Metarhizium Anisopliae
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thematic Forest Dictionary
Elżbieta Kloc THEMATIC FOREST DICTIONARY TEMATYCZNY SŁOWNIK LEÂNY Wydano na zlecenie Dyrekcji Generalnej Lasów Państwowych Warszawa 2015 © Centrum Informacyjne Lasów Państwowych ul. Grójecka 127 02-124 Warszawa tel. 22 18 55 353 e-mail: [email protected] www.lasy.gov.pl © Elżbieta Kloc Konsultacja merytoryczna: dr inż. Krzysztof Michalec Konsultacja i współautorstwo haseł z zakresu hodowli lasu: dr inż. Maciej Pach Recenzja: dr Ewa Bandura Ilustracje: Bartłomiej Gaczorek Zdjęcia na okładce Paweł Fabijański Korekta Anna Wikło ISBN 978-83-63895-48-8 Projek graficzny i przygotowanie do druku PLUPART Druk i oprawa Ośrodek Rozwojowo-Wdrożeniowy Lasów Państwowych w Bedoniu TABLE OF CONTENTS – SPIS TREÂCI ENGLISH-POLISH THEMATIC FOREST DICTIONARY ANGIELSKO-POLSKI TEMATYCZNY SŁOWNIK LEÂNY OD AUTORKI ................................................... 9 WYKAZ OBJAŚNIEŃ I SKRÓTÓW ................................... 10 PLANTS – ROŚLINY ............................................ 13 1. Taxa – jednostki taksonomiczne .................................. 14 2. Plant classification – klasyfikacja roślin ............................. 14 3. List of forest plant species – lista gatunków roślin leśnych .............. 17 4. List of tree and shrub species – lista gatunków drzew i krzewów ......... 19 5. Plant morphology – morfologia roślin .............................. 22 6. Plant cells, tissues and their compounds – komórki i tkanki roślinne oraz ich części składowe .................. 30 7. Plant habitat preferences – preferencje środowiskowe roślin -
Construction of an Improved Mycoinsecticide Overexpressing a Toxic Protease RAYMOND J
Proc. Natl. Acad. Sci. USA Vol. 93, pp. 6349-6354, June 1996 Agricultural Sciences Construction of an improved mycoinsecticide overexpressing a toxic protease RAYMOND J. ST. LEGER, LOKESH JOSHI, MICHAEL J. BIDOCHKA, AND DONALD W. ROBERTS Boyce Thompson Institute, Cornell University, Tower Road, Ithaca NY 14853 Communicated by John H. Law, University ofArizona, Tucson, AZ, March 1, 1996 (received for review October 31, 1995) ABSTRACT Mycoinsecticides are being used for the con- Until recently, lack of information on the molecular basis of trol of many insect pests as an environmentally acceptable fungal pathogenicity precluded genetic engineering to improve alternative to chemical insecticides. A key aim of much recent control potential. We have developed molecular biology meth- work has been to increase the speed of kill and so improve ods to elucidate pathogenic processes in the commercially commercial efficacy of these biocontrol agents. This might be important entomopathogen Metarhizium anisopliae and have achieved by adding insecticidal genes to the fungus, an ap- cloned several genes that are expressed when the fungus is proach considered to have enormous potential for the im- induced by starvation stress to alter its saprobic growth habit, provement of biological pesticides. We report here the devel- develop a specialized infection structure (i.e., the appressor- opment of a genetically improved entomopathogenic fungus. ium), and attack its insect host (6). One of these genes encodes Additional copies of the gene encoding a regulated cuticle- a subtilisin-like protease (designated Prl) which solubilizes the degrading protease (Prl) from Metarhizium anisopliae were proteinaceous insect cuticle, assisting penetration of fungal inserted into the genome of M. -
Integration of Entomopathogenic Fungi Into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops
insects Review Integration of Entomopathogenic Fungi into IPM Programs: Studies Involving Weevils (Coleoptera: Curculionoidea) Affecting Horticultural Crops Kim Khuy Khun 1,2,* , Bree A. L. Wilson 2, Mark M. Stevens 3,4, Ruth K. Huwer 5 and Gavin J. Ash 2 1 Faculty of Agronomy, Royal University of Agriculture, P.O. Box 2696, Dangkor District, Phnom Penh, Cambodia 2 Centre for Crop Health, Institute for Life Sciences and the Environment, University of Southern Queensland, Toowoomba, Queensland 4350, Australia; [email protected] (B.A.L.W.); [email protected] (G.J.A.) 3 NSW Department of Primary Industries, Yanco Agricultural Institute, Yanco, New South Wales 2703, Australia; [email protected] 4 Graham Centre for Agricultural Innovation (NSW Department of Primary Industries and Charles Sturt University), Wagga Wagga, New South Wales 2650, Australia 5 NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, New South Wales 2477, Australia; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +61-46-9731208 Received: 7 September 2020; Accepted: 21 September 2020; Published: 25 September 2020 Simple Summary: Horticultural crops are vulnerable to attack by many different weevil species. Fungal entomopathogens provide an attractive alternative to synthetic insecticides for weevil control because they pose a lesser risk to human health and the environment. This review summarises the available data on the performance of these entomopathogens when used against weevils in horticultural crops. We integrate these data with information on weevil biology, grouping species based on how their developmental stages utilise habitats in or on their hostplants, or in the soil. -
Thaumatotibia Leucotreta (Meyrick) (Lepidoptera: Tortricidae) Population Ecology in Citrus Orchards: the Influence of Orchard Age
Thaumatotibia leucotreta (Meyrick) (Lepidoptera: Tortricidae) population ecology in citrus orchards: the influence of orchard age Submitted in fulfilment of the requirements for the degree of DOCTOR OF PHILOSOPHY at RHODES UNIVERSITY by Sonnica Albertyn December 2017 ABSTRACT 1 Anecdotal reports in the South African citrus industry claim higher populations of false codling moth (FCM), Thaumatotibia (Cryptophlebia) leucotreta (Meyr) (Lepidoptera: Tortricidae), in orchards during the first three to five harvesting years of citrus planted in virgin soil, after which, FCM numbers seem to decrease and remain consistent. Various laboratory studies and field surveys were conducted to determine if, and why juvenile orchards (four to eight years old) experience higher FCM infestation than mature orchards (nine years and older). In laboratory trials, Washington Navel oranges and Nova Mandarins from juvenile trees were shown to be significantly more susceptible to FCM damage and significantly more attractive for oviposition in both choice and no-choice trials, than fruit from mature trees. Although fruit from juvenile Cambria Navel trees were significantly more attractive than mature orchards for oviposition, they were not more susceptible to FCM damage. In contrast, fruit from juvenile and mature Midnight Valencia orchards were equally attractive for oviposition, but fruit from juvenile trees were significantly more susceptible to FCM damage than fruit from mature trees. Artificial diets were augmented with powder from fruit from juvenile or mature Washington Navel orchards at 5%, 10%, 15% or 30%. Higher larval survival of 76%, 63%, 50% and 34%, respectively, was recorded on diets containing fruit powder from the juvenile trees than on diets containing fruit powder from the mature trees, at 69%, 57%, 44% and 27% larval survival, respectively. -
Natural Enemies of Crop Pests Will Feature in the Future of Environmentally Friendly Farming
Natural enemies of crop pests will feature in the future of environmentally friendly farming Biological control agents are an environmentally-friendly way of controlling pests and diseases on crops and are advocated in the EU’s 16 November 2017 Issue 468 Sustainable Use of Pesticides Directive1. The authors of a new review of the 2 Subscribe to free current state of biological control refer to a recent UN report which states that it is weekly News Alert possible to produce enough food to feed a world population of nine billion with substantially less chemical pesticides — and even without these pesticides if Source: van Lenteren, sufficient effort is made to develop biocontrol-based Integrated Pest Management (IPM) methods. The study suggests that policy measures can speed up the J.C., Bolckmans, K., Köhl, J., Ravensberg, W.J. and development and use of environmentally-friendly crop protection. Urbaneja, A. (2017). Biological control using Augmentative biological control (ABC) involves the mass production of natural invertebrates and enemies of pests and diseases in the form of predators, parasites or micro- microorganisms: plenty of organisms, which are then released to control crop pests (including diseases and new opportunities. weeds). These living pesticides are collectively called ‘biological control agents’. As it offers BioControl: 1–21. an environmentally and economically sound alternative to chemical control, ABC is not just of interest to commercial growers, but to retailers, consumers and policymakers. Contact: [email protected] In this new overview, the researchers describe the important role currently played by Read more about: biological control and list the many hundreds of agents in use. -
Fifty Million Years of Beetle Evolution Along the Antarctic Polar Front
Fifty million years of beetle evolution along the Antarctic Polar Front Helena P. Bairda,1, Seunggwan Shinb,c,d, Rolf G. Oberprielere, Maurice Hulléf, Philippe Vernong, Katherine L. Moona, Richard H. Adamsh, Duane D. McKennab,c,2, and Steven L. Chowni,2 aSchool of Biological Sciences, Monash University, Clayton, VIC 3800, Australia; bDepartment of Biological Sciences, University of Memphis, Memphis, TN 38152; cCenter for Biodiversity Research, University of Memphis, Memphis, TN 38152; dSchool of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea; eAustralian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia; fInstitut de Génétique, Environnement et Protection des Plantes, Institut national de recherche pour l’agriculture, l’alimentation et l’environnement, Université de Rennes, 35653 Le Rheu, France; gUniversité de Rennes, CNRS, UMR 6553 ECOBIO, Station Biologique, 35380 Paimpont, France; hDepartment of Computer and Electrical Engineering and Computer Science, Florida Atlantic University, Boca Raton, FL 33431; and iSecuring Antarctica’s Environmental Future, School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia Edited by Nils Chr. Stenseth, University of Oslo, Oslo, Norway, and approved May 6, 2021 (received for review August 24, 2020) Global cooling and glacial–interglacial cycles since Antarctica’s iso- The hypothesis that diversification has proceeded similarly in lation have been responsible for the diversification of the region’s Antarctic marine and terrestrial groups has not been tested. While marine fauna. By contrast, these same Earth system processes are the extinction of a diverse continental Antarctic biota is well thought to have played little role terrestrially, other than driving established (13), mounting evidence of significant and biogeo- widespread extinctions. -
Coleoptera: Scarabaeidae: Dynastinae) and the Separation of Dynastini and Oryctini
Chromosome analyses challenge the taxonomic position of Augosoma centaurus Fabricius, 1775 (Coleoptera: Scarabaeidae: Dynastinae) and the separation of Dynastini and Oryctini Anne-Marie DUTRILLAUX Muséum national d’Histoire naturelle, UMR 7205-OSEB, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) Zissis MAMURIS University of Thessaly, Laboratory of Genetics, Comparative and Evolutionary Biology, Department of Biochemistry and Biotechnology, 41221 Larissa (Greece) Bernard DUTRILLAUX Muséum national d’Histoire naturelle, UMR 7205-OSEB, case postale 39, 57 rue Cuvier, F-75231 Paris cedex 05 (France) Dutrillaux A.-M., Mamuris Z. & Dutrillaux B. 2013. — Chromosome analyses challenge the taxonomic position of Augosoma centaurus Fabricius, 1775 (Coleoptera: Scarabaeidae: Dynastinae) and the separation of Dynastini and Oryctini. Zoosystema 35 (4): 537-549. http://dx.doi.org/10.5252/z2013n4a7 ABSTRACT Augosoma centaurus Fabricius, 1775 (Melolonthidae: Dynastinae), one of the largest Scarabaeoid beetles of the Ethiopian Region, is classified in the tribe Dynastini MacLeay, 1819, principally on the basis of morphological characters of the male: large frontal and pronotal horns, and enlargement of fore legs. With the exception of A. centaurus, the 62 species of this tribe belong to ten genera grouped in Oriental plus Australasian and Neotropical regions. We performed cytogenetic studies of A. centaurus and several Asian and Neotropical species of Dynastini, in addition to species belonging to other sub-families of Melolonthidae Leach, 1819 and various tribes of Dynastinae MacLeay, 1819: Oryctini Mulsant, 1842, Phileurini Burmeister, 1842, Pentodontini Mulsant, 1842 and Cyclocephalini Laporte de Castelnau, 1840. The karyotypes of most species were fairly alike, composed of 20 chromosomes, including 18 meta- or sub-metacentric autosomes, one acrocentric or sub-metacentric X-chromosome, and one punctiform Y-chromosome, as that of their presumed common ancestor. -
Stuttgarter Beiträge Zur Naturkunde
download Biodiversity Heritage Library, http://www.biodiversitylibrary.org/ Stuttgarter Beiträge zur Naturkunde ^ Serie A (Biologie) Herausgeber: Staatliches Museum für Naturkunde, Rosenstein 1, D-70191 Stuttgart Stuttgarter Beitr. Naturk. Ser.A Nr. 537 101 S. Stuttgart, 31.5. 1996 Die Kopulationsorgane des Maikäfers Melolontha melolontha (Insecta: Coleoptera: Scarabaeidae). - Ein Beitrag zur vergleichenden und funktionellen Anatomie der ektodermalen Genitalien der Coleoptera The Copulatory Organs of the Cockchafer Melolontha melolontha (Insecta: Coleoptera: Scarabaeidae). - A Contribution to Comparative and Functional Anatomy of Ectodermal Genitalia of the Coleoptera Von Frank-Thorsten Kr eil, Würzburg o^\tHS0/V% Mit 49 Abbildungen und 1 Tabelle ._„, \ APR 4.1997 Xv S u m m a r y \JJBRARl£5- Sclerites, mcmbranes and muscles of male and female copulatory apparatus of the cockcha- fer Melolontha melolontha (Linnacus, 1758) (Insecta: Coleoptera: Scarabaeidae: Melo- lonthinae) are dcscribcd at rcst and during copulation. For the tust ume, the course ol copu lation of Melolontha is dcscribed complctely. By comparing resting position, copulation and supposed oviposition the functions of Single parts of the copulatory organs are inferred. I>\ means of a functional morphological scenario the functioning of copulation is depicted. \ possiblc strategy of the female to stop copulation before Insemination Starts is described (cryptic female choicc). At rest, the aedeagus lies on its lateral side ("deversement"). The course of cjaculatory duct and trachcae indicate a "retournement", a longitudinal IST rota *) Dissertation zur Erlangung des Grades eines 1 )oktors der Natura issensc haften dei tat für Biologie der Eberhard -Karls-Unn ersität Tübingen. - Herrn Dr. (ii kiiakd Mickoi in (Tübingen) zum 65. ( leburtstag gewidmet. -
(Insects). Note 1
Muzeul Olteniei Craiova. Oltenia. Studii úi comunicări. ùtiinĠele Naturii. Tom. 29, No. 2/2013 ISSN 1454-6914 CONTRIBUTIONS TO THE KNOWLEDGE OF RESEARCH ON BEETLE PARASITE FAUNA (INSECTS). NOTE 1. LILA Gima Abstract. The paper presents a synthesis of the data on the parasite fauna of longhorn beetles taken from papers published between 1959 and 2009 ((CONSTANTINEANU, 1959; PANIN &SĂVULESCU, 1961; BALTHASAR, 1963; TUDOR, 1969; PISICĂ, 2001; PISICĂ &POPESCU, 2009) and abroad, between 1945-1966 (GYORFI, 1945-1947; BALACHOWSKY, 1962-1963; HURPIN 1962 - for parasites and parasitoids species found in species of beetles and GRASSE 1953 and KUDO 1966 - to protozoa (Protozoa, sporozoite Gregarinomorpha) parasitic on beetles). In conclusion, beetles are host species for bacteria, protozoa, fungi, nematodes, mites, Hymenoptera and Diptera. To complete data about parasite fauna beetles still will consult other papers from country and from abroad. Keywords: parasites, parasitoids, beetle-host. Rezumat. ContribuĠii la cunoaúterea cercetărilor privind parazitofauna la coleoptere (Insecta). Lucrarea prezintă o sinteză a datelor referitoare la parazitofauna unor specii de coleoptere preluate din lucrări publicate pentru România între 1959-2009 (CONSTANTINEANU, 1959; PANIN &SĂVULESCU, 1961; BALTHASAR, 1963; TUDOR, 1969; PISICĂ, 2001; PISICĂ &POPESCU, 2009) úi pentru străinătate între 1945-1966 (GYORFI, 1945-1947; BALACHOWSKY, 1962-1963; HURPIN 1962 pentru paraziĠi úi parazitoizi găsiĠi la specii de coleoptere precum úi GRASSE 1953 úi KUDO 1966, pentru protozoare parazite la diverse specii de coleoptere). În concluzie, gândaci sunt specii gazdă pentru bacterii, protozoare, ciuperci, nematode, acarieni, hymenoptere úi diptere. Pentru a avea date cât mai complete despre parazitofauna la coleoptere, în continuare vom consulta úi alte lucrări de specialitate din Ġarӽ cât úi din strӽinătate. -
(Other Than Moths) Attracted to Light
Insects (other than moths) attracted to light Prepared by Martin Harvey for BENHS workshop on 9 December 2017 Although light-traps go hand-in-hand with catching and recording moths, a surprisingly wide range of other insects can be attracted to light and appear in light-traps on a regular or occasional basis. The lists below show insects recorded from light-traps of various kinds, mostly from southern central England but with some additions from elsewhere in Britain, and based on my records from the early 1990s to date. Nearly all are my own records, plus a few of species that I have identified for other moth recorders. The dataset includes 2,446 records of 615 species. (See the final page of this document for a comparison with another list from Andy Musgrove.) This isn’t a rigorous survey: it represents those species that I have identified and recorded in a fairly ad hoc way over the years. I record insects in light-traps fairly regularly, but there are of course biases based on my taxonomic interests and abilities. Some groups that come to light regularly are not well-represented on this list, e.g. chironomid midges are missing despite their frequent abundance in light traps, Dung beetle Aphodius rufipes there are few parasitic wasps, and some other groups such as muscid © Udo Schmidt flies and water bugs are also under-represented. It’s possible there are errors in this list, e.g. where light-trapping has been erroneously recorded as a method for species found by day. I’ve removed the errors that I’ve found, but I might not yet have found all of them. -
Phd Dissertation
PHD DISSERTATION „Contributions to the study of biology, ecology and control of principal pests of cereal crops in the conditions of Vaslui County” Doctoral student:Eng. PĂUNEł Petru Doctorate coordinator: Prof. TĂLMACIU Mihai PhD. Prof. FILIPESCU Constantin PhD. Cereal grains, especially wheat is the most important cultivated plant, the most widespread in the world, cultivated in over 100 countries and is a leading commercial source. The importance of wheat is given by: • the chemical composition of grains and the ratio of carbohydrates and protein in relation to body requirements; • high ecological plasticity, being grown in different climates (subtropical, mediteranean, oceanic, continental steppe) on different soil types as fertility level, • the possibility of complete mechanization of crop production and obtaining cheap; • can storage, transport and storage without altering. Cereal straw uses are many and varied. The berries are used for a range of milling products which are manufactured a wide assortment of breads, pasta, pastries and biscuits which are staple foods for 35-55% of world population, providing 50-55% of calories consumed throughout the world, together with other cultivated cereals. Following processing of large wheat mills resulting large amounts of bran, which is a valuable concentrates (rich in proteins, fats and minerals) and high in vitamins containing germs, which is a natural polyvitamin but uses lipids with cosmetics. Straw remaining after harvest can be used for cellulose, feed or bedding volume for various types of animals, organic fertilizer after composting period as such or incorporated into soil after harvest, and by briquetting can be used as fuel. Agricultural importance is given by the full mechanization of culture, early release of land and summer tillage are possible, being a good run for most crops, after the early varieties, the siting of successive crops in some areas. -
Effect of Various Agriculture Systems on Pest Entomofauna Diversity W
Ukrainian Journal of Ecology, , 8-12, doi: 10.15421/2021_69 ORIGINAL ARTICLE UDC 632.9: 632.76: 631.58 Effect of various agriculture systems on pest entomofauna diversity W. T. Sabluk1, V. M Sinchenko1, O. M. Grischenko1, M. Ya. Gumentyk1, A. V. Fedorenko2 1Institute of Bioenergy Crops and Sugar Beets of NAAS of Ukraine, 25 Klinichna St, Kyiv, 03141, Ukraine 2Institute of Plant Protection NAAS, 33 Vasylkivska St, Kyiv, 03022, Ukraine *Corresponding author E-mail: [email protected] Received: 04.02.2021. Accepted: 04.03.2021. Aim. To investigate the ecological and biological aspects of the formation of entomophauna in agrocenoses of sugar beets, winter wheat, peas, and soybeans according to organic, industrial, and No-till systems. Results. We established that farming systems significantly affect the formation of harmful and useful entomophauna in agrocenoses. In particular, under the organic system, the density of the carabidae population was 1.7–2.7 times higher than in industrial and 3.5 times higher than the No-till system. The number of Coccinellidae larvae and imago under the organic farming system exceeded these figures by 8.3 times compared to industrial. Accordingly, the presence in agrocenoses of useful entomophauna affected the number of certain phytophagous. In particular, the population density of the common beet weevil (Bothynoderes punctiventris Germ.) and beet leaf weevil (Tanymecus palliatus F.) in sugar beet crops under the organic system was 2.2–4.2 times lower compared to the industrial one. This also applies to pests such as bug, sunn pest (Eurygaster integriceps Put.), and wheat grain beetle (Anisoplia austriaca Herbst.) in winter wheat crops, the number of which under the organic system was 1.2–2.5 times less than in industrial.