Iberian Peninsula.
    [Show full text]
  • Life Cycle of Agriotes Wireworms and Their Effect on Maize Cultivation – from a Swedish Perspective
    Department of Ecology Life cycle of Agriotes wireworms and their effect on maize cultivation – From a Swedish perspective Ellen Stolpe Nordin Agriculture Programme – Soil and Plant Sciences Bachelor’s thesis Uppsala 2017 Independent project/Degree project / SLU, Department of Ecology 2017:3 Life cycle of Agriotes wireworms and their effect in maize cultivation – from a Swedish perspective Ellen Stolpe Nordin Supervisors: Laura Riggi, Swedish University of Agricultural Sciences, Department of Ecology Barbara Ekbom, Swedish University of Agricultural Sciences, Department of Ecology Examiner: Riccardo Bommarco, Swedish University of Agricultural Sciences, Department of Ecology Credits: 15 Level: G2E Course title: Independent Project in Biology – Bachelor’s thesis Course code: EX0689 Programme/education: Agriculture Programme – Soil and Plant Sciences Place of publication: Uppsala Year of publication: 2017 Cover picture: Chris Moody Title of series: Independent project/Degree project / SLU, Department of Ecology Part no: 2017:3 Online publication: http://stud.epsilon.slu.se Keywords: Elateridae, Agriotes, lifecycle, control, maize Sveriges lantbruksuniversitet Swedish University of Agricultural Sciences Faculty of Natural Resources and Agricultural Sciences Department of Ecology 2 Sammanfattning Majsodlingen i Sverige har ökat med nästan 60% det senaste årtioendet. Med ökad majs odling finns det en möjlighet att problem med knäpparlarver ökar i denna produktion. Knäpparlarver är vanliga i Sverige och de arter som räknas som skadegörare är Agriotes lineatus (L.), Agriotes obscurus (L.) och Agriotes sputator (L.). I Sverige har ingen forskning gjorts på knäppares livscykel. Detta kan vara problematiskt när kontroll av dessa larver behövs. Knäppare gynnas i gräsmarker, exempelvis i vallar, där de har stor tillgång på underjordiska växtdelar som de äter, i denna typ av marker är också markfuktigheten högra vilket är viktigt för att egg och larver ska kunna utvecklas.
    [Show full text]
  • Soil Type Mediates the Effectiveness of Biological Control Against Limonius Californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W
    Journal of Economic Entomology, 111(5), 2018, 2053–2058 doi: 10.1093/jee/toy196 Advance Access Publication Date: 6 July 2018 Biological and Microbial Control Research Article Soil Type Mediates the Effectiveness of Biological Control Against Limonius californicus (Coleoptera: Elateridae) Pooria Ensafi,1 David W. Crowder,2 Aaron D. Esser,3 Zhiguo Zhao,4 Juliet M. Marshall,1 and Arash Rashed1,5,6 1Department of Entomology, Plant Pathology and Nematology, Aberdeen Research and Extension Center, University of Idaho, 2 3 Aberdeen, ID 83210, Department of Entomology, Washington State University Extension, Ritzville, WA 99164, Washington Downloaded from https://academic.oup.com/jee/article/111/5/2053/5049656 by guest on 24 September 2021 State University, Extension, Ritzville, WA 99169, 4Department of Entomology, Shanxi Agricultural University, Taigu 030801, China, 5Department of Entomology, Plant Pathology and Nematology, University of Idaho, Moscow, ID 83844, and 6Corresponding author, e-mail: [email protected] Subject Editor: Surendra Dara Received 22 March 2018; Editorial decision 18 June 2018 Abstract Wireworms, the larval stage of click beetles (Coleoptera: Elateridae), are a considerable threat to cereal and vegetable production in the Pacific Northwest and Intermountain regions of the United States. As insecticides are generally ineffective, alternative controls are needed to improve wireworm management. Wireworms are continuously exposed to a wide range of subterranean pathogenic organisms in the soil; identifying these organisms and determining their impact would contribute to the development of biological control for wireworms. Here, we evaluated the efficacy of an entomopathogenic nematode, Steinernema carpocapsae (Weiser) (Rhabditida: Steinernematidae), and a fungus, Metarhizium brunneum Petch (strain F52) (Hypocreales: Clavicipitaceae), for control of the Pacific Northwest predominant wireworm speciesLimonius californicus, in two different soil media.
    [Show full text]
  • Table of Contents I
    Comparison of the gut microbiome of a generalist insect, Spodoptera littoralis and a specialist, leaf and root feeder one, Melolontha hippocastani Dissertation To Fulfill the Requirements for the Degree of „doctor rerum naturalium“ (Dr. rer. nat.) Submitted to the Council of the Faculty Of Biology and Pharmacy of the Friedrich Schiller University By Master of Science of Horticulture Erika Arias Cordero Born on 01.11.1977 in San José, Costa Rica Gutachter: 1. ___________________________ 2. ___________________________ 3. ___________________________ Tag der öffentlichen verteidigung:……………………………………. Table of Contents i Table of Contents 1. General Introduction 1 1.1 Insect-bacteria associations ......................................................................................... 1 1.1.1 Intracellular endosymbiotic associations ........................................................... 2 1.1.2 Exoskeleton-ectosymbiotic associations ........................................................... 4 1.1.3 Gut lining ectosymbiotic symbiosis ................................................................... 4 1.2 Description of the insect species ................................................................................ 12 1.2.1 Biology of Spodoptera littoralis ............................................................................ 12 1.2.2 Biology of Melolontha hippocastani, the forest cockchafer ................................... 14 1.3 Goals of this study ....................................................................................................
    [Show full text]
  • Invertebrate Pest Management for Pacific Northwest Pastures
    Invertebrate Pest Management for Pacific Northwest Pastures A.J. Dreves, N. Kaur. M.G. Bohle, D. Hannaway, G.C. Fisher and S.I. Rondon Photo: Mylen Bohle, © Oregon State University Figure 1. A pasture in the Pacific Northwest. Introduction Amy J. Dreves, Extension A well-managed pasture (Figure 1) has several ecological and economic benefits. pest management However, a variety of pests can diminish those benefits. specialist, University of the Virgin Islands; Several species of arthropods (insects, mites and garden symphylans), and gastropods Navneet Kaur, Extension (slugs) inhabit pastures of the Pacific Northwest of the United States. Newly planted entomologist; Mylen Bohle, pastures are more vulnerable to damage caused by invertebrate pests carried over Extension agronomist; from previous rotations if preventative measures such as tillage practices, adjustment David Hannaway, Extension of planting times, removal of infected plant material and healthy plant-management forage specialist; Glenn tactics are not followed. Infestations in established pastures occur when migrating pest Fisher, emeritus Extension populations attack from adjacent areas. entomologist; and Silvia Either way, an invertebrate pest population can reduce a pasture’s productivity and Rondon, Extension yield when damage exceeds an intolerable level generally referred to as an economic entomology specialist, all of threshold level. Pest populations tend to fluctuate in nature and are heavily regulated Oregon State University. by climate, food availability and ecosystem disturbance. Biological factors such as predators, parasites and entomopathogens also play an important role in pest population suppression (Figure 2, page 2). An integrated pest management strategy can maintain pest populations below economically damaging levels. IPM is a holistic approach that relies on knowledge of pest biology and ecology and their interactions with and within systems.
    [Show full text]
  • Insects and Related Arthropods Associated with of Agriculture
    USDA United States Department Insects and Related Arthropods Associated with of Agriculture Forest Service Greenleaf Manzanita in Montane Chaparral Pacific Southwest Communities of Northeastern California Research Station General Technical Report Michael A. Valenti George T. Ferrell Alan A. Berryman PSW-GTR- 167 Publisher: Pacific Southwest Research Station Albany, California Forest Service Mailing address: U.S. Department of Agriculture PO Box 245, Berkeley CA 9470 1 -0245 Abstract Valenti, Michael A.; Ferrell, George T.; Berryman, Alan A. 1997. Insects and related arthropods associated with greenleaf manzanita in montane chaparral communities of northeastern California. Gen. Tech. Rep. PSW-GTR-167. Albany, CA: Pacific Southwest Research Station, Forest Service, U.S. Dept. Agriculture; 26 p. September 1997 Specimens representing 19 orders and 169 arthropod families (mostly insects) were collected from greenleaf manzanita brushfields in northeastern California and identified to species whenever possible. More than500 taxa below the family level wereinventoried, and each listing includes relative frequency of encounter, life stages collected, and dominant role in the greenleaf manzanita community. Specific host relationships are included for some predators and parasitoids. Herbivores, predators, and parasitoids comprised the majority (80 percent) of identified insects and related taxa. Retrieval Terms: Arctostaphylos patula, arthropods, California, insects, manzanita The Authors Michael A. Valenti is Forest Health Specialist, Delaware Department of Agriculture, 2320 S. DuPont Hwy, Dover, DE 19901-5515. George T. Ferrell is a retired Research Entomologist, Pacific Southwest Research Station, 2400 Washington Ave., Redding, CA 96001. Alan A. Berryman is Professor of Entomology, Washington State University, Pullman, WA 99164-6382. All photographs were taken by Michael A. Valenti, except for Figure 2, which was taken by Amy H.
    [Show full text]
  • Montana Naturalist
    NatMuONTANAralisWinter 2012-2013t Why can’t we just get along? Hiking Columbia Mountain Birds in Snow Stargazing and More page 9 Connecting People with Nature WINTER 2012-13 MONTANA NATURALIST TO PROMOTE AND CULTIVATE THE APPRECIATION, UNDERSTANDING AND STEWARDSHIP OF NATURE THROUGH EDUCATION inside Winter 2012-2013 NatMuONTANAralist Features 4 Sharing the Land A local non-profit helps make it happen by Caroline Kurtz 6 What Is Wild? Searching for an answer on Columbia Mountain by Matt Holloway 4 Departments 3 Tidings 9 Get Outside Guide What’s that star?; the search for exoplanets; whitebark pine ecology and more Special 6 13 Community Focus Pull-Out Beginning beekeepers, buzzing bees Section 14 Far Afield Snowed In! Birdwatching in a blizzard 16 Imprints 2012 honorees; fall celebration thank yous 18 Magpie Market 9 13 19 Reflections Under the Oak intaglio print by Elizabeth Claire Rose Cover – A Grizzly Bear (Ursus arctos horribilis) feeds along the shore of Yellowstone Lake as a snow storm blows in on a cold Fall afternoon in Yellowstone National Park. Captured with a Canon 7D and 70-200/2.8L IS II in aperture priority mode with an exposure bias of + 2/3 at ISO400, f/2.8, and 1/500th of a second. The camera was handheld. This bear was photographed while leading Rocky Mountain College students on a class trip for ART243 - 14 16 Nature Photography. Photographer Dave Shumway is the staff photographer and adjunct instructor of photography for Rocky Mountain College in Billings, Montana. Dave has two passions, one for the outdoors and one for photography.
    [Show full text]
  • 2020 Recreational Trails Program Project Proposals
    2020 Recreational Trails Program Project Proposals Request RTP Request Organization Name Project Title Project Type Category Amount 1 Absaroka Beartooth Trail Stewardship Program: Hiring & Utilizing Trail Stewards and Non-Motorized Standard $37,522.00 Wilderness Foundation Volunteers to tackle Trail Maintenance projects in the Absaroka- Beartooth Wilderness Area 2 Anaconda Community Washoe Park Trail Phase II: Restoration on 0.13 miles of the trail of Non-Motorized Standard $33,221.24 Foundation a mile-long trail network in Anaconda-Deer Lodge 3 Back Country Horsemen of Volunteer Trail Maintenance on the CDT: Maintain the Continental Diversified Standard $66,300.00 Montana Divide National Scenic Trail in Montana and feeder trails 4 Beartooth Recreational Trails Winter Trail Maintenance: Winter Grooming on 5.3 miles of West Diversified Standard $20,000.00 Association Fork Road and 9.3 miles of trails on Aspen Ridge Ranch near Red Lodge 5 Big Sandy, Town of Town of Big Sandy Safe Route to Schools Project: Construction of Non-Motorized Standard $60,560.00 0.3 miles of trail connecting F. E. Miley Elementary School to existing trail infrastructure in Big Sandy 6 Big Sky Community Improvements to the Ousel Falls/US Forest Service Yellowmules Non-Motorized Standard $55,000.00 Organization trailhead to add infrastructure and improve land stewardship 7 Billings, City of Manufacture and installation of 105 wayfinding signs covering Non-Motorized Standard $36,390.00 nearly 10.5 miles of trails in Billings 8 Bitter Root Land Trust, Inc. Acquisition
    [Show full text]