Western Hemlock Is an Important Com- Mercial Softwood Species in the Western United States and Canada

Total Page:16

File Type:pdf, Size:1020Kb

Western Hemlock Is an Important Com- Mercial Softwood Species in the Western United States and Canada Forest Service Western An American Wood United States Department of Agriculture Hemlock FS-240 Western hemlock is an important com- mercial softwood species in the Western United States and Canada. The largest stands are found in the humid coastal regions of Oregon, Washington, British Columbia, and Alaska. The wood is used for structural lumber, molding, roof decking, veneer, and paper. F-308993 An American Wood Western Hemlock (Tsuga heterophylla (Raf.) Sarg.) James M. Cahill1 Distribution Western hemlock grows along the Pacific coast from the Kenai Peninsula in Alaska to northwestern California (fig. 1). Inland from the coast, it is found on the western slopes and upper eastern slopes of the Cascade Range of Washington and as far south in Oregon as the Siskiyou Mountains. Farther inland, western hemlock grows on the west side of the Continental Divide from just east of Prince George, British Columbia, south through north- ern Idaho and northwestern Montana. About 80 percent of its distribution in the Rocky Mountains is in British Columbia. The fastest growing stands are found in the humid coastal regions of Oregon, Washington, British Columbia, and Alaska, and on the lower slopes of the Cascade Range in Washington and Oregon. In the Rocky Mountain region, dry summers limit western hemlock to primarily northerly slopes and moist creek bottoms. Western hemlock is usually subordinate in stands that include Sitka spruce (Picea sitchensis) and Douglas-fir (Pseudotsuga menziesii), but it sometimes dominates and is found in pure stands in coastal areas. The pure western hemlock forest is a true climax type and follows the subclimax types of Sitka spruce and Douglas-fir west of the Cascades and western white pine (Pinus monticola) in the northern part of its inland range. Description and Growth Western hemlock is the largest of the four American hemlocks and, under the 1Research Forester, U.S. Department of Agriculture, Forest Service, Pacific Northwest Forest and Range Experiment Station, Portland, Oreg . Figure 1–Natural range of western hemlock. F-532739 2 An American Wood Figure 2–Needles and cones of western F-308997 hemlock. best growing conditions, can reach The bark is relatively thin, even on old seeds per cone. The seeds are only more than 3 feet in diameter and 225 trees, and deeply fissured with broad, 1/16 inch long and average 300,000 feet in height. Forest-grown western flat, russet-brown ridges. The inner per pound. Wind is the main factor in hemlock trees produce long, clear sym- bark is streaked with purple. seed dissemination; some seeds are metrical boles and shallow, wide- blown more than a mile from their spreading root systems. The crown Western hemlock is a prolific seeder. It source. length of old-growth trees and of produces some seed every year and young, tightly spaced trees is usually heavy seed crops at least every 8 years. With adequate moisture, germination is short. As with all hemlocks, the ter- Cones can be found on trees less than excellent on a diverse range of material minal shoot normally droops, giving it 20 years old, but, in general, cone pro- including moss, humus, decaying litter, a characteristic look that provides a duction begins between 25 and 30 and mineral soil. In coastal regions, quick method of identification. The years. Cones ripen in late summer and where the forest floor is often densely needles are 1/4 to 3/4 inches long, flat- early fall. At maturity, they are 3/4 to covered with vegetation, hemlock tened, and dark, shiny green (fig. 2). 1 1/4 inches long and hold 30 to 40 grows from decaying stumps and logs. 3 An American Wood Western hemlock is very tolerant of Related Commercial Species shade and survives under a variety of seedbed conditions. Natural regenera- Published information on timber tion can be obtained through harvesting volume often includes western hemlock methods that vary from individual tree with other species. Estimates of net selection to clearcutting. sawtimber volume, for example, usually include mountain hemlock The main causes of hemlock mortality (Tsuga mertensiana). Hemlock lumber are wind, fire, and snow. Losses from is usually marketed in species groups snowbreak are most severe in the in- such as “Hem-Fir” which includes land range, whereas significant losses California red fir (Abies magnifica), from windthrow occur in the coastal grand fir (A. grandis), noble fir (A. areas. The shallow root system of procera), Pacific silver fir (A. western hemlock contributes to its amabilis), and white fir (A. concolor). susceptibility to fire and wind damage. Supply Several trunk, butt, and root rots are found on western hemlock Fomitopsis The sawtimber volume (trees greater Figure 3–Yearly lumber production of western annosus, F. pinicola, Phellinus pini, P. than 9 inches in diameter) of western hemlock, 1967 to 1979. weirii, Ganoderma applanatum, Poria hemlock growing in the United States subacida, Echinodontium tinctorium, was estimated to be 256.9 billion board Armillariella mellea, and Polyporus cir- feet in 1977. About 45 percent of this cinatus. Echinodontium tinctorium (In- volume was in Alaska, 35 percent in or Oregon lands is prohibited by dian paint fungus) causes extensive Washington, 17 percent in Oregon, and Federal and State laws, with minor decay in standing trees and is one 3 percent in Idaho and Montana. exceptions. reason western hemlock is classified as Mountain hemlock is included in these an inferior species in its inland range. estimates but accounts for only a small The paper industry uses hemlock as a Dwarf mistletoe (Arceuthobium cam- percentage of the total volume. source of pulp. In Washington and pylopodum) is a common parasite and Oregon, hemlock makes up more than is thought to reduce annual growth, Production 50 percent of the volume consumed by lower wood quality, and increase mor- the paper industry. Hemlock logs are tality. The presence of flutes, or deep In the last decade, western hemlock ac- also an important source of veneer vertical grooves with ingrown bark, in counted for more than 20 percent of bolts. In 1976 hemlock accounted for the bole is a problem in southeast the total lumber production in about 5 percent of the total volume Alaska. Extensive fluting decreases Washington and Oregon, and more than peeled for veneer in Oregon and about yields of fiber and limits use of trees 50 percent of the total Alaska produc- 15 percent of the volume in for sawtimber. Insects that attack tion. Figure 3 shows the yearly produc- Washington. western hemlock include western tion for Washington and Oregon com- hemlock looper (Lambdina fiscellaria bined and for Alaska. Characteristics and Properties lugubrosa), western black-headed bud- worm (Acleris gloverana), western Primary products produced in Oregon The heartwood of western hemlock is larch roundheaded borer (Tetropiun and Washington include dimension almost white, with a purplish tinge. velutinum), and the hemlock sawfly lumber, molding stock, and cants The sapwood is sometimes lighter in (Neodiprion tsugae). (squared-off timbers) for export. Alaska color. It varies in thickness from 1 to 3 production is predominantly cants. inches and is usually difficult to Common Names distinguish from heartwood. Western Western hemlock is the major species hemlock wood is moderately light in Western hemlock has been known by exported from Washington and Oregon weight and moderate in strength, hard- several common names, including west and accounted for more than 50 percent ness, stiffness, and shock resistance. coast hemlock, hemlock spruce, Pacific of all log exports in 1980. The export Shrinkage is moderately large–about hemlock, western hemlock spruce, market is second only to lumber pro- equal to that of Douglas-fir. The western hemlock fir, gray fir, silver duction in log use. Most exported logs average specific gravity is 0.42 based fir, and Alaska pine. Currently, it is are cut from private lands and lands on ovendry weight and green volume; usually referred to as hemlock or managed by the State of Washington. the average weight at 12-percent western hemlock. Exporting logs cut on Federal and State moisture content is 31 pounds per cubic 4 An American Wood foot. Green western hemlock contains hemlock a preferred species over its where the light color is desirable for considerably more water than Douglas- major competitors for industrial lumber natural finishes. Western hemlock is fir and requires a longer period of dry- and for finish lumber where even- preferred over Douglas-fir where a ing to reach the same moisture content. wearing and good machining charac- minimum of grain raise, splintering, or teristics are important. annual-ring delamination is important. Ring shake, or the separation of wood Western hemlock ranks only slightly cells in the outer part of the latewood In both nail-holding ability and ten- behind Douglas-fir and western larch in (denser wood, formed late in the grow- dency to split when nailed, western strength, which is one of the reasons it ing season), is more common in hemlock has an intermediate rank. In is widely used in construction. hemlock than in other softwoods. paint-holding ability, it ranks below the Typically, shake is found in the basal cedars and white pines but above The light-colored heartwood makes ex- portion of large hemlock trees and Douglas-fir. The wood is free from cellent newsprint because minimum causes considerable loss of lumber and resin and is classed as nondecay- bleaching is required to establish the veneer. resistant. It contains many small, black desired brightness of paper. Also, the knots that are generally tight. The dark lack of resin in hemlock makes the Western hemlock trees frequently con- streaks sometimes seen in hemlock wood easily pulped by the sulphite tain some wetwood, which means that lumber result from activities of the process, which is sensitive to resin parts of the standing wood have hemlock bark maggot in living trees.
Recommended publications
  • Recent Literature on Lepidoptera
    1965 Joumal of the Lepidopterists' Society 245 RECENT LITERATURE ON LEPIDOPTERA Under this heading are ineluded abstracts of papers and books of interest to lepidopterists. The world's literature is searched systematically, and it is intended that every work on Lepidoptera published after 1946 will be noticed here. Papers of only local interest and papers from this Joumal are listed without abstract. Read­ ers, not in North America, interested in assisting with the abstracting, are invited to write Dr. P. F . Bellinger (Department of Biological Sciences, San Fernando Valley State College, Northridge, California, U.S.A.). Abstractor's initials are as follows: [P.B.] - P. F. BELLINGER [W.H.] - W. HACKMAN [N.O.] - N. S. OBRAZTSOV [I.C.] - I. F. B. COMMON [T.I.] - TARO IWASE [C.R.] - C. L. REMINGTON [W.c.] - W. C. COOK [T.L.] - T. W. LA NGER [J.T.] - J. W. TILDEN [A.D.] - A. DIAKO NOFF [J.M.] - J. MOUCHA [P.V.] - P. E. L. VIETTE [J.D.] - JULIAN DO NAHUE [E.M.] - E. G. MUNROE B. SYSTEMATICS AND NOMENCLATURE Niculescu, Eugen, "Papilionidae" [in Rumanian]. Fauna Republicii Populare Ro­ mine, vol. XI, fasc. 5, 103 pp., 8 pIs., 32 figs. Academy of Sciences, Bucuresti. 1961. [price 6,40 Lei]. In the introductory part the author describes the taxonomy of all genera of Roumanian Papilionidae with remarks on the exotic species also. In the taxonomic part (pp.41-103 ) all spp. which occur in Rou­ mania are described. In this country occur: Papilw machaon, Iphiclides podalirius, Zerynthia polyxena, Z. cerisyi, Pamassius mnemosyne, & P. apollo. [J.
    [Show full text]
  • The Forestry Commission's Contingency Plan
    Western Spruce Budworm (Choristoneura freemani), Eastern Spruce Budworm (Choristoneura fumiferana) Black-Headed Budworm (Acleris gloverana and Acleris variana) – Contingency Plan Combined Budworm: Draft contingency plan INTRODUCTION 1. Serious or significant pests require strategic-level plans developed at a national level describing the overall aim and high-level objectives to be achieved, and setting out the response strategy for eradicating or containing outbreaks. 2. The UK Plant Health Risk Group (PHRG) has commissioned, following identification by the UK Plant Health Risk Register, pest-specific contingency plans for those pests which pose the greatest risk and require stakeholder consultation. 3. The purpose of these pest-specific contingency plans is to ensure a rapid and effective response to outbreaks of the pests or diseases described. They are designed to help government agencies anticipate, assess, prepare for, prevent, respond to and recover from pest and disease outbreaks. 4. Contingency planning starts with the anticipation and assessment of potential threats, includes preparation and response, and finishes with recovery. Anticipate 5. Gathering information and intelligence about the pest, including surveillance and horizon scanning. Assess 6. Identifying concerns and preparing plans. 7. Setting outbreak management objectives Prepare 8. Ensuring staff and stakeholders are familiar with the pest. Response 9. Identifying the requirements for either containing or eradicating the pest or disease, including work to determine success. 10. The Defra Contingency Plan for Plant Health in England (in draft) gives details of the teams and organisations involved in pest and disease response in England, and their responsibilities and governance. It also 2 | Combined budworm contingency plan | Dafni Nianiaka | 24/01/2017 Combined Budworm: Draft contingency plan describes how these teams and organisations will work together in the event of an outbreak of a plant health pest.
    [Show full text]
  • Phylogeny and Biogeography of Tsuga (Pinaceae)
    Systematic Botany (2008), 33(3): pp. 478–489 © Copyright 2008 by the American Society of Plant Taxonomists Phylogeny and Biogeography of Tsuga (Pinaceae) Inferred from Nuclear Ribosomal ITS and Chloroplast DNA Sequence Data Nathan P. Havill1,6, Christopher S. Campbell2, Thomas F. Vining2,5, Ben LePage3, Randall J. Bayer4, and Michael J. Donoghue1 1Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut 06520-8106 U.S.A 2School of Biology and Ecology, University of Maine, Orono, Maine 04469-5735 U.S.A. 3The Academy of Natural Sciences, 1900 Benjamin Franklin Parkway, Philadelphia, Pennsylvania 19103 U.S.A. 4CSIRO – Division of Plant Industry, Center for Plant Biodiversity Research, GPO 1600, Canberra, ACT 2601 Australia; present address: Department of Biology, University of Memphis, Memphis, Tennesee 38152 U.S.A. 5Present address: Delta Institute of Natural History, 219 Dead River Road, Bowdoin, Maine 04287 U.S.A. 6Author for correspondence ([email protected]) Communicating Editor: Matt Lavin Abstract—Hemlock, Tsuga (Pinaceae), has a disjunct distribution in North America and Asia. To examine the biogeographic history of Tsuga, phylogenetic relationships among multiple accessions of all nine species were inferred using chloroplast DNA sequences and multiple cloned sequences of the nuclear ribosomal ITS region. Analysis of chloroplast and ITS sequences resolve a clade that includes the two western North American species, T. heterophylla and T. mertensiana, and a clade of Asian species within which one of the eastern North American species, T. caroliniana, is nested. The other eastern North American species, T. canadensis, is sister to the Asian clade. Tsuga chinensis from Taiwan did not group with T.
    [Show full text]
  • Western Hemlock Is an Important Corn- Mercial Softwood Species in the Western United States and Canada
    -,.------. A 13.31:H 37/984 Forest An American Wood Service Western United States Department of Agriculture Hemlock FS-240 Western hemlock is an important corn- mercial softwood species in the Western United States and Canada. Thc largest stands are found in the humid coastal regions of Oregon, Washington, British Columbia, and Alaska. The wood is used for structural lumber, molding, roof decking, veneer, and paper. 42j (_o /1)'79o5 'EQLI4Gua 9 3V . F-308993 DEP. A iThiÀ '--ìJc2'J £FRA MY ¿) '4 An American Wood Western Hemlock (Tsuga heterophylla (Raf.) Sarg.) James M. Cahill' Distribution Western hemlock grows along the Pacific coast from the Kenai Peninsula in Alaska to northwestern California (fig. 1). Inland from the coast, it is found on the western slopes and upper eastern slopes of the Cascade Range of Washington and as far south in Oregon as the Siskiyou Mountains. Farther inland, western hemlock grows on the west side of the Continental Divide from just east of Prince George, British Columbia, south through north- em Idaho and northwestern Montana. About 80 percent of its distribution in the Rocky Mountains is in British Columbia. The fastest growing stands are found in &O the humid coastal regions of Oregon, Washington, British Columbia, and Alaska, and on the lower slopes of the Cascade Range in Washington and . Oregon. In the Rocky Mountain region, dry summers limit western hemlock to primarily northerly slopes and moist creek bottoms. I o Western hemlock is usually subordinate in stands that include Sitka spruce (Picea sitchensis) and Douglas-fir o ioo 200 300 I (Pseudotsuga menziesii), but it I.! I sometimes dominates and is in III,I'i, i-,- found o zoo 400 E pure stands in coastal areas.
    [Show full text]
  • Western Hemlock
    western hemlock and Pinaceae mountain hemlock in mountain hemlock Tsuga mertensiana Brewer spruce cones (left) northwest California and mountain hemlock (right) “droopy top” hemlocks and across the West decorate the high country Bark: varies from purplish brown to reddish brown (similar to Shasta red fir) but with deep, furrowed, more continuous rounded ridges Needles: 1/2”-3/4”, dark green to blue green, bluntly rounded, commonly with stomatal bloom on both sides; spirally arranged on twig imparting a star-like appearance Cones: 2”-5”, reddish brown turning brown with maturity; larger cones similar to Brewer spruce; can remain on tree year-round Habitat: Highest elevations on north face of mountains or cool streamside glades from 4000-9000 feet, upper elevation specimens can grow on south-facing slopes Pinaceae western hemlock Tsuga heterophylla star-like needle growth and small cones are a diagnostic character of this species this “nurse-log” phenomenon is a common sight in old-growth forests of coastal northwest Caifornia Bark: thin and slightly furrowed with long linear strips, varies from grey (outer) to dark red (inner); bases of large trees often buttressedNeedles : ¼” - ¾” similar to lower redwood needles, but shorter and less uniformly flat, splaying out from Range* map for: mountain hemlock (Tsuga mertensiana) the branch at varying angles, dark green above with two white stomatal lines western hemlock ( ) below, glossy green below Cones: one inch and egg shaped with thin scales, Tsuga heterophylla scale length similar to the largest needles Habitat: cool and wet forest along * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Pacific Coast Range: North Coast; within 20 miles of the ocean with few excep- tions Michael Kauffmann | www.conifercountry.com www.conifercountry.comPlate 13 Range* map for: mountain hemlock (Tsuga mertensiana) western hemlock (Tsuga heterophylla) * based on Little (1971),Griffin and Critchfield (1976), and Van Pelt (2001) Michael Kauffmann | www.conifercountry.com.
    [Show full text]
  • Scientific Names of Pest Species in Tortricidae (Lepidoptera)
    RESEARCH Scientific Names of Pest Species in Tortricidae (Lepidoptera) Frequently Cited Erroneously in the Entomological Literature John W. Brown Abstract. The scientific names of several pest species in the moth meate the literature. For example, the subfamilial designation for family Tortricidae (Lepidoptera) frequently are cited erroneously in Olethreutinae (rather than Olethreutidae) was slow to be accepted contemporary entomological literature. Most misuse stems from the for many years following Obraztsov’s (1959) treatment of the group. fact that many proposed name changes appear in systematic treat- They even appear at both taxonomic levels (i.e., Olethreutinae and ments that are not seen by most members of the general entomologi- Olethreutidae) in different papers in the same issue of the Canadian cal community. Also, there is resistance among some entomologists Entomologist in the 1980s! (Volume 114 (6), 1982) Olethreutinae to conform to recently proposed changes in the scientific names of gradually was absorbed into the North America literature, espe- well-known pest species. Species names discussed in this paper are cially following publication of the Check List of the Lepidoptera Brazilian apple leafroller, Bonagota salubricola (Meyrick); western of America North of Mexico (Hodges 1983), which has served as a black-headed budworm, Acleris gloverana (Walsingham); and green standard for more than 20 years. budworm, Choristoneura retiniana (Walsingham). Generic names During preparation of a world catalog of Tortricidae (Brown discussed include those for false codling moth, Thaumatotibia leu- 2005), it became obvious to me that several taxonomically correct cotreta (Meyrick); grape berry moth, Paralobesia viteana (Clemens); combinations of important pest species were not in common use in pitch twig moth, Retinia comstockiana (Fernald); codling moth, the entomological literature.
    [Show full text]
  • Tsuga Mertensiana (Bong.) Carr
    Tsuga mertensiana (Bong.) Carr. Family: Pinaceae Mountain Hemlock The genus Tsuga contains about 14 species native to North America [4] and southern and eastern Asia [10]. The word tsuga is the Japanese name for the native hemlocks of Japan. The word mertensiana is named for Karl Heinrich Mertens (1796-1830), German naturalist and physician, who discovered it at Sitka, Alaska. Other Common Names: Alpine hemlock, alpine spruce, berg-hemlock, black hemlock, mountain hemlock, Olympic fir, Pacific Coast hemlock, Patton's hemlock, Patton's spruce, Prince Albert's fir, tsuga de California, tsuga de Californie, tsuga de l'ouest, tsuga de Patton, tsuga di California, vastamerikansk berg-hemlock, weeping spruce, westamerikanische hemlocktanne, western hemlock, western hemlock spruce, Williamson's spruce. Distribution: Mountain hemlock is native to the Pacific Coast region from southern Alaska (Kenai Peninsula) southeast through southeastern Alaska and western British Columbia and south in the mountains from western Washington to western Oregon, and the Sierra Nevada to central California. Also in the Rocky Mountain region from southwestern British Columbia south to northeast Oregon, northern Idaho and northwest Montana. The Tree: Mountain hemlock trees reach heights of 50 to 150 feet, with diameters of 1 to 5 feet. A record is reported at 113 feet tall, with a diameter of 88 inches. General Wood Characteristics: The heartwood is near white, sometimes with a purple tinge, while the sapwood is somewhat lighter. It is moderately light in weight and moderate in strength, hardness, stiffness and shock resistance. Trees may contain wetwood and/or have ring shake. The wood is intermediate in nail holding ability and has a tendency to split when nailed.
    [Show full text]
  • Aerial Spraying Operations Against Blackheaded Budworm On
    Environnement Canada ca..,,,,,,,~ ,..::';CJI'5C Ih""rm. {(pt. Aerial Spraying Operations .$C-..y-/O/ c..:; Against Blackheaded Budworm On Vancouver Island - 1973 EDITED BY J.R. CARROW Pacific Forest Research Centre. 506 West Burnside Road. Victoria, B.C. - , PACIFIC fOREST R SEARCH Cf.N\l'(1o. I' ace wt..::_> 1 El Jt__ '~UAO / VICTORIA. 1i.C. Aerial Spraying Operations Against Blackheaded Budworm on Vancouver Island, 1973 J. R. Carrow, Editor Environment Environnement Canada Canada Pacific Forest Research Centre 506 West Burnside Road Victoria, B.C. Information P.eport BC-X-101 August 1974 ABSTRACT In June 1973} an aerial spray project was conducted by the Council of Forest Industries of British Columbia and the Province of British Columbia to protect 29,000 acres of hemlock forest on northern Vancouver Island from additional defoliation by an outbreak of blackheaded budworm, Acleris gloverana {Wlshm.}. Environment Canada provided entomological and technical advice and assessed the effectiveness of the operation. as well as its effects on non-target organisms. The formulation used was 2 oz fenitrothion in 20 oz water per acre applied twice at a four-day interval. Spraying resulted 1n 80% control of blackheaded hudworm in young stands (up to 40 ft) and 46% control in older stands (over 100 ft). The foliage protection value of the spray was difficult to determine accurately because the larval population collapsed prior to heavy feeding; however, spraying resulted in a 14% improvement in the crown condition of young stands. The budworm population experienced a sudden collapse, due to natural causes, shortly after spraying and the evidence suggests that it was associated with 11 days of continuous rain and cool temperatures during early July.
    [Show full text]
  • An Annotated Bibliography of Acleris Variana and Acleris Gloverana
    Canadian Forest Service Pest Management Methods Network An annotated bibliography of Acleris variana and Acleris gloverana I.S. Otvos and A. Fajrajsl Information Report BC-X-371 Pacific Forestry Centre, Victoria, B.C. Natural Resources Ressources naturelles Canada Canada Canadian Forest Service canadien Service des forêts The Pacific Forestry Centre, Victoria, British Columbia The Pacific Forestry Centre of the Canadian Forest Service undertakes research as part of a national network system responding to the needs of various forest resource managers. The results of this research are distributed in the form of scientific and technical reports and other publications. Additional information on Natural Resources Canada, the Canadian Forest Service and the Pacific Forestry Centre research and publications is also available on the World Wide Web at http://www.pfc.cfs.nrcan.gc.ca/. The Effects of Forestry Practices Network (EFPN) The responsible stewardship and management of Canada’s forest heritage, for present and future generations, is a key element in the future of our environment, our trade and our business relationships around the world. However, Canada’s forests do not adhere to the artificial boundaries between provinces and landowners. Therefore, co-operation between governments and other forest managers is imperative. As Canada’s major national forest research organization the Canadian Forest Service (CFS) has a major role to play. By developing scientifically sound forest management techniques and methods of sharing this information, Canada can assure its people and its customers that the best possible forest practices are being used. The Effects of Forestry Practices Network (EFPN) has been established to lead this effort.
    [Show full text]
  • Tsuga Mertensiana (Bong.) Carr
    Tsuga mertensiana (Bong.) Carr. Family: Pinaceae Mountain Hemlock The genus Tsuga contains about 14 species native to North America [4] and southern and eastern Asia [10]. The word tsuga is the Japanese name for the native hemlocks of Japan. The word mertensiana is named for Karl Heinrich Mertens (1796-1830), German naturalist and physician, who discovered it at Sitka, Alaska. Other Common Names: Alpine hemlock, alpine spruce, berg-hemlock, black hemlock, mountain hemlock, Olympic fir, Pacific Coast hemlock, Patton's hemlock, Patton's spruce, Prince Albert's fir, tsuga de California, tsuga de Californie, tsuga de l'ouest, tsuga de Patton, tsuga di California, vastamerikansk berg-hemlock, weeping spruce, westamerikanische hemlocktanne, western hemlock, western hemlock spruce, Williamson's spruce. Distribution: Mountain hemlock is native to the Pacific Coast region from southern Alaska (Kenai Peninsula) southeast through southeastern Alaska and western British Columbia and south in the mountains from western Washington to western Oregon, and the Sierra Nevada to central California. Also in the Rocky Mountain region from southwestern British Columbia south to northeast Oregon, northern Idaho and northwest Montana. The Tree: Mountain hemlock trees reach heights of 50 to 150 feet, with diameters of 1 to 5 feet. A record is reported at 113 feet tall, with a diameter of 88 inches. General Wood Characteristics: The heartwood is near white, sometimes with a purple tinge, while the sapwood is somewhat lighter. It is moderately light in weight and moderate in strength, hardness, stiffness and shock resistance. Trees may contain wetwood and/or have ring shake. The wood is intermediate in nail holding ability and has a tendency to split when nailed.
    [Show full text]
  • TAXONOMY Plant Family Species Scientific Name None GENERAL
    Plant Propagation Protocol for Tsuga mertensiana ESRM 412 – Native Plant Production Protocol URL: https://courses.washington.edu/esrm412/protocols/TSME..pdf TAXONOMY Plant Family Scientific Name Pinaceae Common Name Pine family Species Scientific Name Scientific Name Tsuga mertensiana (Bongard) Carrière Varieties None Sub-species None Cultivar Dwarf Mountain Hemlock/Mountain Hemlock “Elizabeth” Common Synonym(s) None Common Name(s) Mountain hemlock, Black Hemlock, Alpine Hemlock Species Code (as per USDA Plants TSME database) GENERAL INFORMATION Geographical range Found in Canada in British Columbia Found in America in Alaska, Washington, Idaho, Montana, Oregon, California, and Nevada 1,3,4 Ecological distribution Most common in alpine and subalpine forests 2,4,5 Climate and elevation range Climate: Trees can survive down to around -30ºC and up to around 38ºC. Average habitat temperature across full range is 3-4ºC. Generally thrives in sites with cold or mild winters, a short warm or cold growing season, and moderate to high precipitation. Often found on mountains, average snowfall of its habitats ranges from 32-50 feet. Elevation: The range is lowest in Alaska, where it can be found at sea level, up to 3,500 feet. In British Columbia, it is most commonly found between 1,000- 3,000 feet. Within the continental U.S., it is found from around 4,000 feet all the way up to the tree line at around 10,000 feet. 2,3,5 Local habitat and abundance Most abundant in alpine and subalpine forests. Commonly associated with Abies amabilis, Abies lasiocarpa, Cupressus nootkatensis, Picea engelmannii, Pinus albicaulis, Vaccinium membranaceum, and Xerophyllum tenax 2,3,5,11 Plant strategy type / successional Tolerant of cold, snowy environments.
    [Show full text]
  • A Phylogenetic Analysis of Species Relationships in Hemlocks, the Genus Tsuga (Pinaceae)
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by East Tennessee State University East Tennessee State University Digital Commons @ East Tennessee State University Electronic Theses and Dissertations Student Works 8-2009 A Phylogenetic Analysis of Species Relationships in Hemlocks, the Genus Tsuga (Pinaceae). Jordan David Baker East Tennessee State University Follow this and additional works at: https://dc.etsu.edu/etd Part of the Paleobiology Commons Recommended Citation Baker, Jordan David, "A Phylogenetic Analysis of Species Relationships in Hemlocks, the Genus Tsuga (Pinaceae)." (2009). Electronic Theses and Dissertations. Paper 1791. https://dc.etsu.edu/etd/1791 This Thesis - Open Access is brought to you for free and open access by the Student Works at Digital Commons @ East Tennessee State University. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Digital Commons @ East Tennessee State University. For more information, please contact [email protected]. A Phylogenetic Analysis of Species Relationships in Hemlocks, the Genus Tsuga (Pinaceae) __________________________ A thesis presented to the faculty of the Department of Biological Sciences East Tennessee State University In partial fulfillment of the requirements for the degree Master of Science in Biological Sciences _________________________ by Jordan Baker August 2009 ____________________ Timothy McDowell, Ph.D. - Chair Foster Levy, Ph.D. Christopher Liu, Ph.D. Keywords: Tsuga , Phylogeny, Morphology, Seedlings, Seed, Leaf Cuticle, Phylogenetic Analysis, Morphological Characters ABSTRACT A Phylogenetic Analysis of Species Relationships in Hemlocks, the Genus Tsuga (Pinaceae) by Jordan Baker The genus Tsuga is comprised of eight extant species found in North America and East Asia and four species represented by fossils from Europe and Japan.
    [Show full text]