Inventing Your Own Number System

Total Page:16

File Type:pdf, Size:1020Kb

Inventing Your Own Number System Inventing Your Own Number System Through the ages people have invented many different ways to name, write, and compute with numbers. Our current number system is based on place values corresponding to powers of ten. In principle, place values could correspond to any sequence of numbers. For example, the places could have values corre- sponding to the sequence of square numbers, triangular numbers, multiples of six, Fibonacci numbers, prime numbers, or factorials. The Roman numeral system does not use place values, but the position of numerals does matter when determining the number represented. Tally marks are a simple system, but representing large numbers requires many strokes. In our number system, symbols for digits and the positions they are located combine to represent the value of the number. It is possible to create a system where symbols stand for operations rather than values. For example, the system might always start at a default number and use symbols to stand for operations such as doubling, adding one, taking the reciprocal, dividing by ten, squaring, negating, or any other specific operations. Create your own number system. What symbols will you use for your numbers? How will your system work? Demonstrate how your system could be used to perform some of the following functions. • Count from 0 up to 100 • Compare the sizes of numbers • Add and subtract whole numbers • Multiply and divide whole numbers • Represent fractional values • Represent irrational numbers (such as π) What are some of the advantages of your system compared with other systems? What are some of the disadvantages? If you met aliens that had developed their own number system, how might their mathematics be similar to ours and how might it be different? Make a list of some math facts and procedures that you have learned. Which items on the list would probably be the same no matter what number system was used? Which facts and procedures would depend on the number system?.
Recommended publications
  • Positional Notation Or Trigonometry [2, 13]
    The Greatest Mathematical Discovery? David H. Bailey∗ Jonathan M. Borweiny April 24, 2011 1 Introduction Question: What mathematical discovery more than 1500 years ago: • Is one of the greatest, if not the greatest, single discovery in the field of mathematics? • Involved three subtle ideas that eluded the greatest minds of antiquity, even geniuses such as Archimedes? • Was fiercely resisted in Europe for hundreds of years after its discovery? • Even today, in historical treatments of mathematics, is often dismissed with scant mention, or else is ascribed to the wrong source? Answer: Our modern system of positional decimal notation with zero, to- gether with the basic arithmetic computational schemes, which were discov- ered in India prior to 500 CE. ∗Bailey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. Email: [email protected]. This work was supported by the Director, Office of Computational and Technology Research, Division of Mathematical, Information, and Computational Sciences of the U.S. Department of Energy, under contract number DE-AC02-05CH11231. yCentre for Computer Assisted Research Mathematics and its Applications (CARMA), University of Newcastle, Callaghan, NSW 2308, Australia. Email: [email protected]. 1 2 Why? As the 19th century mathematician Pierre-Simon Laplace explained: It is India that gave us the ingenious method of expressing all numbers by means of ten symbols, each symbol receiving a value of position as well as an absolute value; a profound and important idea which appears so simple to us now that we ignore its true merit. But its very sim- plicity and the great ease which it has lent to all computations put our arithmetic in the first rank of useful inventions; and we shall appre- ciate the grandeur of this achievement the more when we remember that it escaped the genius of Archimedes and Apollonius, two of the greatest men produced by antiquity.
    [Show full text]
  • Zero Displacement Ternary Number System: the Most Economical Way of Representing Numbers
    Revista de Ciências da Computação, Volume III, Ano III, 2008, nº3 Zero Displacement Ternary Number System: the most economical way of representing numbers Fernando Guilherme Silvano Lobo Pimentel , Bank of Portugal, Email: [email protected] Abstract This paper concerns the efficiency of number systems. Following the identification of the most economical conventional integer number system, from a solid criteria, an improvement to such system’s representation economy is proposed which combines the representation efficiency of positional number systems without 0 with the possibility of representing the number 0. A modification to base 3 without 0 makes it possible to obtain a new number system which, according to the identified optimization criteria, becomes the most economic among all integer ones. Key Words: Positional Number Systems, Efficiency, Zero Resumo Este artigo aborda a questão da eficiência de sistemas de números. Partindo da identificação da mais económica base inteira de números de acordo com um critério preestabelecido, propõe-se um melhoramento à economia de representação nessa mesma base através da combinação da eficiência de representação de sistemas de números posicionais sem o zero com a possibilidade de representar o número zero. Uma modificação à base 3 sem zero permite a obtenção de um novo sistema de números que, de acordo com o critério de optimização identificado, é o sistema de representação mais económico entre os sistemas de números inteiros. Palavras-Chave: Sistemas de Números Posicionais, Eficiência, Zero 1 Introduction Counting systems are an indispensable tool in Computing Science. For reasons that are both technological and user friendliness, the performance of information processing depends heavily on the adopted numbering system.
    [Show full text]
  • Duodecimal Bulletin Vol
    The Duodecimal Bulletin Bulletin Duodecimal The Vol. 4a; № 2; Year 11B6; Exercise 1. Fill in the missing numerals. You may change the others on a separate sheet of paper. 1 1 1 1 2 2 2 2 ■ Volume Volume nada 3 zero. one. two. three.trio 3 1 1 4 a ; (58.) 1 1 2 3 2 2 ■ Number Number 2 sevenito four. five. six. seven. 2 ; 1 ■ Whole Number Number Whole 2 2 1 2 3 99 3 ; (117.) eight. nine. ________.damas caballeros________. All About Our New Numbers 99;Whole Number ISSN 0046-0826 Whole Number nine dozen nine (117.) ◆ Volume four dozen ten (58.) ◆ № 2 The Dozenal Society of America is a voluntary nonprofit educational corporation, organized for the conduct of research and education of the public in the use of base twelve in calculations, mathematics, weights and measures, and other branches of pure and applied science Basic Membership dues are $18 (USD), Supporting Mem- bership dues are $36 (USD) for one calendar year. ••Contents•• Student membership is $3 (USD) per year. The page numbers appear in the format Volume·Number·Page TheDuodecimal Bulletin is an official publication of President’s Message 4a·2·03 The DOZENAL Society of America, Inc. An Error in Arithmetic · Jean Kelly 4a·2·04 5106 Hampton Avenue, Suite 205 Saint Louis, mo 63109-3115 The Opposed Principles · Reprint · Ralph Beard 4a·2·05 Officers Eugene Maxwell “Skip” Scifres · dsa № 11; 4a·2·08 Board Chair Jay Schiffman Presenting Symbology · An Editorial 4a·2·09 President Michael De Vlieger Problem Corner · Prof.
    [Show full text]
  • The Chinese Rod Numeral Legacy and Its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore
    The Chinese Rod Numeral Legacy and its Impact on Mathematics* Lam Lay Yong Mathematics Department National University of Singapore First, let me explain the Chinese rod numeral system. Since the Warring States period {480 B.C. to 221 B.C.) to the 17th century A.D. the Chinese used a bundle of straight rods for computation. These rods, usually made from bamboo though they could be made from other materials such as bone, wood, iron, ivory and jade, were used to form the numerals 1 to 9 as follows: 1 2 3 4 5 6 7 8 9 II Ill Ill I IIIII T II Note that for numerals 6 to 9, a horizontal rod represents the quantity five. A numeral system which uses place values with ten as base requires only nine signs. Any numeral of such a system is formed from among these nine signs which are placed in specific place positions relative to each other. Our present numeral system, commonly known as the Hindu-Arabic numeral system, is based on this concept; the value of each numeral determines the choice of digits from the nine signs 1, 2, ... , 9 anq their place positions. The place positions are called units, tens, hundreds, thousands, and so on, and each is occupied by at most one digit. The Chinese rod system employs the same concept. However, since its nine signs are formed from rod tallies, if a number such as 34 were repre­ sented as Jll\IU , this would inevitably lead to ambiguity and confusion. To * Text of Presidential Address delivered at the Society's Annual General Meeting on 20 March 1987.
    [Show full text]
  • A Ternary Arithmetic and Logic
    Proceedings of the World Congress on Engineering 2010 Vol I WCE 2010, June 30 - July 2, 2010, London, U.K. A Ternary Arithmetic and Logic Ion Profeanu which supports radical ontological dualism between the two Abstract—This paper is only a chapter, not very detailed, of eternal principles, Good and Evil, which oppose each other a larger work aimed at developing a theoretical tool to in the course of history, in an endless confrontation. A key investigate first electromagnetic fields but not only that, (an element of Manichean doctrine is the non-omnipotence of imaginative researcher might use the same tool in very unusual the power of God, denying the infinite perfection of divinity areas of research) with the stated aim of providing a new perspective in understanding older or recent research in "free that has they say a dual nature, consisting of two equal but energy". I read somewhere that devices which generate "free opposite sides (Good-Bad). I confess that this kind of energy" works by laws and principles that can not be explained dualism, which I think is harmful, made me to seek another within the framework of classical physics, and that is why they numeral system and another logic by means of which I will are kept far away from public eye. So in the absence of an praise and bring honor owed to God's name; and because adequate theory to explain these phenomena, these devices can God is One Being in three personal dimensions (the Father, not reach the design tables of some plants in order to produce them in greater number.
    [Show full text]
  • Numeration Systems Reminder : If a and M Are Whole Numbers Then Exponential Expression Amor a to the Mth Power Is M = ⋅⋅⋅⋅⋅ Defined by A Aaa
    MA 118 – Section 3.1: Numeration Systems Reminder : If a and m are whole numbers then exponential expression amor a to the mth power is m = ⋅⋅⋅⋅⋅ defined by a aaa... aa . m times Number a is the base ; m is the exponent or power . Example : 53 = Definition: A number is an abstract idea that indicates “how many”. A numeral is a symbol used to represent a number. A System of Numeration consists of a set of basic numerals and rules for combining them to represent numbers. 1 Section 3.1: Numeration Systems The timeline indicates recorded writing about 10,000 years ago between 4,000–3,000 B.C. The Ishango Bone provides the first evidence of human counting, dated 20,000 years ago. I. Tally Numeration System Example: Write the first 12 counting numbers with tally marks. In a tally system, there is a one-to-one correspondence between marks and items being counted. What are the advantages and drawbacks of a Tally Numeration System? 2 Section 3.1: Numeration Systems (continued) II. Egyptian Numeration System Staff Yoke Scroll Lotus Pointing Fish Amazed (Heel Blossom Finger (Polywog) (Astonished) Bone) Person Example : Page 159 1 b, 2b Example : Write 3248 as an Egyptian numeral. What are the advantages and drawbacks of the Egyptian System? 3 Section 3.1: Numeration Systems (continued) III. Roman Numeral System Roman Numerals I V X L C D M Indo-Arabic 1 5 10 50 100 500 1000 If a symbol for a lesser number is written to the left of a symbol for a greater number, then the lesser number is subtracted.
    [Show full text]
  • Tally Sticks, Counting Boards, and Sumerian Proto-Writing John Alan Halloran
    Early Numeration - John Alan Halloran - August 10, 2009 - Page 1 Early Numeration - Tally Sticks, Counting Boards, and Sumerian Proto-Writing John Alan Halloran http://www.sumerian.org/ Work on the published version of my Sumerian Lexicon (Logogram Publishing: 2006) has revealed that: 1) the early Sumerians used wooden tally sticks for counting; 2) tally marks led to proto-writing; 3) the Sumerian pictograms for goats and sheep probably derive from tally stick notch conventions; 4) the Uruk period civilization used counting boards; 5) the authors of the proto-cuneiform tablets drew with animal claws or bird talons; 6) the historical Sumerians used clay split tallies as credit instruments; and 7) the Sumerians may sometimes have counted by placing knots or stones on a string. 1. Counting with Wooden Tally Sticks 1.1. The following text caught my attention. It is from The Debate between Sheep and Grain, ETCSL 5.3.2, lines 130-133: "Every night your count is made and your tally-stick put into the ground, so your herdsman can tell people how many ewes there are and how many young lambs, and how many goats and how many young kids." The Sumerian reads: 130 ud šu2-uš-e niñ2-kas7-zu ba-ni-ak-e ñiš 131 ŠID-ma-zu ki i3-tag-tag-ge - the Unicode version has ñiš-šudum- ma-zu 132 na-gada-zu u8 me-a sila4 tur-tur me-a 133 ud5 me-a maš2 tur-tur me-a lu2 mu-un-na-ab-be2 š is read |sh| and ñ is read |ng|.
    [Show full text]
  • Binary Numbers
    Binary Numbers X. Zhang Fordham Univ. 1 Numeral System ! A way for expressing numbers, using symbols in a consistent manner. ! ! "11" can be interpreted differently:! ! in the binary symbol: three! ! in the decimal symbol: eleven! ! “LXXX” represents 80 in Roman numeral system! ! For every number, there is a unique representation (or at least a standard one) in the numeral system 2 Modern numeral system ! Positional base 10 numeral systems ! ◦ Mostly originated from India (Hindu-Arabic numeral system or Arabic numerals)! ! Positional number system (or place value system)! ◦ use same symbol for different orders of magnitude! ! For example, “1262” in base 10! ◦ the “2” in the rightmost is in “one’s place” representing “2 ones”! ◦ The “2” in the third position from right is in “hundred’s place”, representing “2 hundreds”! ◦ “one thousand 2 hundred and sixty two”! ◦ 1*103+2*102+6*101+2*100 3 Modern numeral system (2) ! In base 10 numeral system! ! there is 10 symbols: 0, 1, 2, 3, …, 9! ! Arithmetic operations for positional system is simple! ! Algorithm for multi-digit addition, subtraction, multiplication and division! ! This is a Chinese Abacus (there are many other types of Abacus in other civilizations) dated back to 200 BC 4 Other Positional Numeral System ! Base: number of digits (symbols) used in the system.! ◦ Base 2 (i.e., binary): only use 0 and 1! ◦ Base 8 (octal): only use 0,1,…7! ◦ Base 16 (hexadecimal): use 0,1,…9, A,B,C,D,E,F! ! Like in decimal system, ! ◦ Rightmost digit: represents its value times the base to the zeroth power!
    [Show full text]
  • Babylonian Numeration
    Babylonian Numeration Dominic Klyve ∗ October 9, 2020 You may know that people have developed several different ways to represent numbers throughout history. The simplest is probably to use tally marks, so that the first few numbers might be represented like this: and so on. You may also have learned a more efficient way to make tally marks at some point, but the method above is almost certainly the first that humans ever used. Some ancient artifacts, including one known as the \Ishango Bone," suggest that people were using symbols like these over 20,000 years ago!1 By 2000 BCE, the Sumerian civilization had developed a considerably more sophisticated method of writing numbers|a method which in many ways is quite unlike what we use today. Their method was adopted by the Babylonians after they conquered the Sumerians, and today the symbols used in this system are usually referred to as Babylonian numerals. Fortunately, we have a very good record of the way the Sumerians (and Babylonians) wrote their numbers. They didn't use paper, but instead used a small wedge-shaped (\cuneiform") tool to put marks into tablets made of mud. If these tablets were baked briefly, they hardened into a rock-like material which could survive with little damage for thousands of years. On the next page you will find a recreation of a real tablet, presented close to its actual size. It was discovered in the Sumerian city of Nippur (in modern-day Iraq), and dates to around 1500 BCE. We're not completely sure what this is, but most scholars suspect that it is a homework exercise, preserved for thousands of years.
    [Show full text]
  • UEB Guidelines for Technical Material
    Guidelines for Technical Material Unified English Braille Guidelines for Technical Material This version updated October 2008 ii Last updated October 2008 iii About this Document This document has been produced by the Maths Focus Group, a subgroup of the UEB Rules Committee within the International Council on English Braille (ICEB). At the ICEB General Assembly in April 2008 it was agreed that the document should be released for use internationally, and that feedback should be gathered with a view to a producing a new edition prior to the 2012 General Assembly. The purpose of this document is to give transcribers enough information and examples to produce Maths, Science and Computer notation in Unified English Braille. This document is available in the following file formats: pdf, doc or brf. These files can be sourced through the ICEB representatives on your local Braille Authorities. Please send feedback on this document to ICEB, again through the Braille Authority in your own country. Last updated October 2008 iv Guidelines for Technical Material 1 General Principles..............................................................................................1 1.1 Spacing .......................................................................................................1 1.2 Underlying rules for numbers and letters.....................................................2 1.3 Print Symbols ..............................................................................................3 1.4 Format.........................................................................................................3
    [Show full text]
  • The Dozenal Package, V6.0
    The dozenal Package, v6.0 Donald P. Goodman III June 27, 2015 Abstract The dozenal package provides some simple mechanisms for working with the dozenal (duodecimal or \base 12") numerical system. It redefines all basic LATEX counters, provides a command for converting arbitrary decimal numbers into dozenal, and provides new, real METAFONT characters for ten and eleven, though the commands for producing them can be redefined to produce any figure. As of v2.0, it also includes Type 1 versions of the fonts, selected (as of v5.0) with the typeone package option. This package uses the \basexii algorithm by David Kastrup. Contents 1 Introduction 1 2 Basic Functionality 2 3 Base Conversion 2 4 Dozenal Characters and Fonts 5 4.1 Shorthands for Dozenal Characters . 5 4.2 The dozenal Fonts........................... 5 5 Package Options 6 6 Implementation 6 1 Introduction While most would probably call it at best overoptimistic and at worst foolish, some people (the author included) do still find themselves attracted to the dozenal (base-twelve) system. These people, however, have been pretty hard up1 in the LATEX world. There is no package file available which produces dozenal counters, like page and chapter numbers, nor were there any (I made a pretty diligent 1This is an Americanism for \out of luck" or \in difficult circumstances," for those who do not know. 1 search) dozenal characters for ten and eleven, leaving dozenalists forced to use such makeshift ugliness as the \X/E" or \T/E" or \*/#" or whatever other standard they decided to use. While this sort of thing may be acceptable in ASCII, it's absolutely unacceptable in a beautiful, typeset document.
    [Show full text]
  • Numerical Notation: a Comparative History
    This page intentionally left blank Numerical Notation Th is book is a cross-cultural reference volume of all attested numerical notation systems (graphic, nonphonetic systems for representing numbers), encompassing more than 100 such systems used over the past 5,500 years. Using a typology that defi es progressive, unilinear evolutionary models of change, Stephen Chrisomalis identifi es fi ve basic types of numerical notation systems, using a cultural phylo- genetic framework to show relationships between systems and to create a general theory of change in numerical systems. Numerical notation systems are prima- rily representational systems, not computational technologies. Cognitive factors that help explain how numerical systems change relate to general principles, such as conciseness and avoidance of ambiguity, which also apply to writing systems. Th e transformation and replacement of numerical notation systems relate to spe- cifi c social, economic, and technological changes, such as the development of the printing press and the expansion of the global world-system. Stephen Chrisomalis is an assistant professor of anthropology at Wayne State Uni- versity in Detroit, Michigan. He completed his Ph.D. at McGill University in Montreal, Quebec, where he studied under the late Bruce Trigger. Chrisomalis’s work has appeared in journals including Antiquity, Cambridge Archaeological Jour- nal, and Cross-Cultural Research. He is the editor of the Stop: Toutes Directions project and the author of the academic weblog Glossographia. Numerical Notation A Comparative History Stephen Chrisomalis Wayne State University CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Dubai, Tokyo Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK Published in the United States of America by Cambridge University Press, New York www.cambridge.org Information on this title: www.cambridge.org/9780521878180 © Stephen Chrisomalis 2010 This publication is in copyright.
    [Show full text]