NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS

Total Page:16

File Type:pdf, Size:1020Kb

NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS NUMBER SYSTEMS and DATA REPRESENTATION for COMPUTERS 05 March 2008 Number Systems and Data Representation 2 Table of Contents Table of Contents .............................................................................................................2 Prologue.............................................................................................................................8 Number System Bases Introduction............................................................................12 Base 60 Number System ..........................................................................................12 Base 12 Number System ..........................................................................................14 Base 6 (Senary) Number System ............................................................................15 Base 3 (Trinary) Number System ............................................................................16 Base 1 Number System.............................................................................................17 Other Bases.................................................................................................................18 Know Nothing ..............................................................................................................18 Indexes and Subscripts .................................................................................................19 Common Number Systems for Computers ................................................................20 Decimal Numbers .......................................................................................................20 Binary Numbers ..........................................................................................................20 Hexadecimal Numbers ..............................................................................................20 Octal Numbers ............................................................................................................21 Numbers Names.........................................................................................................21 Decimal Numbers 0 through 15 and Equivalent Hexadecimal and Binary Numbers ..........................................................................................................................23 Memorization...............................................................................................................23 Pattern Recognition Method.....................................................................................24 Position Value Addition..............................................................................................24 Counting Method ........................................................................................................24 Binary Addition ........................................................................................................25 Sample Binary Addition Problems....................................................................25 Abstract Counting in Base 4..................................................................................27 Conversion Between Binary and Hexadecimal.........................................................29 Data Representation......................................................................................................32 A Little Byte of History................................................................................................32 Character Codes.........................................................................................................33 EBCDIC, US-ASCII, and UNICODE Character Codes ........................................36 Jubilation Code and Gran Zeff Code.......................................................................38 Additional Information About Codes........................................................................41 Positional Number Systems .........................................................................................42 Decimal Number System...........................................................................................42 Algebra Review of Exponents ..................................................................................43 Positional Number System General Concept ........................................................43 Binary Number System..............................................................................................44 Hexadecimal Number System..................................................................................46 Octal Number System................................................................................................48 Fun Questions .............................................................................................................48 Sexagesimal or Sexagenary System ......................................................................48 Nothing Matters...........................................................................................................49 Conversion to Decimal ..................................................................................................50 Number Systems and Data Representation 3 Converting From Decimal: Method of Successive Division.....................................51 Converting Decimal Numbers (Base 10) to Binary (Base 2) ...............................51 Converting Decimal Numbers (Base 10) to Hexadecimal (Base 16).................53 Converting Decimal Numbers (Base 10) to Octal (Base 8) .................................56 Converting Decimal Numbers (Base 10) to Base 4 ..............................................57 Checklist for Converting from Decimal to Another Base Number System ........58 Conversion From Decimal Problems ...................................................................59 Conversion Between Base 4, Binary, and Hexadecimal......................................60 Conversion Between Octal and Binary...................................................................62 Strings ..............................................................................................................................64 String Operations........................................................................................................65 Length.......................................................................................................................65 Concatenation..........................................................................................................65 Truncation................................................................................................................65 LEFT Truncation..................................................................................................66 RIGHT Truncation...............................................................................................66 Extraction..............................................................................................................66 Comparison..............................................................................................................67 String Direction ....................................................................................................67 Inequality Comparisons ......................................................................................67 String Search.......................................................................................................68 Compound Expressions .....................................................................................69 String Function Problems ......................................................................................70 Storage of Multibyte Words: Big Endian, Little Endian.............................................72 Logic Operations ............................................................................................................73 AND Operation............................................................................................................73 AND Applications ....................................................................................................74 OR Operation..............................................................................................................75 OR Applications.......................................................................................................76 NOT Operation............................................................................................................76 NOT Applications ....................................................................................................77 Logic Operation Problems.........................................................................................77 Boolean Algebra Theorems ......................................................................................77 Exclusive OR (XOR) Operation................................................................................78 Real Logic Components ............................................................................................79 NAND Operation.........................................................................................................79 NOR Operation ...........................................................................................................80 Logic Operation Summary........................................................................................81 Hexadecimal Addition....................................................................................................82
Recommended publications
  • "Lessons in Electric Circuits, Volume IV -- Digital"
    Fourth Edition, last update November 01, 2007 2 Lessons In Electric Circuits, Volume IV – Digital By Tony R. Kuphaldt Fourth Edition, last update November 01, 2007 i c 2000-2011, Tony R. Kuphaldt This book is published under the terms and conditions of the Design Science License. These terms and conditions allow for free copying, distribution, and/or modification of this document by the general public. The full Design Science License text is included in the last chapter. As an open and collaboratively developed text, this book is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the Design Science License for more details. Available in its entirety as part of the Open Book Project collection at: openbookproject.net/electricCircuits PRINTING HISTORY • First Edition: Printed in June of 2000. Plain-ASCII illustrations for universal computer readability. • Second Edition: Printed in September of 2000. Illustrations reworked in standard graphic (eps and jpeg) format. Source files translated to Texinfo format for easy online and printed publication. • Third Edition: Printed in February 2001. Source files translated to SubML format. SubML is a simple markup language designed to easily convert to other markups like LATEX, HTML, or DocBook using nothing but search-and-replace substitutions. • Fourth Edition: Printed in March 2002. Additions and improvements to 3rd edition. ii Contents 1 NUMERATION SYSTEMS 1 1.1 Numbers and symbols .................................. 1 1.2 Systems of numeration .................................. 6 1.3 Decimal versus binary numeration ........................... 8 1.4 Octal and hexadecimal numeration .........................
    [Show full text]
  • Abstract of Counting Systems of Papua New Guinea and Oceania
    Abstract of http://www.uog.ac.pg/glec/thesis/ch1web/ABSTRACT.htm Abstract of Counting Systems of Papua New Guinea and Oceania by Glendon A. Lean In modern technological societies we take the existence of numbers and the act of counting for granted: they occur in most everyday activities. They are regarded as being sufficiently important to warrant their occupying a substantial part of the primary school curriculum. Most of us, however, would find it difficult to answer with any authority several basic questions about number and counting. For example, how and when did numbers arise in human cultures: are they relatively recent inventions or are they an ancient feature of language? Is counting an important part of all cultures or only of some? Do all cultures count in essentially the same ways? In English, for example, we use what is known as a base 10 counting system and this is true of other European languages. Indeed our view of counting and number tends to be very much a Eurocentric one and yet the large majority the languages spoken in the world - about 4500 - are not European in nature but are the languages of the indigenous peoples of the Pacific, Africa, and the Americas. If we take these into account we obtain a quite different picture of counting systems from that of the Eurocentric view. This study, which attempts to answer these questions, is the culmination of more than twenty years on the counting systems of the indigenous and largely unwritten languages of the Pacific region and it involved extensive fieldwork as well as the consultation of published and rare unpublished sources.
    [Show full text]
  • Page # 6.M.NS.B.03 Aug 8
    1 6th Grade Math Standards Help Sheets Table of Contents Standard When Taught ____ __________________ ___Page # 6.M.NS.B.03 Aug 8th (1 Week) 2 6.M.NS.B.02 Aug 15th (1 Week) 4 6.M.NS.B.04 Aug 22nd (1 Week) 5 6.M.NS.C.09 Aug 29th (1Week) 5 6.M.RP.A.01 Aug 29th (1 Week) 6 6.M.RP.A.02 Sept 5th (1 Week) 7 6.M.RP.A.03 Sept 12th (1 Week) 7 6.M.NS.A.01 Sept 19th (1 Week) 8 Benchmark #1 Review & Test Sept 26th 6.M.NS.C.05 Oct 3rd (1 Week) 10 6.M.NS.C.06ac Oct 10th (1 Week) 11 6.M.EE.A.01 Oct 17th (1 Week) 12 6.M.EE.A.02abc Oct 24th (1 Week) 13 6.M.EE.B.05 Oct 31st (1 Week) 15 6.M.EE.B.07 Nov 7th (1 Week) 17 6.M.EE.B.08 Nov 14th (1 Week) 18 6.M.NS.C.07 Nov 21st (1 Week) 18 6.M.EE.A.04 Nov 28th (2 days) 20 Benchmark #2 Review & Test Dec 5th Benchmark Test Dec 12th 6.M.EE.C.09 Dec 19th (1 Week) 21 6.M.G.A.03 Jan 9th (1 Week) 23 6.M.NS.C.08 Jan 9th (1 Week) 23 6.M.NS.C.06bc Jan 16th (1 Week) 25 6.M.G.A.01 Jan 23rd (1 Week) 27 6.M.G.A.04 Jan 30th (1 Week) 29 6.M.G.A.02 Feb 6th (1 Week) 30 6.M.SP.A.01.02.03 Feb13th (2 Week) 31 Benchmark #3 Review & Test Feb 27th (1 Week) 6.M.RP.A.03 March 6th (1 Week) 35 6.M.SP.B.04 March 20th (1 Week) 36 6.M.SP.B.05 March 27th (2 Weeks) 39 Websites IXL https://www.teachingchannel.org khanacademy.org http://www.commoncoresheets.com learnzillion.com www.mathisfun.com 2 Aug 8th 6.M.NS.B.03 I can use estimation strategies to fluently add, subtract, multiply and divide multi-digit decimals Big Ideas Students use estimation strategies to see if their answer is reasonable.
    [Show full text]
  • Duodecimalbulletinissue521.Pdf
    The Duodecimal Bulletin THETHE DuodecimalDuodecimal BulletinBulletin Vol. 52z (62d), No. 1 • July 11EEz (2015d) • Volume 52 z (62 d ), Number 1 • Whole Number X 2 z (122 d ) • July 11 Base Annotation Schemes Whole Number EE z (2015 X d ) z (122 ) ISSN 0046-0826d 2d X ETY Volume Five Dozen Two (52z) Number 1 Whole Number Ten Dozen Two ( 2z) CI O The Dozenal Society of America • • O F is a voluntary, nonprofit corporation, organized to S E 0 1 A L conduct research and educate the public in the use X 2 M The DuodecimalDuodecimal A of base twelve in calculations, mathematics, weights DuodecimalDuodecimalDuodecimal 9 3 E N R and measures, and other branches of pure and ap- E 8 4 I Bulletin Z BulletinBulletin C BulletinBulletin 7 5 plied science. BulletinBulletinBulletinBulletin A O 6 D Volume Sixty Two (62 ) Number 1 Whole No. One Hundred Twenty Two (122 ) d • • d S Basic membership is free, but as a nonprofit we de- pend upon the generosity of our members to continue operating. An annual subscription of US$18.00d B Table of Contents C The Duodecimal Bulletin (US$16.00z) entitles the member to delivery of pa- is an official publication of: per copies of The Duodecimal Bulletin. President’s Message by Donald Goodman ....................................................2z Officers The Dozenal Society Editorial: Radically Conventional ..................................3z Board Chair Jay Schiffman of America, Inc. New Members ...........................................................7z 13510 Photo Drive President Donald Goodman Accuracy of Common Roundings Vice President Graham Steele Woodbridge, VA 22193 by Donald Goodman ....................................................8z Secretary Jen Seron Base Annotation Schemes Treasurer Jay Schiffman Founded: 1160z (1944d) by John Volan.........................................................10z Patterns and Palatable Morsels in Duodecimal Official Website: Board of Directors by Prof.
    [Show full text]
  • Ternary and Senary Representations Using DNA Double-Crossover Tiles
    Ternary and senary representations using DNA double-crossover tiles Byeonghoon Kim1,5, Soojin Jo2,5, Junyoung Son1,5, Junghoon Kim1,5, Min Hyeok Kim2, Si Un Hwang1, Sreekantha Reddy Dugasani1, Byung-Dong Kim3, Wing Kam Liu4, Moon Ki Kim2,6 and Sung Ha Park1,6 1 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea 2 Sungkyunkwan Advanced Institute of Nanotechnology (SAINT) and School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea 3 Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul 151-921, Korea 4 Department of Mechanical Engineering, Northwestern University, Evanston, IL 60208, USA 5 These authors contributed equally. 6 Address for correspondence: School of Mechanical Engineering, Sungkyunkwan University, Suwon 440-746, Korea (MKK) or Department of Physics, Sungkyunkwan University, Suwon 440-746, Korea (SHP). E-mails: [email protected] (MKK) and [email protected] (SHP) Abstract. The information capacity of DNA double-crossover (DX) tiles was successfully increased beyond a binary representation to higher base representations. By controlling the length and the position of DNA hairpins on the DX tile, ternary and senary (base-3 and base-6) digit representations were realized and verified by atomic force microscopy (AFM). Also, normal mode analysis (NMA) was carried out to study the mechanical characteristics of each structure. Online supplementary data available from stacks.iop.org/Nano/XX/XXXXXX/mmedia 1 DNA tiles have played a central role in the development of DNA nanotechnology. Of the many types of tiles created to date [1-8], one of the most versatile has been the double-crossover (DX) tile, having been used in a multitude of ways, from constructing one-, two-, and quasi-two-dimensional lattices [9- 11] to creating space-time representations of algorithms by acting as Wang tiles [12-15].
    [Show full text]
  • Unpacking Symbolic Number Comparison and Its Relation with Arithmetic in Adults ⇑ Delphine Sasanguie A,B, , Ian M
    Cognition 165 (2017) 26–38 Contents lists available at ScienceDirect Cognition journal homepage: www.elsevier.com/locate/COGNIT Original Articles Unpacking symbolic number comparison and its relation with arithmetic in adults ⇑ Delphine Sasanguie a,b, , Ian M. Lyons c, Bert De Smedt d, Bert Reynvoet a,b a Brain and Cognition, KU Leuven, 3000 Leuven, Belgium b Faculty of Psychology and Educational Sciences @Kulak, 8500 Kortrijk, Belgium c Department of Psychology, Georgetown University, 20057 Washington D.C., United States d Parenting and Special Education, KU Leuven, 3000 Leuven, Belgium article info abstract Article history: Symbolic number – or digit – comparison has been a central tool in the domain of numerical cognition for Received 15 July 2016 decades. More recently, individual differences in performance on this task have been shown to robustly Revised 13 April 2017 relate to individual differences in more complex math processing – a result that has been replicated Accepted 24 April 2017 across many different age groups. In this study, we ‘unpack’ the underlying components of digit compar- Available online 28 April 2017 ison (i.e. digit identification, digit to number-word matching, digit ordering and general comparison) in a sample of adults. In a first experiment, we showed that digit comparison performance was most strongly Keywords: related to digit ordering ability – i.e., the ability to judge whether symbolic numbers are in numerical Digit comparison order. Furthermore, path analyses indicated that the relation between digit comparison and arithmetic Arithmetic Working memory was partly mediated by digit ordering and fully mediated when non-numerical (letter) ordering was also Long-term memory entered into the model.
    [Show full text]
  • History of Binary and Other Nondecimal Numeration
    HISTORY OF BINARY AND OTHER NONDECIMAL NUMERATION BY ANTON GLASER Professor of Mathematics, Pennsylvania State University TOMASH PUBLISHERS Copyright © 1971 by Anton Glaser Revised Edition, Copyright 1981 by Anton Glaser All rights reserved Printed in the United States of America Library of Congress Cataloging in Publication Data Glaser, Anton, 1924- History of binary and other nondecimal numeration. Based on the author's thesis (Ph. D. — Temple University), presented under the title: History of modern numeration systems. Bibliography: p. 193 Includes Index. 1. Numeration — History. I. Title QA141.2.G55 1981 513'.5 81-51176 ISBN 0-938228-00-5 AACR2 To My Wife, Ruth ACKNOWLEDGMENTS THIS BOOK is based on the author’s doctoral dissertation, History of Modern Numeration Systems, written under the guidance of Morton Alpren, Sara A. Rhue, and Leon Steinberg of Temple University in Philadelphia, Pa. Extensive help was received from the libraries of the Academy of the New Church (Bryn Athyn, Pa.), the American Philosophical Society, Pennsylvania State University, Temple University, the University of Michigan, and the University of Pennsylvania. The photograph of Figure 7 was made available by the New York Public Library; the library of the University of Pennsylvania is the source of the photographs in Figures 2 and 6. The author is indebted to Harold Hanes, Joseph E. Hofmann, Donald E. Knuth, and Brian J. Winkel, who were kind enough to communicate their comments about the strengths and weaknesses of the original edition. The present revised edition is the better for it. A special thanks is also owed to John Wagner for his careful editorial work and to Adele Clark for her thorough preparation of the Index.
    [Show full text]
  • IDA 3 Rule 160-4-2-.20
    160-4-2-.20 Code: IDA (3) 160-4-2-.20 LIST OF STATE-FUNDED K-8 SUBJECTS AND 9-12 COURSES FOR STUDENTS ENTERING NINTH GRADE IN 2008 AND SUBSEQUENT YEARS. (1) REQUIREMENTS. (a) Local boards of education shall not receive state funds for the following: 1. Any course for which the course guide does not allocate a major portion of class time towards the development of one or more student competencies established by the Georgia Board of Education. (See State Board of Education Rule 160-4-2-.01 The Quality Core Curriculum and Student Competencies.) 2. Any course that requires participation in an extracurricular activity and for which enrollment is on a competitive basis. 3. Any class period in which the student serves as an assistant in a school office or in the media center, except when such placement is an approved work learning site of a recognized career or vocational program. 4. Any study hall or other noncredit course. (b) Local boards of education may apply for state funding for courses not on this list using DE Form 0287 Local School System Request for Addition to Rule 160-4-2-.20 List of State- Funded K-8 Subjects and 9-12 Courses. The forms are posted on the Standards, Instruction, and Assessment webpage. (c) New course additions will be considered each year by the State Board of Education. DE Form 0287 must be submitted to the Department by June 1 each year. (d) The courses attached to this rule shall become effective at the beginning of school year 2010-2011.
    [Show full text]
  • The Concept of Zero Continued…
    International Journal of Scientific & Engineering Research Volume 3, Issue 12, December-2012 1 ISSN 2229-5518 Research Topic: The Concept of Zero Continued… Abstract: In the BC calendar era, the year 1 BC is the first year before AD 1; no room is reserved 0 (zero; /ˈziːroʊ/ ZEER-oh) is both a for a year zero. By contrast, in astronomical number[1] and the numerical digit used to year numbering, the year 1 BC is numbered represent that number in numerals. It plays a 0, the year 2 BC is numbered −1, and so on. central role in mathematics as the additive identity of the integers, real numbers, and The oldest known text to use a decimal many other algebraic structures. As a digit, 0 place-value system, including a zero, is the is used as a placeholder in place value Jain text from India entitled the systems. In the English language, 0 may be Lokavibhâga, dated 458 AD. This text uses called zero, nought or (US) naught ( Sanskrit numeral words for the digits, with /ˈnɔːt/), nil, or "o". Informal or slang terms words such as the Sanskrit word for void for for zero include zilch and zip. Ought or zero. aught ( /ˈɔːt/), have also been used. The first known use of special glyphs for the decimal digits that includes the 0 is the integer immediately preceding 1. In indubitable appearance of a symbol for the most cultures, 0 was identified before the digit zero, a small circle, appears on a stone idea of negative things that go lower than inscription found at the Chaturbhuja Temple zero was accepted.
    [Show full text]
  • Number System and Codes
    NUMBER SYSTEM AND CODES INTRODUCTION:- The term digital refers to a process that is achieved by using discrete unit. In number system there are different symbols and each symbol has an absolute value and also has place value. RADIX OR BASE:- The radix or base of a number system is defined as the number of different digits which can occur in each position in the number system. RADIX POINT :- The generalized form of a decimal point is known as radix point. In any positional number system the radix point divides the integer and fractional part. Nr = [ Integer part . Fractional part ] ↑ Radix point NUMBER SYSTEM:- In general a number in a system having base or radix ‘ r ’ can be written as an an-1 an-2 …………… a0 . a -1 a -2 …………a - m This will be interpreted as n n-1 n-2 0 -1 -2 –m Y = an x r + an-1 x r + an-2 x r + ……… + a0 x r + a-1 x r + a-2 x r +………. +a -m x r where Y = value of the entire number th an = the value of the n digit r = radix TYPES OF NUMBER SYSTEM:- There are four types of number systems. They are 1. Decimal number system 2. Binary number system 3. Octal number system 4. Hexadecimal number system DECIMAL NUMBER SYSTEM:- The decimal number system contain ten unique symbols 0,1,2,3,4,5,6,7,8 and 9. In decimal system 10 symbols are involved, so the base or radix is 10. It is a positional weighted system.
    [Show full text]
  • Touch Biometric System
    Incorporating Touch Biometrics to Mobile One-Time Passwords: Exploration of Digits Ruben Tolosana, Ruben Vera-Rodriguez, Julian Fierrez and Javier Ortega-Garcia BiDA Lab- Biometrics and Data Pattern Analytics Lab Universidad Autonoma de Madrid, Spain Outline 1.Introduction 2.e-BioDigit Database 3.Handwritten Touch Biometric System 4.Experimental Work 5.Conclusions and future Work Introduction 1 1. Introduction 2. e-BioDigit Database 3. Handwritten Touch Biometric System 4. Experimental Work 5. Conclusions and Future Work Introduction • Mobile devices have become an indispensable tool for most people nowadays Social Networks On-Line Payments 1 / 17 Introduction • Public and Private Sectors are aware of the importance of mobile devices in our society • Deployment of their services through security and user-friendly mobile applications 2 / 17 Introduction • Public and Private Sectors are aware of the importance of mobile devices in our society • Deployment of their services through security and user-friendly mobile applications • However, difficult to accomplish using only traditional approaches Personal Identification Number (PIN) One-Time Password (OTP) 3 / 17 Introduction • Biometric recognition schemes can cope with these problems as they combine: • Behavioural biometric systems very attractive on mobile scenarios Dynamic Lock Touch Handwritten Graphical Patterns Biometrics Signature Passwords 4 / 17 Proposed Approach • Incorporate touch biometrics to mobile one-time passwords (OTP): On-Line Payments User Mobile Authentication Message 5 / 17 Proposed Approach • Incorporate touch biometrics to mobile one-time passwords (OTP): On-Line Payments OTP System (e.g. 934) Advantages: • Users do not memorize passwords • User-friendly interface (mobile scenarios) • Security level easily configurable • # enrolment samples • Length password 6 / 17 e-BioDigit Database 2 1.
    [Show full text]
  • Download Book // Positional Numeral Systems: Hexadecimal, Octal
    QUB7RMIDHRDN » eBook » Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark,... Download eBook Online POSITIONAL NUMERAL SYSTEMS: HEXADECIMAL, OCTAL, DUODECIMAL, SENARY, TERNARY NUMERAL SYSTEM, DECIMAL MARK, SEXAGESIMAL, BINARY NUMERAL SYSTEM To save Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system eBook, remember to click the link beneath and download the ebook or have accessibility to other information that are highly relevant to POSITIONAL NUMERAL SYSTEMS: HEXADECIMAL, OCTAL, DUODECIMAL, SENARY, TERNARY NUMERAL SYSTEM, DECIMAL MARK, SEXAGESIMAL, BINARY NUMERAL SYSTEM book. Download PDF Positional numeral systems: Hexadecimal, Octal, Duodecimal, Senary, Ternary numeral system, Decimal mark, Sexagesimal, Binary numeral system Authored by Source: Wikipedia Released at 2016 Filesize: 7.7 MB Reviews It in just one of my personal favorite pdf. I could comprehended every thing out of this written e book. Its been written in an remarkably basic way and is particularly just following i finished reading through this book by which actually transformed me, affect the way i think. -- Jace Johns These types of pdf is the best ebook accessible. Sure, it is actually enjoy, nonetheless an interesting and amazing literature. I am pleased to inform you that this is basically the very best pdf i actually have read through in my own daily life and may be he finest ebook for ever. -- Prince Haag A top quality ebook and the typeface used was interesting to learn. This can be for all who statte that there had not been a well worth reading through. I am just pleased to tell you that this is basically the very best ebook i actually have go through in my individual life and can be he finest book for at any time.
    [Show full text]