Using Alternative Numeral Systems in Teaching Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Using Alternative Numeral Systems in Teaching Mathematics Mathematics Teaching-Research Journal On-Line A peer-reviewed scholarly journal Editors: Anne Rothstein (Lehman College) Bronislaw Czarnocha (Hostos Community College) Vrunda Prabhu (Bronx Community College) City University of New York Volume 2 Issue 1 Date September 2007 Using Alternative Numeral Systems in Teaching Mathematics Farida Kachapova Murray Black Ilias Kachapov School of Computing School of Computing 13 Fairlands Ave and Mathematical Sciences and Mathematical Sciences Waterview Auckland University of Auckland University of Auckland 1026, New Technology Technology Zealand [email protected] [email protected] [email protected] 1. Introduction The purpose of this article is to stimulate interest in number theory and history of mathematics. Teachers can include parts of this article as additional topics in their classroom teaching. On one hand, the origin of our decimal numbers and possible numeral systems can make an exciting lesson and lead to quite advanced topics in mathematics. On the other hand, this material does not require any specific knowledge and can be explained even to primary students. So it can be used by high school teachers to motivate students and expand their horizons. A numeral system is a language where numbers are represented by symbols – numerals. In the modern mathematics we use the decimal numeral system. It has base 10, which means that all numerals are made of 10 digits: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. The probable reason for using base 10 is that humans have 10 fingers and they used them for counting. 10 is the base of the most common numeral system but it is not the only possible one. Some native Americans used spaces between their fingers for counting, so their numeral system had base 8. Readers are free to copy, display, and distribute this article, as long as the work is attributed to the author(s) and Mathematics Teaching-Research Journal On-Line, it is distributed for non-commercial purposes only, and no alteration or transformation is made in the work. All other uses must be approved by the author(s) or MT-RJoL. MT-RJoL is published jointly by the Bronx Colleges of the City University of New York. Mathematics Teaching-Research Journal On-Line A peer-reviewed scholarly journal Editors: Anne Rothstein (Lehman College) Bronislaw Czarnocha (Hostos Community College) Vrunda Prabhu (Bronx Community College) City University of New York Volume 2 Issue 1 Date September 2007 The binary system (with base 2) has originated in China, was studied by G.Leibniz in the 17th century and had useful applications in computer science in the modern time. The hexadecimal system (with base 16) also has applications in computer science because its base can be written as a power of two: 16 = 2 4. The numeral systems with base 12 and base 60 were also used in the past. We still have 12 hours in the clock and 12 months in the year. When we measure time we use 60 minutes in an hour and 60 seconds in a minute; we have 60 seconds in a degree as angular measure. In practice we mostly use the decimal numeral system. The alternative numeral systems can be used by mathematics teachers to stimulate students’ interest in mathematics and research. The students will realise that the decimal system is not the only possible one and even not the best one, so they will learn to think “outside the square”. The binary, senary and other alternative numeral systems can be explained in simple terms at different levels starting from primary school. At the same time they lead to some interesting topics in number theory and general algebra at the tertiary level, such as modular arithmetic and Mersenne primes. 2. Senary Numeral System Readers are free to copy, display, and distribute this article, as long as the work is attributed to the author(s) and Mathematics Teaching-Research Journal On-Line, it is distributed for non-commercial purposes only, and no alteration or transformation is made in the work. All other uses must be approved by the author(s) or MT-RJoL. MT-RJoL is published jointly by the Bronx Colleges of the City University of New York. Mathematics Teaching-Research Journal On-Line A peer-reviewed scholarly journal Editors: Anne Rothstein (Lehman College) Bronislaw Czarnocha (Hostos Community College) Vrunda Prabhu (Bronx Community College) City University of New York Volume 2 Issue 1 Date September 2007 Now we will take a closer look at the senary numeral system – the numeral system with base 6. Imagine aliens from another planet that have three fingers on each hand. They use 6 fingers for counting, so their numeral system has base 6 and all the numerals are constructed from 6 digits: 0, 1, 2, 3, 4, 5. Besides each alien has 6 limbs: two arms, two legs and two wings. The aliens have the same arithmetic as we do but their arithmetic has a simpler representation because it is expressed in the senary numeral system instead of our decimal numeral system. We will write numerals in the senary system with a subscript 6. So numbers 0, 1, 2, 3, 4, 5 are represented by numerals 06 , 16 , 26 , 36 , 46 , 56 respectively. Next number 6 is represented by 106 , 7 is represented by 116 , etc. Actually humans with 5 fingers on each hand can show two-digit senary numerals if they use each hand to show a digit from 0 (a fist with no fingers out) to 5 (all fingers out). 3. Arithmetic in the Senary System Addition table: 16 + 16 = 26 26 + 16 = 36 26 + 26 = 46 Readers are free to copy, display, and distribute this article, as long as the work is attributed to the author(s) and Mathematics Teaching-Research Journal On-Line, it is distributed for non-commercial purposes only, and no alteration or transformation is made in the work. All other uses must be approved by the author(s) or MT-RJoL. MT-RJoL is published jointly by the Bronx Colleges of the City University of New York. Mathematics Teaching-Research Journal On-Line A peer-reviewed scholarly journal Editors: Anne Rothstein (Lehman College) Bronislaw Czarnocha (Hostos Community College) Vrunda Prabhu (Bronx Community College) City University of New York Volume 2 Issue 1 Date September 2007 36 + 16 = 46 36 + 26 = 56 36 + 36 = 106 46 + 16 = 56 46 + 26 = 106 46 + 36 = 116 46 + 46 = 126 56 + 16 = 106 56 + 26 = 116 56 + 36 = 126 56 + 46 = 136 56 + 56 = 146 Multiplication table: 26 × 16 = 26 36 × 16 = 36 46 × 16 = 46 56 × 16 = 056 26 × 26 = 46 36 × 26 = 106 46 × 26 = 126 56 × 26 = 146 26 × 36 = 106 36 × 36 = 136 46 × 36 = 206 56 × 36 = 236 26 × 46 = 126 36 × 46 = 206 46 × 46 = 246 56 × 46 = 326 26 × 56 = 146 36 × 56 = 236 46 × 56 = 326 56 × 56 = 416 26 ×106 = 206 36 ×106 = 306 46 ×106 = 406 56 ×106 = 506 The senary addition table is shorter than the decimal one but otherwise is not very different. The senary multiplication table is much easier to learn for the aliens’ children than the decimal one for the humans’ children because it has several patterns in it: 1. Last digits 2, 4 and 0 make a cycle in the first and third columns. Readers are free to copy, display, and distribute this article, as long as the work is attributed to the author(s) and Mathematics Teaching-Research Journal On-Line, it is distributed for non-commercial purposes only, and no alteration or transformation is made in the work. All other uses must be approved by the author(s) or MT-RJoL. MT-RJoL is published jointly by the Bronx Colleges of the City University of New York. Mathematics Teaching-Research Journal On-Line A peer-reviewed scholarly journal Editors: Anne Rothstein (Lehman College) Bronislaw Czarnocha (Hostos Community College) Vrunda Prabhu (Bronx Community College) City University of New York Volume 2 Issue 1 Date September 2007 2. Last digits 3 and 0 make a cycle in the second column. 3. In the fourth column the first digits are 0, 1, 2, 3, 4, 5 and the last digits are the same in reverse order. Notation: for digits an, …, a1, a0, the symbol an … a1 a0 will denote the numeral in the senary system made of these digits (versus a product an ⋅ …⋅ a1 ⋅ a0). As with any other base, there are algorithms for transferring numbers from senary form to decimal form and vice versa. Senary to Decimal. For a numeral an an-1… a1 a0 in the senary system its decimal n n-1 1 0 form is given by the formula an ⋅6 + an-1 ⋅6 +…+ a1 ⋅ 6 + a0 ⋅ 6 . Examples: 3 2 12346 = 1×6 + 2×6 + 3×6 + 4 = 310, 4 3 2 543216 = 5×6 + 4×6 + 3×6 + 2×6 + 1 = 7465. Decimal to Senary. To transform a natural number in decimal form to senary form we keep dividing numbers by 6 and then write all remainders from right to left. Example: 1244 ÷ 6 = 207 with remainder 2 207 ÷ 6 = 34 with remainder 3 34 ÷ 6 = 5 with remainder 4 5 ÷ 6 = 0 with remainder 5 So 1244 = 54326. Readers are free to copy, display, and distribute this article, as long as the work is attributed to the author(s) and Mathematics Teaching-Research Journal On-Line, it is distributed for non-commercial purposes only, and no alteration or transformation is made in the work. All other uses must be approved by the author(s) or MT-RJoL. MT-RJoL is published jointly by the Bronx Colleges of the City University of New York.
Recommended publications
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
    Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system.
    [Show full text]
  • Duodecimal Bulletin Vol
    The Duodecimal Bulletin Bulletin Duodecimal The Vol. 4a; № 2; Year 11B6; Exercise 1. Fill in the missing numerals. You may change the others on a separate sheet of paper. 1 1 1 1 2 2 2 2 ■ Volume Volume nada 3 zero. one. two. three.trio 3 1 1 4 a ; (58.) 1 1 2 3 2 2 ■ Number Number 2 sevenito four. five. six. seven. 2 ; 1 ■ Whole Number Number Whole 2 2 1 2 3 99 3 ; (117.) eight. nine. ________.damas caballeros________. All About Our New Numbers 99;Whole Number ISSN 0046-0826 Whole Number nine dozen nine (117.) ◆ Volume four dozen ten (58.) ◆ № 2 The Dozenal Society of America is a voluntary nonprofit educational corporation, organized for the conduct of research and education of the public in the use of base twelve in calculations, mathematics, weights and measures, and other branches of pure and applied science Basic Membership dues are $18 (USD), Supporting Mem- bership dues are $36 (USD) for one calendar year. ••Contents•• Student membership is $3 (USD) per year. The page numbers appear in the format Volume·Number·Page TheDuodecimal Bulletin is an official publication of President’s Message 4a·2·03 The DOZENAL Society of America, Inc. An Error in Arithmetic · Jean Kelly 4a·2·04 5106 Hampton Avenue, Suite 205 Saint Louis, mo 63109-3115 The Opposed Principles · Reprint · Ralph Beard 4a·2·05 Officers Eugene Maxwell “Skip” Scifres · dsa № 11; 4a·2·08 Board Chair Jay Schiffman Presenting Symbology · An Editorial 4a·2·09 President Michael De Vlieger Problem Corner · Prof.
    [Show full text]
  • The Chinese Rod Numeral Legacy and Its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore
    The Chinese Rod Numeral Legacy and its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore First, let me explain the Chinese rod numeral system. Since the Warring States period {480 B.C. to 221 B.C.) to the 17th century A.D. the Chinese used a bundle of straight rods for computation. These rods, usually made from bamboo though they could be made from other materials such as bone, wood, iron, ivory and jade, were used to form the numerals 1 to 9 as follows: 1 2 3 4 5 6 7 8 9 II Ill Ill I IIIII T II Note that for numerals 6 to 9, a horizontal rod represents the quantity five. A numeral system which uses place values with ten as base requires only nine signs. Any numeral of such a system is formed from among these nine signs which are placed in specific place positions relative to each other. Our present numeral system, commonly known as the Hindu-Arabic numeral system, is based on this concept; the value of each numeral determines the choice of digits from the nine signs 1, 2, ... , 9 anq their place positions. The place positions are called units, tens, hundreds, thousands, and so on, and each is occupied by at most one digit. The Chinese rod system employs the same concept. However, since its nine signs are formed from rod tallies, if a number such as 34 were repre­ sented as Jll\IU , this would inevitably lead to ambiguity and confusion. To * Text of Presidential Address delivered at the Society's Annual General Meeting on 20 March 1987.
    [Show full text]
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • Inventing Your Own Number System
    Inventing Your Own Number System Through the ages people have invented many different ways to name, write, and compute with numbers. Our current number system is based on place values corresponding to powers of ten. In principle, place values could correspond to any sequence of numbers. For example, the places could have values corre- sponding to the sequence of square numbers, triangular numbers, multiples of six, Fibonacci numbers, prime numbers, or factorials. The Roman numeral system does not use place values, but the position of numerals does matter when determining the number represented. Tally marks are a simple system, but representing large numbers requires many strokes. In our number system, symbols for digits and the positions they are located combine to represent the value of the number. It is possible to create a system where symbols stand for operations rather than values. For example, the system might always start at a default number and use symbols to stand for operations such as doubling, adding one, taking the reciprocal, dividing by ten, squaring, negating, or any other specific operations. Create your own number system. What symbols will you use for your numbers? How will your system work? Demonstrate how your system could be used to perform some of the following functions. • Count from 0 up to 100 • Compare the sizes of numbers • Add and subtract whole numbers • Multiply and divide whole numbers • Represent fractional values • Represent irrational numbers (such as π) What are some of the advantages of your system compared with other systems? What are some of the disadvantages? If you met aliens that had developed their own number system, how might their mathematics be similar to ours and how might it be different? Make a list of some math facts and procedures that you have learned.
    [Show full text]
  • A Ternary Arithmetic and Logic
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number.
    [Show full text]
  • Duodecimalbulletinissue521.Pdf
    The Duodecimal Bulletin THETHE DuodecimalDuodecimal BulletinBulletin Vol. 52z (62d), No. 1 • July 11EEz (2015d) • Volume 52 z (62 d ), Number 1 • Whole Number X 2 z (122 d ) • July 11 Base Annotation Schemes Whole Number EE z (2015 X d ) z (122 ) ISSN 0046-0826d 2d X ETY Volume Five Dozen Two (52z) Number 1 Whole Number Ten Dozen Two ( 2z) CI O The Dozenal Society of America • • O F is a voluntary, nonprofit corporation, organized to S E 0 1 A L conduct research and educate the public in the use X 2 M The DuodecimalDuodecimal A of base twelve in calculations, mathematics, weights DuodecimalDuodecimalDuodecimal 9 3 E N R and measures, and other branches of pure and ap- E 8 4 I Bulletin Z BulletinBulletin C BulletinBulletin 7 5 plied science. BulletinBulletinBulletinBulletin A O 6 D Volume Sixty Two (62 ) Number 1 Whole No. One Hundred Twenty Two (122 ) d • • d S Basic membership is free, but as a nonprofit we de- pend upon the generosity of our members to continue operating. An annual subscription of US$18.00d B Table of Contents C The Duodecimal Bulletin (US$16.00z) entitles the member to delivery of pa- is an official publication of: per copies of The Duodecimal Bulletin. President’s Message by Donald Goodman ....................................................2z Officers The Dozenal Society Editorial: Radically Conventional ..................................3z Board Chair Jay Schiffman of America, Inc. New Members ...........................................................7z 13510 Photo Drive President Donald Goodman Accuracy of Common Roundings Vice President Graham Steele Woodbridge, VA 22193 by Donald Goodman ....................................................8z Secretary Jen Seron Base Annotation Schemes Treasurer Jay Schiffman Founded: 1160z (1944d) by John Volan.........................................................10z Patterns and Palatable Morsels in Duodecimal Official Website: Board of Directors by Prof.
    [Show full text]
  • Binary Numbers
    Binary Numbers X. Zhang Fordham Univ. 1 Numeral System ! A way for expressing numbers, using symbols in a consistent manner. ! ! "11" can be interpreted differently:! ! in the binary symbol: three! ! in the decimal symbol: eleven! ! “LXXX” represents 80 in Roman numeral system! ! For every number, there is a unique representation (or at least a standard one) in the numeral system 2 Modern numeral system ! Positional base 10 numeral systems ! ◦ Mostly originated from India (Hindu-Arabic numeral system or Arabic numerals)! ! Positional number system (or place value system)! ◦ use same symbol for different orders of magnitude! ! For example, “1262” in base 10! ◦ the “2” in the rightmost is in “one’s place” representing “2 ones”! ◦ The “2” in the third position from right is in “hundred’s place”, representing “2 hundreds”! ◦ “one thousand 2 hundred and sixty two”! ◦ 1*103+2*102+6*101+2*100 3 Modern numeral system (2) ! In base 10 numeral system! ! there is 10 symbols: 0, 1, 2, 3, …, 9! ! Arithmetic operations for positional system is simple! ! Algorithm for multi-digit addition, subtraction, multiplication and division! ! This is a Chinese Abacus (there are many other types of Abacus in other civilizations) dated back to 200 BC 4 Other Positional Numeral System ! Base: number of digits (symbols) used in the system.! ◦ Base 2 (i.e., binary): only use 0 and 1! ◦ Base 8 (octal): only use 0,1,…7! ◦ Base 16 (hexadecimal): use 0,1,…9, A,B,C,D,E,F! ! Like in decimal system, ! ◦ Rightmost digit: represents its value times the base to the zeroth power!
    [Show full text]
  • Ternary and Senary Representations Using DNA Double-Crossover Tiles
    Ternary and senary representations using DNA double-crossover tiles Byeonghoon Kim1,5, Soojin Jo2,5, Junyoung Son1,5, Junghoon Kim1,5, Min Hyeok Kim2, Si Un Hwang1, Sreekantha Reddy Dugasani1, Byung-Dong Kim3, Wing Kam Liu4, Moon Ki Kim2,6 and Sung Ha Park1,6 1 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 2 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea 3 Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea 4 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 5 These authors contributed equally. 6 Address for correspondence: School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (MKK) or Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea (SHP). E-mails: [email protected] (MKK) and [email protected] (SHP) Abstract. The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure. Online supplementary data available from stacks.iop.org/Nano/XX/XXXXXX/mmedia 1 DNA tiles have played a central role in the development of DNA nanotechnology. Of the many types of tiles created to date [1-8], one of the most versatile has been the double-crossover (DX) tile, having been used in a multitude of ways, from constructing one-, two-, and quasi-two-dimensional lattices [9- 11] to creating space-time representations of algorithms by acting as Wang tiles [12-15].
    [Show full text]
  • History of Binary and Other Nondecimal Numeration
    HISTORY OF BINARY AND OTHER NONDECIMAL NUMERATION BY ANTON GLASER Professor of Mathematics, Pennsylvania State University TOMASH PUBLISHERS Copyright © 1971 by Anton Glaser Revised Edition, Copyright 1981 by Anton Glaser All rights reserved Printed in the United States of America Library of Congress Cataloging in Publication Data Glaser, Anton, 1924- History of binary and other nondecimal numeration. Based on the author's thesis (Ph. D. — Temple University), presented under the title: History of modern numeration systems. Bibliography: p. 193 Includes Index. 1. Numeration — History. I. Title QA141.2.G55 1981 513'.5 81-51176 ISBN 0-938228-00-5 AACR2 To My Wife, Ruth ACKNOWLEDGMENTS THIS BOOK is based on the author’s doctoral dissertation, History of Modern Numeration Systems, written under the guidance of Morton Alpren, Sara A. Rhue, and Leon Steinberg of Temple University in Philadelphia, Pa. Extensive help was received from the libraries of the Academy of the New Church (Bryn Athyn, Pa.), the American Philosophical Society, Pennsylvania State University, Temple University, the University of Michigan, and the University of Pennsylvania. The photograph of Figure 7 was made available by the New York Public Library; the library of the University of Pennsylvania is the source of the photographs in Figures 2 and 6. The author is indebted to Harold Hanes, Joseph E. Hofmann, Donald E. Knuth, and Brian J. Winkel, who were kind enough to communicate their comments about the strengths and weaknesses of the original edition. The present revised edition is the better for it. A special thanks is also owed to John Wagner for his careful editorial work and to Adele Clark for her thorough preparation of the Index.
    [Show full text]
  • Manasiya 1 the Babylonian Numeral System We Currently Live in a World
    Manasiya 1 The Babylonian Numeral System We currently live in a world where numbers are everywhere. They are in our houses, our cars, our phones and laptops, and so many more things. We may take numbers for granted, even though we use them all the time, but the numbers we use today were not the first numeral system. Many civilizations before us helped start and develop the idea of numeral systems. The Babylonians, being one of these civilizations, developed one of the oldest positional numeral system with base 10 and base 60 numbers, helped created the idea of a “zero”, and influenced many future mathematical ideas. The Babylonian civilization, one of “the oldest of the world’s civilizations, [rested in] Mesopotamia which emerged in the Tigris and Euphrates river valleys, now the southern part of modern Iraq”1, around 1700 B.C.E. The Babylonians emerged after invading the Sumerian civilization, but the Babylonians inherited much of their mathematical knowledge from their predecessor. A lot of what we know about the Babylonians comes from the clay tablets used during that time. The Babylonians would “write” or inscribe the clay tablet when the clay was soft and moist. Then they let the tablet dry in the sun to harden, so they could use the tablets again. This process allowed us to discover the Mesopotamian civilization and learn more about them. Even though “among all discovered Babylonian clay tablets, about three hundred are on mathematics”2, the tablets provide us with rich information on the Babylonian numeral system. The Babylonian number system uses a combination of base 10 and base 60 numbers.
    [Show full text]