Thaumatotibia Leucotreta (Meyrick) (Lepidoptera: Tortricidae) Population Ecology in Citrus Orchards: the Influence of Orchard Age

Total Page:16

File Type:pdf, Size:1020Kb

Thaumatotibia Leucotreta (Meyrick) (Lepidoptera: Tortricidae) Population Ecology in Citrus Orchards: the Influence of Orchard Age Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) population ecology in citrus orchards: the influence of orchard age Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY at RHODES UNIVERSITY by Sonnica Albertyn December 2017 ABSTRACT 1 Anecdotal reports in the South African citrus industry claim higher populations of false codling moth (FCM), Thaumatotibia (Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), in orchards during the first three to five harvesting years of citrus planted in virgin soil, after which, FCM numbers seem to decrease and remain consistent. Various laboratory studies and field surveys were conducted to determine if, and why juvenile orchards (four to eight years old) experience higher FCM infestation than mature orchards (nine years and older). In laboratory trials, Washington Navel oranges and Nova Mandarins from juvenile trees were shown to be significantly more susceptible to FCM damage and significantly more attractive for oviposition in both choice and no-choice trials, than fruit from mature trees. Although fruit from juvenile Cambria Navel trees were significantly more attractive than mature orchards for oviposition, they were not more susceptible to FCM damage. In contrast, fruit from juvenile and mature Midnight Valencia orchards were equally attractive for oviposition, but fruit from juvenile trees were significantly more susceptible to FCM damage than fruit from mature trees. Artificial diets were augmented with powder from fruit from juvenile or mature Washington Navel orchards at 5%, 10%, 15% or 30%. Higher larval survival of 76%, 63%, 50% and 34%, respectively, was recorded on diets containing fruit powder from the juvenile trees than on diets containing fruit powder from the mature trees, at 69%, 57%, 44% and 27% larval survival, respectively. Bioassays were conducted to determine if differences in plant chemistry between fruit from juvenile and mature trees will have an impact on the susceptibility FCM to entomopathogenic nematodes (EPN), entomopathogenic fungi (EPF) and Cryptophlebia leucotreta granulovirus (CrleGV). No significant differences in the susceptibility of larvae reared on diets containing 15% fruit powder from juvenile and mature trees to EPN and EPF were recorded. Mortality of neonate larvae was significantly lower when placed on diets containing 15% fruit powder from mature trees (45% mortality) than diets containing 15% fruit powder from juvenile trees (61% mortality), after larvae ingested the lowest virus concentration tested, being 2 x104 OBs/ml. Data collected from field surveys showed significantly lower egg parasitism, virus infection of larvae and EPF occurrence in juvenile orchards than mature orchards. Egg parasitism was between 11% and 54% higher in mature orchards than juvenile orchards, with the exception of Mandarins during 2015, where egg parasitism was slightly higher in juvenile orchards, but not significantly so. A significantly higher proportion of larvae retrieved from mature 2 orchards (7% of larvae) were infected with CrleGV than larvae retrieved from juvenile orchards (4% of larvae). A significantly higher occurrence of EPF was recorded in non-bearing and mature orchards, with 40% and 37% occurrence respectively, than in juvenile orchards, with 25% occurrence recorded. EPF occurrence in juvenile orchards increased significantly by 16% to 32% from the first to the third year of sampling. In contrast to results recorded in laboratory trials, similar or higher pest pressure in juvenile orchards than mature orchards did not always result in significantly higher levels of FCM damage under field conditions. FCM damage in juvenile orchards may have been lower than expected, as greater extremes of temperature and lower humidity were recorded in juvenile orchards, which would increase larval mortality. Results of this study showed that juvenile and mature orchards are significantly different and should be managed differently. 3 ACKNOWLEDGEMENTS I wish to express my sincere appreciation to the following persons and institutions: My supervisors, Prof Martin Hill and Dr Sean Moore for their guidance, interest and constructive comments throughout the course of this study. Prof Julie Coetzee for guidance on statistical analysis. Wayne Kirkman, Mathew Goddard, Claire Love, Mellissa Peyper, Sean Thackeray, Dr John Opoku-debhrah, Zongezile Zondi, Zamazima Njili and Zoleka Marwanqana for technical assistance. Dr Candice Coombes and Dr Tamryn Marsberg for identifying entomopathogenic fungi and Prof Antoinette Malan for identifying entomopathogenic nematodes. River Bioscience (Pty) Ltd for supplying the required life stages of false codling moth when needed. The owners and managers of Riverbend Farm, Miskruier Farm, Buffelsbos Farm, Woodridge Farm, Halaron Farm and Douglasdale Farm for allowing me to use their citrus orchards for trials and for their willingness to assist me when needed. Citrus Research International, National Research Foundation and Rhodes University and for funding the project My family and friends, especially my husband for support throughout. 4 TABLE OF CONTENTS ABSTRACT.....................................................................................................1 ACKNOWLEDGEMENTS............................................................................ 4 TABLE OF CONTENTS................................................................................5 TABLES........................................................................................................ 10 FIGURES....................................................................................................... 13 CHAPTER 1 ................................................................................................. 17 General Introduction.................................................................................. 17 1.1 Introduction.................................................................................................17 1.2 Insect Pest Ecology....................................................................................18 1.3 Plant insect interactions.................................................................................21 1.4 Natural enemy interactions........................................................................... 25 1.5 False codling moth.........................................................................................29 1.5.1 Classification and taxonomy...................................................................... 29 1.5.2 Biology and morphology............................................................................ 30 1.5.3 Distribution and host range........................................................................ 32 1.5.4 Economic importance and damage........................................................... 33 1.5.5 Control methods.........................................................................................34 1.5.5.1 Monitoring.............................................................................................34 1.5.5.2 Chemical control...................................................................................35 1.5.5.3 Biological control..................................................................................36 1.5.5.3.1 Parasitoids.....................................................................................37 1.5.5.3.2 Predators........................................................................................38 1.5.5.3.3 Entomopathogenic nematodes...................................................... 38 1.5.5.3.4 Entomopathogenic fungi................................................................ 39 1.5.5.3.5 Viruses...........................................................................................41 1.5.5.4 Cultural control.....................................................................................42 1.5.5.5 Mating disruption..................................................................................42 1.5.5.6 Attract and Kill......................................................................................43 1.5.5.7 Sterile insect technique ...................................................................... 43 1.5.5.8 Post harvest control ............................................................................ 44 5 1.6 Aim of the study............................................................................................45 CHAPTER 2 ................................................................................................. 47 False codling moth oviposition preferences and host susceptibility: the influence of orchard age....................................................................47 2.1 Introduction .................................................................................................... 47 2.2 Materials and Methods .................................................................................. 49 2.2.1 Fruit collection.............................................................................................49 2.2.2 Internal fruit quality tests............................................................................ 49 2.2.3 Nutritional content of Washington Navel oranges......................................50 2.2.4 Washington Navel volatile profile............................................................... 50 2.2.5 False codling moth cultures......................................................................
Recommended publications
  • The Enigma Encryption Machine and Its Electronic Variant
    The Enigma Encryption Machine and its Electronic Variant Michel Barbeau, VE3EMB What is the Enigma? possible initial settings, making the total number of initial settings in the order of 10 power 16. The The Enigma is a machine devised for encrypting initial setting, taken from a code book, indicates plain text into cipher text. The machine was which pairs of letters (if any) are switched with each invented in 1918 by the German engineer Arthur other. The initial setting is called the secret key. Scherbius who lived from 1878 to 1929. The German Navy adopted the Enigma in 1925 to secure World War II was fought from 1939 to 1945 their communications. The machine was also used between the Allies (Great Britain, Russia, the by the Nazi Germany during World War II to cipher United States, France, Poland, Canada and others) radio messages. The cipher text was transmitted in and the Germans (with the Axis). To minimize the Morse code by wireless telegraph to the destination chance of the Allies cracking their code, the where a second Enigma machine was used to Germans changed the secret key each day. decrypt the cipher text back into the original plain text. Both the encrypting and decrypting Enigma The codes used for the naval Enigmas, had machines had identical settings in order for the evocative names given by the germans. Dolphin decryption to succeed. was the main naval cipher. Oyster was the officer’s variant of Dolphin. Porpoise was used for The Enigma consists of a keyboard, a scrambling Mediterranean surface vessels and shipping in the unit, a lamp board and a plug board.
    [Show full text]
  • The the Enigma Enigma Machinemachine
    TheThe EnigmaEnigma MachineMachine History of Computing December 6, 2006 Mike Koss Invention of Enigma ! Invented by Arthur Scherbius, 1918 ! Adopted by German Navy, 1926 ! Modified military version, 1930 ! Two Additional rotors added, 1938 How Enigma Works Scrambling Letters ! Each letter on the keyboard is connected to a lamp letter that depends on the wiring and position of the rotors in the machine. ! Right rotor turns before each letter. How to Use an Enigma ! Daily Setup – Secret settings distributed in code books. ! Encoding/Decoding a Message Setup: Select (3) Rotors ! We’ll use I-II-III Setup: Rotor Ring Settings ! We’ll use A-A-A (or 1-1-1). Rotor Construction Setup: Plugboard Settings ! We won’t use any for our example (6 to 10 plugs were typical). Setup: Initial Rotor Position ! We’ll use “M-I-T” (or 13-9-20). Encoding: Pick a “Message Key” ! Select a 3-letter key (or indicator) “at random” (left to the operator) for this message only. ! Say, I choose “M-C-K” (or 13-3-11 if wheels are printed with numbers rather than letters). Encoding: Transmit the Indicator ! Germans would transmit the indicator by encoding it using the initial (daily) rotor position…and they sent it TWICE to make sure it was received properly. ! E.g., I would begin my message with “MCK MCK”. ! Encoded with the daily setting, this becomes: “NWD SHE”. Encoding: Reset Rotors ! Now set our rotors do our chosen message key “M-C-K” (13-3-11). ! Type body of message: “ENIGMA REVEALED” encodes to “QMJIDO MZWZJFJR”.
    [Show full text]
  • Natural Enemies of Crop Pests Will Feature in the Future of Environmentally Friendly Farming
    Natural enemies of crop pests will feature in the future of environmentally friendly farming Biological control agents are an environmentally-friendly way of controlling pests and diseases on crops and are advocated in the EU’s 16 November 2017 Issue 468 Sustainable Use of Pesticides Directive1. The authors of a new review of the 2 Subscribe to free current state of biological control refer to a recent UN report which states that it is weekly News Alert possible to produce enough food to feed a world population of nine billion with substantially less chemical pesticides — and even without these pesticides if Source: van Lenteren, sufficient effort is made to develop biocontrol-based Integrated Pest Management (IPM) methods. The study suggests that policy measures can speed up the J.C., Bolckmans, K., Köhl, J., Ravensberg, W.J. and development and use of environmentally-friendly crop protection. Urbaneja, A. (2017). Biological control using Augmentative biological control (ABC) involves the mass production of natural invertebrates and enemies of pests and diseases in the form of predators, parasites or micro- microorganisms: plenty of organisms, which are then released to control crop pests (including diseases and new opportunities. weeds). These living pesticides are collectively called ‘biological control agents’. As it offers BioControl: 1–21. an environmentally and economically sound alternative to chemical control, ABC is not just of interest to commercial growers, but to retailers, consumers and policymakers. Contact: [email protected] In this new overview, the researchers describe the important role currently played by Read more about: biological control and list the many hundreds of agents in use.
    [Show full text]
  • Metarhizium Anisopliae
    Biological control of the invasive maize pest Diabrotica virgifera virgifera by the entomopathogenic fungus Metarhizium anisopliae Dissertation zur Erlangung des akademischen Grades Dr. nat. techn. ausgeführt am Institut für Forstentomologie, Forstpathologie und Forstschutz, Departement für Wald- und Bodenwissenschaften eingereicht an der Universiät für Bodenkultur Wien von Dipl. Ing. Christina Pilz Erstgutachter: Ao. Univ. Prof. Dr. phil. Rudolf Wegensteiner Zweitgutachter: Dr. Ing. - AgrarETH Siegfried Keller Wien, September 2008 Preface “........Wir träumen von phantastischen außerirdischen Welten. Millionen Lichtjahre entfernt. Dabei haben wir noch nicht einmal begonnen, die Welt zu entdecken, die sich direkt vor unseren Füßen ausbreitet: Galaxien des Kleinen, ein Mikrokosmos in Zentimetermaßstab, in dem Grasbüschel zu undurchdringlichen Wäldern, Tautropfen zu riesigen Ballons werden, ein Tag zu einem halben Leben. Die Welt der Insekten.........” (aus: Claude Nuridsany & Marie Perennou (1997): “Mikrokosmos - Das Volk in den Gräsern”, Scherz Verlag. This thesis has been submitted to the University of Natural Resources and Applied Life Sciences, Boku, Vienna; in partial fulfilment of the requirements for the degree of Dr. nat. techn. The thesis consists of an introductory chapter and additional five scientific papers. The introductory chapter gives background information on the entomopathogenic fungus Metarhizium anisopliae, the maize pest insect Diabrotica virgifera virgifera as well as on control options and the step-by-step approach followed in this thesis. The scientific papers represent the work of the PhD during three years, of partial laboratory work at the research station ART Agroscope Reckenholz-Tänikon, Switzerland, and fieldwork in maize fields in Hodmezòvasarhely, Hungary, during summer seasons. Paper 1 was published in the journal “BioControl”, paper 2 in the journal “Journal of Applied Entomology”, and paper 3 and paper 4 have not yet been submitted for publications, while paper 5 has been submitted to the journal “BioControl”.
    [Show full text]
  • Subject Reference Dbase 09-05-2006
    Subject reference dbase 09-05-2006 ONDERWERP TYPE NUMMER BIJZ GROEP TREFWOORD1 TREFWOORD2 ELECTRON 1958.12 1958.12 ELEC Z 46 TEK CX GEVR L,KWANTONETC KUBEL TS-N KERST CX LW,KW,LO 0,5/1 KW LW SEND 2.39 As 33/A1 34 Z 101 100-1000 KHZ MOB+FEST MOBS 0,7/1,4 KW SEND AS 60 10.40 AS 60 Z 101 FRUEHE AUSF 3-24 MHZ MOB+FEST MOBS 1 KWTT KW SEND 11.37 S 521 Bs Z 101 =+/-G 1,5.... MOBS 1 KWTT SHORT WAVE TR 5.36 S 486F Z 101 3-7 UND 2,5-6 MHZ MOBS 1 kW KW SEND S 521Bs TELEFUNKEN Z 172 +/-G 1,2K MOBS G1,2K+/- 10 WTT TELEF SENDER 10.34 S 318H Z 101 1500-3333 KHZ GUSS GEH SCHS 100 WTT SEND S 317H TELEFUNKEN Z 172 RS 31g 100-800METER alt SCHS S317H 100 WTT SENDER 4.33 S 317 H Z 101 UNIVERS SENDER 377-3000KHZ MOBS 15 W EINK SEND EMPF 10.35 Stat 272 B Z 101 +/- 15 W SE 469 SE 5285 F1/37 TRSE 15 WTT KARREN STN 4.40 SE 469A Z 101 3-5 MHZ TRSE 15 WTT KW STN 10.35 Spez804/445 Z 101 S= 804Bs E= Spez 445dBg 3-7,5M TRSE 150 WTT LANGW SENDE ANL 8.39 Stat 1006aF Z 101 S 427F SA 429F FLFU 1898-1938 40 JAAR RADIO IN NED SWIERSTRA R. Z 143 INLEGVEL VAN SWIERSTA PRIVE'38 LI 40 RADIO!! WILHELMINA 1kW KW SEND S 486F TELEFUNKEN Z 172 +/-2,5-7,5MHZ MOBS S486 1,5 LW SEND S 366Bs 11.37 S 366Bs Z 101 =+/- G1,5...100-600 KHZ MOBS 1,5kW LW SEND S366Bs TELEFUNKEN Z 172 +/-G 1,5L MOBS S366Bs S366BS 20 WTT FL STN 3.35 Spez 378mF Z 101 TELEF D B FLFU 20 WTT FLUGZEUG STN Spez 378nF TELEFUNKEN Z 172 URALT ANL LW FEST FREQU FLFU Spez378nF Spez378NF 20 WTT MITTELWELL GER Stat901 TELEFUNKEN Z 172 500-1500KHZ Stat 901A/F FLFU 200 WTT KW SEND AS 1008 11.39 AS 1008 Z 101 2,5-10 MHZ A1,A2,A3,HELL
    [Show full text]
  • Enigma 2000 Newsletter
    ENIGMA 2000 NEWSLETTER http://www.enigma2000.org.uk BAe Systems Type 101 Mobile Air Defence Radar System. A fully automatic system capable of firing devices without human intervention. Located in Kent Tnx Male Anon ISSUE 72 September 2012 http://www.enigma2000.org.uk 1 Editorial, Issue 72 Variable signals across the month of July; rapidly changeable weather leading to some peculiar conditions with QRN rearing its ugly head. To break this cycle we offer the cover story before our station round up. Cover pic story Olympics and the Aether Anon In case anyone is still unaware London is hosting the 2012 Olympics, in fact by the time you read this it will all be over. Among the preparations is the need to ensure sufficient radio frequencies are available to meet an unprecedented demand. As the world's media descend on East London there will be a need for a huge range of services from satellite links to mobile phones, Wi-Fi, 2-way radios, radio links and wireless microphones. The job of providing all this falls to the British regulator Ofcom. One of our members living close to London has stumbled across what may be a strange side effect of this process. As a monitor of all things radio he regularly scans the FM broadcast band, logging illegal "pirate" stations centred on the capital. For the past few years the band has been seemingly abandoned to the pirates, for Ofcom, once a proactive body, now only acts when an interference complaint is received. Many of the stations run twenty four-hours a day, seven days a week, with others adding to the mix at weekends.
    [Show full text]
  • Phd Dissertation
    PHD DISSERTATION „Contributions to the study of biology, ecology and control of principal pests of cereal crops in the conditions of Vaslui County” Doctoral student:Eng. PĂUNEł Petru Doctorate coordinator: Prof. TĂLMACIU Mihai PhD. Prof. FILIPESCU Constantin PhD. Cereal grains, especially wheat is the most important cultivated plant, the most widespread in the world, cultivated in over 100 countries and is a leading commercial source. The importance of wheat is given by: • the chemical composition of grains and the ratio of carbohydrates and protein in relation to body requirements; • high ecological plasticity, being grown in different climates (subtropical, mediteranean, oceanic, continental steppe) on different soil types as fertility level, • the possibility of complete mechanization of crop production and obtaining cheap; • can storage, transport and storage without altering. Cereal straw uses are many and varied. The berries are used for a range of milling products which are manufactured a wide assortment of breads, pasta, pastries and biscuits which are staple foods for 35-55% of world population, providing 50-55% of calories consumed throughout the world, together with other cultivated cereals. Following processing of large wheat mills resulting large amounts of bran, which is a valuable concentrates (rich in proteins, fats and minerals) and high in vitamins containing germs, which is a natural polyvitamin but uses lipids with cosmetics. Straw remaining after harvest can be used for cellulose, feed or bedding volume for various types of animals, organic fertilizer after composting period as such or incorporated into soil after harvest, and by briquetting can be used as fuel. Agricultural importance is given by the full mechanization of culture, early release of land and summer tillage are possible, being a good run for most crops, after the early varieties, the siting of successive crops in some areas.
    [Show full text]
  • Effect of Various Agriculture Systems on Pest Entomofauna Diversity W
    Ukrainian Journal of Ecology, , 8-12, doi: 10.15421/2021_69 ORIGINAL ARTICLE UDC 632.9: 632.76: 631.58 Effect of various agriculture systems on pest entomofauna diversity W. T. Sabluk1, V. M Sinchenko1, O. M. Grischenko1, M. Ya. Gumentyk1, A. V. Fedorenko2 1Institute of Bioenergy Crops and Sugar Beets of NAAS of Ukraine, 25 Klinichna St, Kyiv, 03141, Ukraine 2Institute of Plant Protection NAAS, 33 Vasylkivska St, Kyiv, 03022, Ukraine *Corresponding author E-mail: [email protected] Received: 04.02.2021. Accepted: 04.03.2021. Aim. To investigate the ecological and biological aspects of the formation of entomophauna in agrocenoses of sugar beets, winter wheat, peas, and soybeans according to organic, industrial, and No-till systems. Results. We established that farming systems significantly affect the formation of harmful and useful entomophauna in agrocenoses. In particular, under the organic system, the density of the carabidae population was 1.7–2.7 times higher than in industrial and 3.5 times higher than the No-till system. The number of Coccinellidae larvae and imago under the organic farming system exceeded these figures by 8.3 times compared to industrial. Accordingly, the presence in agrocenoses of useful entomophauna affected the number of certain phytophagous. In particular, the population density of the common beet weevil (Bothynoderes punctiventris Germ.) and beet leaf weevil (Tanymecus palliatus F.) in sugar beet crops under the organic system was 2.2–4.2 times lower compared to the industrial one. This also applies to pests such as bug, sunn pest (Eurygaster integriceps Put.), and wheat grain beetle (Anisoplia austriaca Herbst.) in winter wheat crops, the number of which under the organic system was 1.2–2.5 times less than in industrial.
    [Show full text]
  • Field Pests - in Temperate Zone of Europe - Georgikon Kar Növényvédelmi Intézet
    Module of Applied Entomology Field pests - in temperate zone of Europe - Georgikon Kar Növényvédelmi Intézet AZ ELŐADÁS LETÖLTHETŐ: - Main topics •Polyphagous field pests •Wheat pests •Corn pests •Sunflower pests Main topics •Rapeseed pests •Alfalfa and pea pests •Potato pests •Rice pests I. Polyphagous field pests Polyphagous field pests • PHYTOPHAGY: • MONOPHAGOUS SPECIES: • Feed on only one plant taxon • OLIGOPHAGOUS SPECIES: Feed on a few plant taxa (for example: one plant-family) • POLYPHAGOUS SPECIES (generalist): Feed on many plant taxa TÁMOP-4.1.2.A/2-10/1-2010-0012 5 Polyphagous field pests • POLYPHAGOUS PESTS: • Cockchafers’ (Melolonthidae) larvae (grubs) • Click beetles’ (Elateridae) larvae (wireworms) • Noctuid moths’ (Noctuidae) larvae (caterpillars) • Rodents (common vole, gopher, hamster) • Games (rabbit, roe-deer, red-deer, wild boar) TÁMOP-4.1.2.A/2-10/1-2010-0012 6 Polyphagous field pests • COCKCHAFERS: • 12 species living in Hungary • The most importants are the followings: 1. Common cockchafer (Melolontha melolontha) TÁMOP-4.1.2.A/2-10/1-2010-0012 7 Polyphagous field pests 2. Forest cockchafer (Melolontha hippocastani) TÁMOP-4.1.2.A/2-10/1-2010-0012 8 Polyphagous field pests 3. April beetle (Rhizotrogus aequinoctialis) TÁMOP-4.1.2.A/2-10/1-2010-0012 9 Polyphagous field pests 4. Summer chafer (Amphimallon solstitiale) TÁMOP-4.1.2.A/2-10/1-2010-0012 10 Polyphagous field pests 5. June beetle (Polyphylla fullo) TÁMOP-4.1.2.A/2-10/1-2010-0012 11 Polyphagous field pests 6. Vine chafer (Anomala vitis) TÁMOP-4.1.2.A/2-10/1-2010-0012 12 Polyphagous field pests 7.
    [Show full text]
  • Guidelines for Monitoring Diseases, Pests and Weeds in Cereal Crops
    GUIDELINES FOR MONITORING DISEASES, PESTS AND WEEDS IN CEREAL CROPS ISBN 978-92-5-109180-7 978 9251 091807 I5550E/1/04.16 GUIDELINES FOR MONITORING DISEASES, PESTS AND WEEDS IN CEREAL CROPS Murat Koyshibayev and Hafiz Muminjanov Food and Agriculture Organization of the United Nations Ankara, 2016 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109180-7 © FAO 2016 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way. All requests for translation and adaptation rights, and for resale and other commercial use rights should be made via www.fao.org/contact-us/licence-request or addressed to [email protected].
    [Show full text]
  • Hi -Tech Nursery and Quality Transplant Production in Vegetable Crops
    Hi -tech Nursery and Quality Transplant Production in Vegetable Crops Tissue culture for large-scale multiplication of elite clones of pointed gourd Shoot initiation Shoot multilplication Root initiation A.K. Pandey College of Horticulture and Forestry Rani Lakshmi Bai Central Agricultural University, Jhansi-284003 Correct Citation Hi -tech Nursery and Quality Transplant Production in Vegetable Crops Year of Publication 2020 Compiled and Edited A.K.Pandey Compilation Assistance G. S. Abrol ® All Rights Reserved College of Horticulture and Forestry Rani Lakshmi Bai Central Agricultural University, Jhansi-284003 Hi -tech Nursery and Quality Transplant Production in Vegetable Crops A.K. Pandey College of Horticulture and Forestry College of Horticulture and Forestry Rani Lakshmi Bai Central Agricultural University, Jhansi-284003 Vice-Chancellor RLBCAU Jhansi-284003 Prof. Arvind Kumar FOREWORD India is a leading vegetable producing country in the world with an annual production of 184.9 million MT in an estimated area of 10.26 million ha, having the productivity of 18.43 MT/ ha (NHB, 2018-19), ranking next to China. In the recent past, the country has made quantum jump in production but our productivity in most of the vegetables is low as compared to China and other leading vegetable producing countries. The higher productivity in these countries is due to the coverage of maximum area under hybrids unlike open pollinated varieties in India. The area under hybrids varies with the crop, season and availability of hybrid seeds in our country for example, area under hybrid tomato is 40 %, cabbage 68.6%, brinjal 82% and okra covers around 10 percent whereas, a country like Japan is having entire area under hybrid in most of the vegetables.
    [Show full text]
  • Midwest Biological Control News
    Midwest Biological Control News Know Your Friends The Entomopathogenic Fungus Metarhizium anisopliae Metarhizium anisopliae, formerly known as Entomophthora anisopliae, is a widely distributed soil- inhabiting fungus. The first use of M. anisopliae as a microbial agent against insects was in 1879, when Elie Metchnikoff used it in experimental tests to control the wheat grain beetle, Anisoplia austriaca. It was later used to control the sugar beet curculio, Cleonus punctiventris. A member of the Hyphomycetes class of fungi, M. anisopliae is categorized as a green muscardine fungus due to the green color of the sporulating colonies. It has been reported to infect approximately 200 species of insects and other arthropods. Although M. anisopliae is not infectious or toxic to mammals, inhalation of spores could cause allergic reactions in sensitive individuals. M. anisopliae generally enters insects through spiracles and pores in the sense organs. Once inside the insect, the fungus produces a lateral extension of hyphae, which eventually proliferate and consume the internal contents of the insect. Hyphal growth continues until the insect is filled with mycelia. When the internal contents have been consumed, the fungus breaks through the cuticle and sporulates, which makes the insect appear "fuzzy." M. anisopliae can release spores (conidia) under low humidity conditions (<50%). In addition, M. anisopliae can obtain nutrition from the lipids on the cuticle. The fungus can also produce secondary metabolites, such as destruxin, which have insecticidal properties on moth and fly larvae. Some insects have developed physiological mechanisms to reduce infection by fungi such as M. anisopliae. For example, the desert locust produces antifungal toxins, which can inhibit the germination of spores.
    [Show full text]