Base of Mt. Adams Glacier Mt

Total Page:16

File Type:pdf, Size:1020Kb

Load more

Base of Mt. Adams Glacier Mt. Adams Wilderness Skamania County, WA T9N R10E S 26, 27, 34, 35 Compiled by Paul Slichter. Updated January 13, 2010 Flora Northwest- http://science.halleyhosting.com Jct. of PCT & Divide Camp Tr: --- N46˚14.430' --- W121˚32.736' --- Elevation: 6029' - +/- 16' Base of Adams Glacier: --- N46˚13.710' --- W121˚31.951' - Elevation: 6940' --- +/- 18' This list encompasses an area below the Adams Glacier and above the Pacific Crest Trail between Adams Creek and the Lewis River. Common Name Scientific Name Family Yarrow Achillea millefolium Asteraceae Agoseris Agoseris sp. Asteraceae Wooly Pussytoes Antennaria lanata Asteraceae Pussytoes Antennaria media or A. umbrinella Asteraceae Broad-leaved Arnica Arnica latifolia Asteraceae Dwarf Mountain Fleabane Erigeron compositus Asteraceae Subalpine Daisy Erigeron glacialis ssp. glacialis Asteraceae Cascade Aster Eucephalus ledophyllus v. ledophyllus Asteraceae Alpine Hawkweed Hieracium triste Asteraceae Alpine aster Oreostemma alpigenum v. alpigenum Asteraceae Dwarf Goldenrod Solidago simplex ssp. simplex v. nana Asteraceae Common Dandylion Taraxacum officinale Asteraceae Cascade Rockcress Arabis furcata v. furcata Brassicaceae Lyall's Rockcress Arabis lyallii v. lyallii Brassicaceae Littleleaf Rockcress Arabis microphylla v. microphylla ? Brassicaceae Suksdorf's Catchfly Silene suksdorfii Caryophyllaceae Common Juniper Juniperus communis v. montana Cupressaceae Little Hare Sedge Carex leporinella Cyperaceae Small-wing Sedge Carex microptera ? Cyperaceae Black Alpine Sedge Carex nigricans Cyperaceae Dunhead Sedge Carex phaeocephala Cyperaceae Presl's Sedge Carex preslii Cyperaceae Showy Sedge Carex spectabilis Cyperaceae Alpine Lady Fern Athyrium alpestre v. americanum Dryopteridaceae Kinnickinick Arctostaphylos uva-ursi Ericaceae White Mountain Heather Cassiope mertensiana v. mertensiana Ericaceae Yellow Heather Phyllodoce glanduliflora Ericaceae Grouse Whortleberry Vaccinium scoparium Ericaceae Arctic Lupine Lupinus arcticus ssp. subalpinus Fabaceae Low Mt. Lupine Lupinus sellulus Fabaceae Drummond's Rush Juncus drummondii Juncaceae Merten's Rush Juncus mertensianus Juncaceae Parry's Rush Juncus parryi Juncaceae Hitchcock's Wood-rush Luzula glabrata ssp. hitchcockiana Juncaceae Club-pod Willowherb Epilobium clavatum Onagraceae Subalpine Fir Abies lasiocarpa Pinaceae Whitebark Pine Pinus albicaulis Pinaceae Mt. Hemlock Tsuga mertensiana Pinaceae Squirrel-tail Grass Elymus elymoides ssp. elymoides Poaceae Alpine Timothy Phleum alpinum ssp. alpinum Poaceae Spike Trisetum Trisetum spicatum Poaceae Spreading Phlox Phlox diffusa v. longistylis Polemoniaceae Henderson's Phlox Phlox hendersonii ? Polemoniaceae Sky-pilot Polemonium elegans Polemoniaceae Cushion Buckwheat Eriogonum ovalifolium v. nivale Polygonaceae Alpine Buckwheat Eriogonum pyrolifolium v. coryphaeum Polygonaceae Pussypaws Cistanthe umbellata v. caudicifera Portulacaceae Partridge Foot Luetkea pectinata Rosaceae Sibbaldia Sibbaldia procumbens Rosaceae Black Cottonwood Populus balsamifera ssp. trichocarpa Salicaceae Tolmie's Saxifrage Saxifraga tolmiei Saxifragaceae Magenta Paintbrush Castilleja parviflora v. oreopola Scrophulariaceae Lewis' Monkeyflower Mimulus lewisii Scrophulariaceae Davidson's Penstemon Penstemon davidsonii Scrophulariaceae Tolmie's Penstemon Penstemon procerus v. tolmiei Scrophulariaceae Liverworts .
Recommended publications
  • Summer 2004 Kelseya

    Summer 2004 Kelseya

    Summer 2004 Kelseya Volume 17 No. 4 e i n Kelseya n o B : n Newsletter of the Montana Native Plant Society o i t a r t s www.umt.edu/mnps/ u l l I Montana Native Plant Society 2002 and 2003 Small Grants Program Trillium ovatum in western Montana—implications for conservation by Tarn Ream sects, such as beetles and bees, for- jackets. The insects transport seeds ose of you who walk age for their pollen. Seed dispersal to their nests where they eat the oily along the forested is also dependent on insects—each food-body and discard the seeds. streamsTh and seeps of western Mon- seed bears a conspicuous, yellow Western Trillium is sensitive to dis- tana in the spring are likely to en- food-body, called an elaiosome, turbance, particularly in the harsh, counter the white-flowering herba- which is attractive to ants and yellow dry conditions of Montana, where it ceous perennial Trillium ovatum. grows at the eastern edge of its Trillium, a name that refers to three range. Removal of rhizomes, the leaves and three petals, has many medicinal portion of the plant, for common names including Wake- commercial use is often skewed to- robin, because it blooms early in the ward the less common large, repro- spring, and Bethroot (Birthroot), in ductive-age plants. There is concern reference to traditional medicinal that market-driven, unsustainable use of the rhizome by Native Ameri- harvest of native medicinal plant cans for childbirth. There are many species, such as Trillium ovatum, species of Trillium in North America, could decimate populations in a very but only Western Trillium, Trillium short time.
  • Outline of Angiosperm Phylogeny

    Outline of Angiosperm Phylogeny

    Outline of angiosperm phylogeny: orders, families, and representative genera with emphasis on Oregon native plants Priscilla Spears December 2013 The following listing gives an introduction to the phylogenetic classification of the flowering plants that has emerged in recent decades, and which is based on nucleic acid sequences as well as morphological and developmental data. This listing emphasizes temperate families of the Northern Hemisphere and is meant as an overview with examples of Oregon native plants. It includes many exotic genera that are grown in Oregon as ornamentals plus other plants of interest worldwide. The genera that are Oregon natives are printed in a blue font. Genera that are exotics are shown in black, however genera in blue may also contain non-native species. Names separated by a slash are alternatives or else the nomenclature is in flux. When several genera have the same common name, the names are separated by commas. The order of the family names is from the linear listing of families in the APG III report. For further information, see the references on the last page. Basal Angiosperms (ANITA grade) Amborellales Amborellaceae, sole family, the earliest branch of flowering plants, a shrub native to New Caledonia – Amborella Nymphaeales Hydatellaceae – aquatics from Australasia, previously classified as a grass Cabombaceae (water shield – Brasenia, fanwort – Cabomba) Nymphaeaceae (water lilies – Nymphaea; pond lilies – Nuphar) Austrobaileyales Schisandraceae (wild sarsaparilla, star vine – Schisandra; Japanese
  • Phylogeny and Biogeography of Tsuga (Pinaceae)

    Phylogeny and Biogeography of Tsuga (Pinaceae)

    Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T.
  • A Guide to Priority Plant and Animal Species in Oregon Forests

    A Guide to Priority Plant and Animal Species in Oregon Forests

    A GUIDE TO Priority Plant and Animal Species IN OREGON FORESTS A publication of the Oregon Forest Resources Institute Sponsors of the first animal and plant guidebooks included the Oregon Department of Forestry, the Oregon Department of Fish and Wildlife, the Oregon Biodiversity Information Center, Oregon State University and the Oregon State Implementation Committee, Sustainable Forestry Initiative. This update was made possible with help from the Northwest Habitat Institute, the Oregon Biodiversity Information Center, Institute for Natural Resources, Portland State University and Oregon State University. Acknowledgments: The Oregon Forest Resources Institute is grateful to the following contributors: Thomas O’Neil, Kathleen O’Neil, Malcolm Anderson and Jamie McFadden, Northwest Habitat Institute; the Integrated Habitat and Biodiversity Information System (IBIS), supported in part by the Northwest Power and Conservation Council and the Bonneville Power Administration under project #2003-072-00 and ESRI Conservation Program grants; Sue Vrilakas, Oregon Biodiversity Information Center, Institute for Natural Resources; and Dana Sanchez, Oregon State University, Mark Gourley, Starker Forests and Mike Rochelle, Weyerhaeuser Company. Edited by: Fran Cafferata Coe, Cafferata Consulting, LLC. Designed by: Sarah Craig, Word Jones © Copyright 2012 A Guide to Priority Plant and Animal Species in Oregon Forests Oregonians care about forest-dwelling wildlife and plants. This revised and updated publication is designed to assist forest landowners, land managers, students and educators in understanding how forests provide habitat for different wildlife and plant species. Keeping forestland in forestry is a great way to mitigate habitat loss resulting from development, mining and other non-forest uses. Through the use of specific forestry techniques, landowners can maintain, enhance and even create habitat for birds, mammals and amphibians while still managing lands for timber production.
  • Summer Newsletter 02

    Summer Newsletter 02

    Summer 2002 Kelseya Volume 15 No. 4 e i n Kelseya n o B : n Newsletter of the Montana Native Plant Society o i t a r t s www.umt.edu/mnps/ u l l I Frederick Pursh and the Lewis and Clark Expedition Part 2 By H. Wayne Phillips who was willing to share his exten- sive American botanical collections, son, the source document for known and A. B. Lambert, a benefactor will- plant species, and sometimes com- ing to finance Pursh in writing a flora ments and notes on the uses of of North America. The work, titled plants. For example, Pursh included Flora Americae Septentrionalis, was a long narrative describing the Native completed and presented to the Lin- American method of preparation and naean Society at its meeting in De- storage for Indian bread-root cember of 1813. Officially published (Psoralea esculenta Pursh), in part in 1814, the manual includes 3,076 from information supplied by Meri- American plant species, or almost wether Lewis. The book has three twice the number in Michaux’s 1803 indices, a Latin and English index, an manual. Pursh’s manual sold in Lon- English and Latin index, and a genus don for one pound, 16 shillings if un- and synonym index (Index Generum colored, and two pounds, 12 shillings Et Synonymorum). The English if colored. Today’s exchange rate is names are common names, like bear- about one pound equals $1.50 (U.S.). berry. The plant species are arranged in Pursh also indicated in his flora the Pursh’s flora according to the Lin- source of each of his plant descrip- naean Sexual System based on the tions with the abbreviations v.s.
  • Annotated Checklist of Vascular Flora, Bryce

    Annotated Checklist of Vascular Flora, Bryce

    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 ON THE COVER Matted prickly-phlox (Leptodactylon caespitosum), Bryce Canyon National Park, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Bryce Canyon National Park Natural Resource Technical Report NPS/NCPN/NRTR–2009/153 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Sarah Topp Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 January 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations.
  • Western Hemlock

    Western Hemlock

    western hemlock and Pinaceae mountain hemlock in mountain hemlock Tsuga mertensiana Brewer spruce cones (left) northwest California and mountain hemlock (right) “droopy top” hemlocks and across the West decorate the high country Bark: varies from purplish brown to reddish brown (similar to Shasta red fir) but with deep, furrowed, more continuous rounded ridges Needles: 1/2”-3/4”, dark green to blue green, bluntly rounded, commonly with stomatal bloom on both sides; spirally arranged on twig imparting a star-like appearance Cones: 2”-5”, reddish brown turning brown with maturity; larger cones similar to Brewer spruce; can remain on tree year-round Habitat: Highest elevations on north face of mountains or cool streamside glades from 4000-9000 feet, upper elevation specimens can grow on south-facing slopes Pinaceae western hemlock Tsuga heterophylla star-like needle growth and small cones are a diagnostic character of this species this “nurse-log” phenomenon is a common sight in old-growth forests of coastal northwest Caifornia Bark: thin and slightly furrowed with long linear strips, varies from grey (outer) to dark red (inner); bases of large trees often buttressedNeedles : ¼” - ¾” similar to lower redwood needles, but shorter and less uniformly flat, splaying out from Range* map for: mountain hemlock (Tsuga mertensiana) the branch at varying angles, dark green above with two white stomatal lines western hemlock ( ) below, glossy green below Cones: one inch and egg shaped with thin scales, Tsuga heterophylla scale length similar to the largest needles Habitat: cool and wet forest along * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Pacific Coast Range: North Coast; within 20 miles of the ocean with few excep- tions Michael Kauffmann | www.conifercountry.com www.conifercountry.comPlate 13 Range* map for: mountain hemlock (Tsuga mertensiana) western hemlock (Tsuga heterophylla) * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Michael Kauffmann | www.conifercountry.com.
  • Bruce Newhouse Is the Owner-Operator of Salix Associates

    Bruce Newhouse Is the Owner-Operator of Salix Associates

    Salix Associates 2525 Potter, Eugene, OR 97405 ◦ tele 541.343.2364 Salix Associates salixassociates.com …offers services in ecologically-based natural resources planning, including botanical/biodiversity surveying, wildlife habitat inventory and analysis, restoration and management planning, and related environmental planning tasks and issues. The Salix Associates work philosophy emphasizes honesty, accuracy, creativity, thoroughness and scientific credibility with a strong interest in continuing education and advancing field and office skills. Work should be enjoyable, and I strive to make it so. Bruce Newhouse is the owner-operator of Salix Associates. He is a field ecologist, botanist and environmental planner specializing in ecology, botany, ornithology, lepidoptery and mycology. His work includes habitat inventory, analysis, planning, restoration and management. He has a B.S. from Oregon State University in environmental science, and worked for 10 years as a county and city land use planner specializing in natural resources before becoming a private consultant in 1989. As a consultant, he has contracted with federal, state and local public and private agencies and landowners for rare and invasive plant surveys and mapping, comprehensive and integrated natural resource inventories, restoration and management planning, environmental planning and special natural resource projects such as butterfly host plant analysis. He also is an experienced science field and classroom instructor (University of Oregon, Oregon State University, Portland State University, Lane Community College, et al.) specializing in the identification of sedges, rushes, grasses, and more generally, rare, native and invasive plant species, butterflies and fungi, and is a volunteer ecological advisor to several nonprofit groups and committees in the greater Eugene area.
  • Annotated Checklist of Vascular Flora, Cedar Breaks National

    Annotated Checklist of Vascular Flora, Cedar Breaks National

    National Park Service U.S. Department of the Interior Natural Resource Program Center Annotated Checklist of Vascular Flora Cedar Breaks National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/173 ON THE COVER Peterson’s campion (Silene petersonii), Cedar Breaks National Monument, Utah. Photograph by Walter Fertig. Annotated Checklist of Vascular Flora Cedar Breaks National Monument Natural Resource Technical Report NPS/NCPN/NRTR—2009/173 Author Walter Fertig Moenave Botanical Consulting 1117 W. Grand Canyon Dr. Kanab, UT 84741 Editing and Design Alice Wondrak Biel Northern Colorado Plateau Network P.O. Box 848 Moab, UT 84532 February 2009 U.S. Department of the Interior National Park Service Natural Resource Program Center Fort Collins, Colorado The Natural Resource Publication series addresses natural resource topics that are of interest and applicability to a broad readership in the National Park Service and to others in the management of natural resources, including the scientifi c community, the public, and the NPS conservation and environmental constituencies. Manuscripts are peer-reviewed to ensure that the information is scientifi cally credible, technically accurate, appropriately written for the intended audience, and is designed and published in a professional manner. The Natural Resource Technical Report series is used to disseminate the peer-reviewed results of scientifi c studies in the physical, biological, and social sciences for both the advancement of science and the achievement of the National Park Service’s mission. The reports provide contributors with a forum for displaying comprehensive data that are often deleted from journals because of page limitations. Current examples of such reports include the results of research that addresses natural resource management issues; natural resource inventory and monitoring activities; resource assessment reports; scientifi c literature reviews; and peer- reviewed proceedings of technical workshops, conferences, or symposia.
  • Asters of Yesteryear (Updated April 2018)

    Asters of Yesteryear (Updated April 2018)

    Asters of Yesteryear (Updated April 2018) About this Update: The document was originally posted in a shorter version, to accompany the brief article "Where Have all our Asters Gone?" in the Fall 2017 issue of Sego Lily. In that version it consisted simply of photos of a number of plants that had at some time been included in Aster but that no longer are, as per Flora of North America. In this version I have added names to the photos to indicate how they have changed since their original publication: Date and original name as published (Basionym) IF name used in Intermountain Flora (1994) UF name used in A Utah Flora (1983-2016) FNA name used in Flora of North America (2006) I have also added tables to show the renaming of two groups of species in the Astereae tribe as organized in Intermountain Flora. Color coding shows how splitting of the major genera largely follows fault lines already in place No color Renamed Bright Green Conserved Various Natural groupings $ Plant not in Utah It is noteworthy how few species retain the names used in 1994, but also how the renaming often follows patterns already observed. Asters of Yesteryear (Updated April 2018) Here are larger photos (16 inches wide or tall at normal screen resolution of 72 dpi) of the plants shown in Sego Lily of Fall 2017, arranged by date of original publication. None of them (except Aster amellus on this page) are now regarded as true asters – but they all were at one stage in their history. Now all are in different genera, most of them using names that were published over 100 years ago.
  • Tsuga Mertensiana (Bong.) Carr

    Tsuga Mertensiana (Bong.) Carr

    Tsuga mertensiana (Bong.) Carr. Family: Pinaceae Mountain Hemlock The genus Tsuga contains about 14 species native to North America [4] and southern and eastern Asia [10]. The word tsuga is the Japanese name for the native hemlocks of Japan. The word mertensiana is named for Karl Heinrich Mertens (1796-1830), German naturalist and physician, who discovered it at Sitka, Alaska. Other Common Names: Alpine hemlock, alpine spruce, berg-hemlock, black hemlock, mountain hemlock, Olympic fir, Pacific Coast hemlock, Patton's hemlock, Patton's spruce, Prince Albert's fir, tsuga de California, tsuga de Californie, tsuga de l'ouest, tsuga de Patton, tsuga di California, vastamerikansk berg-hemlock, weeping spruce, westamerikanische hemlocktanne, western hemlock, western hemlock spruce, Williamson's spruce. Distribution: Mountain hemlock is native to the Pacific Coast region from southern Alaska (Kenai Peninsula) southeast through southeastern Alaska and western British Columbia and south in the mountains from western Washington to western Oregon, and the Sierra Nevada to central California. Also in the Rocky Mountain region from southwestern British Columbia south to northeast Oregon, northern Idaho and northwest Montana. The Tree: Mountain hemlock trees reach heights of 50 to 150 feet, with diameters of 1 to 5 feet. A record is reported at 113 feet tall, with a diameter of 88 inches. General Wood Characteristics: The heartwood is near white, sometimes with a purple tinge, while the sapwood is somewhat lighter. It is moderately light in weight and moderate in strength, hardness, stiffness and shock resistance. Trees may contain wetwood and/or have ring shake. The wood is intermediate in nail holding ability and has a tendency to split when nailed.
  • Phylogeny of Hinterhubera, Novenia and Related

    Phylogeny of Hinterhubera, Novenia and Related

    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2006 Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae) Vesna Karaman Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Recommended Citation Karaman, Vesna, "Phylogeny of Hinterhubera, Novenia and related genera based on the nuclear ribosomal (nr) DNA sequence data (Asteraceae: Astereae)" (2006). LSU Doctoral Dissertations. 2200. https://digitalcommons.lsu.edu/gradschool_dissertations/2200 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. PHYLOGENY OF HINTERHUBERA, NOVENIA AND RELATED GENERA BASED ON THE NUCLEAR RIBOSOMAL (nr) DNA SEQUENCE DATA (ASTERACEAE: ASTEREAE) A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Biological Sciences by Vesna Karaman B.S., University of Kiril and Metodij, 1992 M.S., University of Belgrade, 1997 May 2006 "Treat the earth well: it was not given to you by your parents, it was loaned to you by your children. We do not inherit the Earth from our Ancestors, we borrow it from our Children." Ancient Indian Proverb ii ACKNOWLEDGMENTS I am indebted to many people who have contributed to the work of this dissertation.