Objective Assessment of Retinal Ganglion Cell Function in Glaucoma
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Visual Field Test
EYE FACTS visual field test Your visual field refers to how much you can see around you, including objects in your peripheral (side) vision. This test produces a map of your field of vision. Visual field tests help your ophthalmologist (Eye M.D.) monitor any loss of vision and diagnose eye problems and disease. Visual field testing is used to monitor peripheral, or side, vision. HOW IS A VISUAL FIELD TEST PERFORMED? The test is performed with a large, bowl-shaped in- Normal visual field Severe visual loss strument called a perimeter. In order to test one eye at a time, one of your eyes is temporarily patched during the test. You will be seated and positioned comfortably in front of the perimeter and asked to look straight ahead at a fixed spot (the fixation target). The computer randomly flashes points of light around the bowl-shaped perimeter. When you see a light, press the indicator button. It is very important These grids are results of visual field tests.T he dark to always keep looking straight ahead. Do not move black shaded areas show where loss of vision has your eyes to look for the target; wait until it appears occurred. in your side vision. It is normal for some of the lights to be difficult to see. A delay in seeing a light does not necessarily mean your field of vision is damaged. If you need to rest during the test, tell the technician and they will pause the test until you are ready to continue. Your ophthalmologist will interpret the results of your test and discuss them with you. -
Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma
Glaucoma Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma Jessica Tang,1,2 Flora Hui,1 Xavier Hadoux,1 Bernardo Soares,3 Michael Jamieson,3 Peter van Wijngaarden,1–3 Michael Coote,1–3 and Jonathan G. Crowston1,2,4,5 1Glaucoma Research Unit, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 2Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia 3Royal Victorian Eye and Ear Hospital, Melbourne, Australia 4Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore 5Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore Correspondence: Jessica Tang, PURPOSE. To evaluate the short-term changes in inner retinal function using the photopic Glaucoma Research Unit, Centre for negative response (PhNR) after intraocular pressure (IOP) reduction in glaucoma. Eye Research Australia, Royal Victorian Eye and Ear Hospital, METHODS. Forty-seven participants with glaucoma who were commencing a new or addi- Level 7, Peter Howson Wing, 32 tional IOP-lowering therapy (treatment group) and 39 participants with stable glau- Gisborne St, East Melbourne, VIC coma (control group) were recruited. IOP, visual field, retinal nerve fiber layer thick- 3002, Australia; ness, and electroretinograms (ERGs) were recorded at baseline and at a follow-up visit [email protected]. (3 ± 2 months). An optimized protocol developed for a portable ERG device was used Received: August 29, 2019 to record the PhNR. The PhNR saturated amplitude (Vmax), Vmax ratio, semi-saturation Accepted: June 16, 2020 constant (K), and slope of the Naka–Rushton function were analyzed. Published: August 7, 2020 RESULTS. -
Optic Disc and Macular Vessel Density Measured by Optical
www.nature.com/scientificreports OPEN Optic Disc and Macular Vessel Density Measured by Optical Coherence Tomography Angiography in Open-Angle and Angle-Closure Glaucoma Tzu-Yu Hou1,2, Tung-Mei Kuang1,2, Yu-Chieh Ko1,2, Yu-Fan Chang1,2, Catherine Jui-Ling Liu1,2 & Mei-Ju Chen1,2* There is distinct pathogenesis between primary open-angle glaucoma (POAG) and primary angle- closure glaucoma (PACG). Although elevated intraocular pressure (IOP) is the major risk factor for glaucoma, non-IOP risk factors such as vascular abnormalities and lower systolic/diastolic perfusion pressure may play a role in the pathogenic process. This study aimed to compare the vessel density (VD) in the optic disc and macula using optical coherence tomography angiography (OCTA) between POAG and PACG eyes. Thirty-two POAG eyes, 30 PACG eyes, and 39 control eyes were included. All the optic disc VD parameters except the inside disc VD were signifcantly lower in glaucomatous eyes than in control eyes. Compared with PACG eyes, only the inferior temporal peripapillary VD was signifcantly lower in POAG eyes. The parafoveal VD was signifcantly lower in each quadrant in glaucomatous eyes than in control eyes. The central macular and parafoveal VD did not difer between POAG and PACG eyes. In conclusion, the inferior temporal peripapillary VD was signifcantly reduced in POAG eyes compared with PACG eyes, while PACG eyes showed a more evenly distributed reduction in the peripapillary VD. The distinct patterns of VD change may be associated with the diferent pathogenesis between POAG and PACG. Glaucoma is an optic neuropathy characterised by progressive loss of retinal ganglion cells and their axons accompanied by corresponding visual feld (VF) defects. -
Physical Eye Examination
Physical Eye Examination Kaevalin Lekhanont, MD Department of Ophthalmology Ramathibodi Hospp,ital, Mahidol Universit y Outline • Visual acuity (VA) testing – Distant VA test – Pinhole test – Near VA test • Visual field testing • Record and interpretations Outline • Penlight examination •Swingggping penli ght test • Direct ophthalmoscopy – Red reflex examination • Schiotz tonometry • RdditttiRecord and interpretations Conjunctiva, Sclera Retina Cornea Iris Retinal blood vessels Fovea Pupil AtAnteri or c ham ber Vitreous Aqueous humor Lens Optic nerve Trabecular meshwork Ciliary body Choriod and RPE Function evaluation • Visual function – Visual acuity test – Visual field test – Refraction • Motility function Anatomical evaluation Visual acuity test • Distant VA test • Near VA test Distance VA test Snellen’s chart • 20 ฟุตหรือ 6 เมตร • วัดที่ละขาง ตาขวากอนตาซาย • ออานทละตาานทีละตา แถวบนลงลแถวบนลงลางาง • บันทึกแถวลางสุดที่อานได Pinhole test VA with pinhole (PH) Refractive error emmetitropia myypopia hyperopia VA record 20/200 ผูปวยสามารถอานต ัวเลขทมี่ ี ขนาดใหญขนาดใหญพอทคนปกตพอที่คนปกติ สามารถอานไดจากท ี่ระยะ 200 ฟตฟุต แตแตผผปูปวยอานไดจากวยอานไดจาก ที่ระยะ 20 ฟุต 20/20 Distance VA test • ถาอานแถวบนสุดไไไมได ใหเดินเขาใกล chthart ทีละกาวจนอานได (10/200, 5/200) • Counting finger 2ft - 1ft - 1/2ft • Hand motion • Light projection • Light perception • No light perception (NLP) ETDRS Chart Most accurate Illiterate E chart For children age ≥ 3.5 year Near VA test Near chart •14 นวิ้ หรอื 33 เซนตเมตริ • วัดที่ละขาง ตาขวากอนตาซาย • อานทีละตา แถวบนลงลาง -
Laser Learning Lecture and Lab: YAG Caps, LPI, And
5/9/17 Overview Laser Learning Lecture and Lab: • Why we use lasers YAG caps, LPI, and SLT • YAG capsulotomy • Laser Peripheral Iridotomy (LPI or PI) Aaron McNulty, O.D., F.A.A.O. • Argon Laser Peripheral Iridoplasty (ALPI) Nate Lighthizer, O.D., F.A.A.O. • Argon Laser Trabeculoplasty (ALT) • Selective Laser Trabeculoplasty (SLT) • Other Laser Trabeculoplasty Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 5/9/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1. -
An Investigation of Visual Field Test Parameters in Glaucoma, Patterns Of
An investigation of visual field test parameters in glaucoma, patterns of visual field loss in diabetics and multispectral imaging of the optic nerve head in glaucoma A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Medical and Human Sciences 2012 Yanfang Wang School of Medicine (Human Development) 1 CONTENTS Title page……………………………………………………………1 Contents……………………………………………………….........2 List of Tables………………………………………………………..9 List of Figures……………………………………………………..10 List of Abbreviations……………………………………………...14 Abstract …………………………………………………………...16 Declaration………………………………………………………...17 Copyright statement………………………………………………17 Acknowledgment……………………………………………...…..19 1. Rationale of the study…………………………………………..20 2. Glaucoma……………………………………………………….24 2.1- Classification of glaucoma……………………………………….........24 2.2 - Clinical assessment in glaucoma……………………………………..27 2.2.1- IOP measurement………………………………………………..27 2.2.2 - Examination of structural and functional loss in glaucoma….28 2.3 - Management…………………………………………………………..32 3. Visual field testing……………………………………………..33 3.1 - Stimuli and background……………………………………………...33 3.2 - Test strategies………………………………………………………….34 3.2.1 - Frequency-of-seeing (FOS) curve and threshold………………34 3.2.2 - Supra-threshold strategy………………………………………..36 2 3.2.3 - Threshold strategy……………………………………………….38 3.2.3.1 - Full threshold, Fastpac and SITA………………………….38 3.2.3.2 - 30-2, 24-2 and 10-2 stimulus distributions…………………41 3.3 - Interpretation of results……………………………………………...42 3.3.1 -
Bass – Glaucomatous-Type Field Loss Not Due to Glaucoma
Glaucoma on the Brain! Glaucomatous-Type Yes, we see lots of glaucoma Field Loss Not Due to Not every field that looks like glaucoma is due to glaucoma! Glaucoma If you misdiagnose glaucoma, you could miss other sight-threatening and life-threatening Sherry J. Bass, OD, FAAO disorders SUNY College of Optometry New York, NY Types of Glaucomatous Visual Field Defects Paracentral Defects Nasal Step Defects Arcuate and Bjerrum Defects Altitudinal Defects Peripheral Field Constriction to Tunnel Fields 1 Visual Field Defects in Very Early Glaucoma Paracentral loss Early superior/inferior temporal RNFL and rim loss: short axons Arcuate defects above or below the papillomacular bundle Arcuate field loss in the nasal field close to fixation Superotemporal notch Visual Field Defects in Early Glaucoma Nasal step More widespread RNFL loss and rim loss in the inferior or superior temporal rim tissue : longer axons Loss stops abruptly at the horizontal raphae “Step” pattern 2 Visual Field Defects in Moderate Glaucoma Arcuate scotoma- Bjerrum scotoma Focal notches in the inferior and/or superior rim tissue that reach the edge of the disc Denser field defects Follow an arcuate pattern connected to the blind spot 3 Visual Field Defects in Advanced Glaucoma End-Stage Glaucoma Dense Altitudinal Loss Progressive loss of superior or inferior rim tissue Non-Glaucomatous Etiology of End-Stage Glaucoma Paracentral Field Loss Peripheral constriction Hereditary macular Loss of temporal rim tissue diseases Temporal “islands” Stargardt’s macular due -
Laser Procedures for the Management of Glaucoma and More Handout
4/25/17 Overview Laser Procedures for the Management • Why we use lasers of Glaucoma and More • YAG capsulotomy Nate Lighthizer, O.D., F.A.A.O. • Laser Peripheral Iridotomy (LPI or PI) Assistant Professor, NSUOCO • Argon Laser Peripheral Iridoplasty (ALPI) Assistant Dean, Clinical Care Services • Argon Laser Trabeculoplasty (ALT) Director of CE Chief of Specialty Care Clinics • Selective Laser Trabeculoplasty (SLT) Chief of Electrodiagnostics Clinic • Other Laser Trabeculoplasty [email protected] Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 4/25/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1. -
Visual Field & Otc Tests Care Instructions
DR. CAROLYN ANDERSON EYE SURGERY CARE INSTRUCTIONS VISUAL FIELD & OTC TESTS To ensure the health of your Visual Field Test eye(s), please read this information sheet carefully. Your visual field is the entire area that you can see when the eye is forward, including your peripheral vision. As most of us use two eyes, the overlapping fields allow you to see in an arc of 180 degrees. Certain diseases can cause a loss of visual field, and unless If you need to cancel your the defect is extensive, you will not be aware of it. appointment, please let us know as soon as possible at The Humphrey Field Analyzer 2 uses a computer-controlled, projected beam of light to 604.530.6838. map the visual field, which is then compared by a computer against a database of normal readings. The Visual Field test results are plotted on paper, extending about 90 degrees If you have any questions or to the temple side, and 60 degrees to the nose side. Dr. Anderson will examine the Visual concerns, please speak with Field results, and from the type and location of the defect (if any) can tell where in Dr. Anderson. the visual system the problem may lie. The field test is also used to monitor possible progression of diseases like glaucoma and can indicate if more intensive therapy (if any) is needed. The test is done by a technician and takes approximately 30 minutes. Drops are not generally used, so your vision should not be affected. Appointment date: Time: Optical Coherence Tomographer (OCT) Test The Optical Coherence Tomographer is a type of scanning laser ophthalmoscope, which uses a low-powered laser and a computer to build up a three-dimensional picture of the optic nerve, macula, and other structures in the back of the eye. -
Bjophthalmol-2020-318090 1..2
At a glance Br J Ophthalmol: first published as 10.1136/bjophthalmol-2020-318090 on 26 October 2020. Downloaded from Highlights from this issue doi:10.1136/bjophthalmol-2020-318090 Keith Barton , James Chodosh , Jost B Jonas , Editors in chief Glaucoma in the Northern Ireland Cohort The effect of partial posterior vitreous Comparison of OCT angiography in for the Longitudinal Study of Ageing detachment on spectral-domain optical children with a history of intravitreal (NICOLA): cohort profile, prevalence, coherence tomography retinal nerve fibre injection of ranibizumab vs laser awareness and associations (seepage1492) layer thickness measurements photocoagulation for retinopathy of The crude prevalence of glaucoma in (seepage1524) prematurity (see page 1556) Northern Ireland of 2.83% (95% CI Among glaucoma suspects, eyes with par- In this cross-sectional study, we found that 2.31%, 3.46%) is comparable to other tial posterior vitreous detachments, com- the central foveal vessel length density and European population-based studies. pared to eyes without, were associated perfusion density, the foveal avascular Approximately two thirds of people with with greater average, superior, and inferior zone area and central foveal thicknesses glaucoma were undiagnosed. Associations retinal nerve fibre layer thickness of children who had undergone different with glaucoma were consistent with cur- measurements. treatments, might vary. rent understanding of the disease. Three-year follow-up of choroidal Comparison of central visual sensitivity Selective -
A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives
Ophthalmol Ther DOI 10.1007/s40123-017-0082-x REVIEW A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives Yujia Zhou . Ahmad A. Aref Received: January 17, 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com ABSTRACT explored, revealing that minor modifications may lead to a more favorable or safer clinical Selective laser trabeculoplasty (SLT) has been outcome. The utilization of postoperative widely used in the clinical management of medications remains controversial based on the glaucoma, both as primary and adjunctive current evidence. A short-term IOP increase treatment. As new evidence continues to arise, may complicate SLT and can also persist in we review the current literature in terms of certain cases such as in exfoliation glaucoma. indications and efficacy, surgical technique, The efficacy and safety of repeat SLT are shown postoperative care, repeatability, and compli- in multiple studies, and the timing of repeat cations of this therapy. SLT has been shown to procedures may affect the success rate. be effective in various glaucomas, including primary open-angle glaucoma (POAG), nor- mal-tension glaucoma (NTG), steroid-induced Keywords: Glaucoma; Intraocular pressure; glaucoma, pseudoexfoliation glaucoma (PXFG), Laser; Selective laser trabeculoplasty and primary angle-closure glaucoma (PACG), as well as other glaucoma subtypes. Relatively high preoperative intraocular pressure (IOP) INTRODUCTION may predict surgical success, while other parameters that have been studied do not seem Intraocular pressure (IOP) reduction is the to affect the outcome. Different techniques for mainstay of therapy for glaucomatous optic performing the procedure have recently been neuropathy. Selective laser trabeculoplasty (SLT) has been widely employed for this pur- Enhanced content To view enhanced content for this pose over the past several years as both a pri- article go to http://www.medengine.com/Redeem/ mary and adjunctive treatment [1]. -
Laser Trabeculoplasty for Open-Angle Glaucoma a Report by the American Academy of Ophthalmology
Laser Trabeculoplasty for Open-Angle Glaucoma A Report by the American Academy of Ophthalmology John R. Samples, MD,1 Kuldev Singh, MD, MPH,2 Shan C. Lin, MD,3 Brian A. Francis, MD,4 Elizabeth Hodapp, MD,5 Henry D. Jampel, MD, MHS,6 Scott D. Smith, MD, MPH7 Objective: To provide an evidence-based summary of the outcomes, repeatability, and safety of laser trabeculoplasty for open-angle glaucoma. Methods: A search of the peer-reviewed literature in the PubMed and the Cochrane Library databases was conducted in June 2008 and was last repeated in March 2010 with no date or language restrictions. The search yielded 637 unique citations, of which 145 were considered to be of possible clinical relevance for further review and were included in the evidence analysis. Results: Level I evidence indicates an acceptable long-term efficacy of initial argon laser trabeculoplasty for open-angle glaucoma compared with initial medical treatment. Among the remaining studies, level II evidence supports the efficacy of selective laser trabeculoplasty for lowering intraocular pressure for patients with open-angle glaucoma. Level III evidence supports the efficacy of repeat use of laser trabeculoplasty. Conclusions: Laser trabeculoplasty is successful in lowering intraocular pressure for patients with open- angle glaucoma. At this time, there is no literature establishing the superiority of any particular form of laser trabeculoplasty. The theories of action of laser trabeculoplasty are not elucidated fully. Further research into the differences among the lasers used in trabeculoplasty, the repeatability of the procedure, and techniques of treatment is necessary. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.