Laser Procedures for the Management of Glaucoma and More Handout

Total Page:16

File Type:pdf, Size:1020Kb

Laser Procedures for the Management of Glaucoma and More Handout 4/25/17 Overview Laser Procedures for the Management • Why we use lasers of Glaucoma and More • YAG capsulotomy Nate Lighthizer, O.D., F.A.A.O. • Laser Peripheral Iridotomy (LPI or PI) Assistant Professor, NSUOCO • Argon Laser Peripheral Iridoplasty (ALPI) Assistant Dean, Clinical Care Services • Argon Laser Trabeculoplasty (ALT) Director of CE Chief of Specialty Care Clinics • Selective Laser Trabeculoplasty (SLT) Chief of Electrodiagnostics Clinic • Other Laser Trabeculoplasty [email protected] Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 4/25/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1. Corneal problems 1. IOP spike/elevation • Slit Lamp Exam 2. Intraocular inflammation • Most often transient • IOP’s 3. Macular problems 2. Inflammation • Dilate – will be able to visualize • Pred Forte QID X 1 week 4. Patient unable to hold steady • Use appropriate laser energy the PCO much better or fixate • Posterior segment exam – Macula 3. Floaters – Periphery 4. Retinal detachment • Educate Pt 5. Permanent vision loss • Informed Consent Signed YAG Cap Procedure YAG Cap Procedure • Patient Pre-op Drops • Focus HeNe beams on the PCO – dilating drops • Perform the procedure – 1 drop Alphagan or Iopidine 15-30 minutes prior to – No pain for patients • Laser Settings – May feel popping/snap/clap in ears – Energy 1.3 – 2.5 mJ • Usually done in a cruciate pattern – Spot Size fixed – Duration fixed • Other patterns: – Pulses 1 – Horseshoe – Offset 250 microns – Circular YAG Cap Procedure 1 week post-operative exam • Post-op Care • VA’s – Remove laser lens – Rinse Eye/Clean eye • Anterior segment exam – 1 drop of Alphagan or Iopidine post-laser – Check for cell/flare – IOP measurement 15-30 minutes post-laser • Check IOP • Post-op drops • Dilate – Pred Forte QID to surgical eye X 1 week – Check for holes/tears/RD’s – Pt ed – S/S of RD • D/C Pred Forte • RTC 1 week for f/u • Release back to referring doc 2 4/25/17 Anatomically Narrow Angles / Angle YAG Cap Closure • Reimbursement codes • Anatomic disorder characterized by peripheral – 66821 $243.98 iris & TM apposition • 90 day global period • 4 basic forms: – Pupillary block – Plateau iris – Phacomorphic glaucoma – Malignant glaucoma Anatomically Narrow Angles / Angle Anatomically Narrow Angles / Angle Closure Closure • Anatomic disorder characterized by peripheral • Anatomic disorder characterized by peripheral iris & TM apposition iris & TM apposition • 4 basic forms: • 4 basic forms: – Pupillary block – Pupillary block – Plateau iris – Plateau iris – Phacomorphic glaucoma – Phacomorphic glaucoma – Malignant glaucoma – Malignant glaucoma PI Indications PI Indications • Primary angle closure • Primary angle closure • Plateau iris syndrome/configuration • Plateau iris syndrome/configuration • Secondary pupillary block • Secondary pupillary block – Phacomorphic, malignant glaucomas – Phacomorphic, malignant glaucomas • Pigmentary glaucoma • Pigmentary glaucoma • Prophylaxis* • Prophylaxis* – Narrow angles on gonioscopy – Narrow angles on gonioscopy – Most often reason why PI is done – Most often reason why PI is done 3 4/25/17 PI Alternatives PI Pre-op Exam • • Surgical Iridectomy Visual acuity • Slit Lamp Exam OU – Equal results to laser PI – Note lid position – Much more invasive – Note AC depth • • More trauma to iris Gonio OU – Pigment in the TM? • Infection – Neovascularization? – Peripheral anterior synechiae? – If concurrent surgery not occurring, laser PI is the • IOP’s OU way to go • Educate Pt • Informed Consent Signed PI Risks, Complications, PI Procedure Contraindications Contraindications Risks/complications 1. Corneal problems 1. Non-perforation • Patient Pre-op Drops 2. Intraocular inflammation 2. IOP spike/elevation – 1 drop Pilocarpine 1% or 2% OU 3. Iris in contact with endo • Most often transient – 1 drop Alphagan or Iopidine OU 3. Inflammation 4. Angle closure from NVG or • Laser Settings inflammatory glaucoma • Pred Forte QID X 1 week • Use appropriate laser energy 5. Patient unable to hold steady – Depends on which laser you use • Others: hyphema, or fixate synechiae, peaked pupil, 6. Macular problems? floaters, blur, monocular diplopia, RD, permanent vision loss PI Laser Options PI Procedure Argon laser Yag laser • Sit patient comfortably • Adjust laser for your comfort • Less commonly used • More commonly used – Armrest, oculars, controls • Advantages: • Advantages: • Instill proparacaine in both eyes – Less bleeding – Very good penetration rate • Select PI location – Less debris • Disadvantages: – Usually superiorly under lid • Disadvantages: – More likely to bleed – Crypt – Less successful compared to YAG laser in penetration – Much more debris – 11:00 or 1:00 • Requires more shots • Settings: • Place Abraham Iridotomy laser lens on eye with • Settings: – Spot size = fixed goniosol or celluvisc – Spot size = 50 microns – Duration = fixed – Orientation of lens matters – Duration = 0.1 sec – Energy = 2.0 – 5.0 mJ – Button @ 11 or 1 o’clock (for a superior PI) – Power = 300-1200 mW – Offset = 0 – 250 microns 4 4/25/17 PI Procedure PI Procedure • Focus HeNe beams on the iris • Perform the procedure OU • Often times it takes 2 visits to finish PI – Argon first for pre-treatment – YAG to finish PI – 70-80% through the first visit – No pain for patients - usually – 150-250 mJ maximum energy for me on 1 visit – May feel popping/snap/clap in ears • Goals: – Takes longer than a YAG Cap – patent PI ≈ 1mm in size • Occasional bleeding – Deepening of the AC • Debris/pigment – “pigment plume” – IOP control PI Procedure 1 week post-operative exam • Post-op Care • VA’s – Remove laser lens • Anterior segment exam – Rinse Eye/Clean eye – Check for cell/flare – 1 drop of Alphagan or Iopidine post-laser – Note AC depth – IOP measurement 30 minutes post-laser – Is the PI patent? • • Post-op drops Gonio – did angle deepen? – Pred Forte QID to surgical eye X 1 week • Check IOP • Pt ed • D/C Pred Forte • RTC 1 week for f/u • Release back to referring doc Peripheral Iridotomy (PI) Why do we need lasers? • Glaucoma is progressing in a pt on max meds • Reimbursement codes – Something else needs to be done – 66761 $222.05 – Surgery not wanted yet • 10 day global period • Compliance issues • Cost issues • Convenience/quality of life issues • Systemic side effect issues of drops • Doctor preference 5 4/25/17 Laser Trabeculoplasty (LTP) Laser Trabeculoplasty (LTP) • Use of laser light to burn areas of the TM to • Most common laser procedure for OAG increase aqueous outflow – ALT in the 90’s and early 2000’s – SLT has largely taken over • Two types • Usually a Secondary Line of Treatment – – Argon laser trabeculoplasty (ALT) After meds fail to control IOP – Selective laser trabeculoplasty (SLT) • Some use as Primary Treatment • Both increase aqueous outflow • Universally Accepted Laser Trabeculoplasty (LTP) LTP Indications • Glaucoma Laser Trial (1990) • POAG – Compared ALT to topical meds in the control of IOP • Normo-tensive glaucoma and VF and ONH status – Results: • Pigmentary dispersion glaucoma • Pts who underwent ALT as first-line therapy achieved better • Pseudoexfoliative glaucoma control of IOP and better VF and ONH status than those treated initially with topical meds • 44% proper IOP control in the ALT group • 30% proper IOP control in the meds group • Fewer eyes that underwent ALT as first-line therapy ultimately required 2 or more meds postoperatively to control IOP LTP Contraindications Argon Laser Trabeculoplasty (ALT) • Advanced POAG • • Narrow Angle Glaucoma Traditional form of laser therapy for patients • Angle Closure (Emergency IOP decrease) with glaucoma • Inflammatory Glaucoma • Presented as an alternative to filtering surgery • Angle Recession Glaucoma for patients whose open angle glaucoma was • Neovascular Glaucoma not controlled by meds • Congenital Glaucoma • Exact mechanism of effect is unknown but: • Prior LTP that failed – Mechanical effects from laser burns scarring tissue • Under 40 years of age and causing contracting of tissue and opening of • Hazy media adjacent areas of the TM – Biologic effects with increased inflammatory cells with “clean up” the TM 6 4/25/17 Argon Laser Trabeculoplasty (ALT) ALT Procedure • ALT complications/risks
Recommended publications
  • Non-Invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension
    perim Ex en l & ta a l ic O p in l h t C h f Journal of Clinical & Experimental a o l m l a o n l r o Xie et al., J Clin Exp Ophthalmol 2017, 8:4 g u y o J Ophthalmology DOI: 10.4172/2155-9570.1000672 ISSN: 2155-9570 Research Article Open Access Non-invasive Evaluation of Cerebrospinal Fluid Pressure in Ocular Hypertension: The Beijing Intracranial and Intraocular Pressure Study Xiaobin Xie1,2, Weiwei Chen3,4, Zhen Li5, Ravi Thomas3,6,7, Yong Li8, Junfang Xian8, Diya Yang4, Huaizhou Wang4, Jun Feng1, Shoukang Zhang1, Lixia Zhang1, Ruojin Ren9 and Ningli Wang3,4* 1Eye Hospital of China Academy of Chinese Medical Sciences, Beijing, China 2Post-doctoral Research Station Affiliated to the Chinese Academy of Chinese Medical Sciences, Beijing, China 3Beijing Institute of Ophthalmology, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, China 4Beijing Tongren Eye Center, Beijing Ophthalmology and Visual Sciences Key Laboratory, Beijing Tongren Hospital, Capital Medical University, Beijing, China 5Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China 6Queensland Eye Institute, 140 Melbourne Street, South Brisbane 4101, Queensland, Australia 7University of Queensland, Brisbane, Australia 8Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China 9State University of New York College of Optometry, New York, United States *Corresponding author: Ningli Wang, Beijing Tongren Eye Center, Beijing Tongren Hospital, Capital Medical University, Beijing Ophthalmology and Visual Sciences Key Laboratory, Dongjiaominxiang Street, Dongcheng District, Beijing 100730, China, Tel: +8610-5826-9968; Fax: +8610-5826-9920; E-mail: [email protected] Received date: July 19, 2017; Accepted date: August 10, 2017; Published date: June 30, 2017 Copyright: © 2017 Xie X, et al.
    [Show full text]
  • Optical Coherence Tomography (OCT) Anterior Segment of the Eye
    Corporate Medical Policy Optical Coherence Tomography (OCT) Anterior Segment of the Eye File Name: optical_coherence_tomography_(OCT)_anterior_segment_of_the_eye Origination: 2/2010 Last CAP Review: 6/2021 Next CAP Review: 6/2022 Last Review: 6/2021 Description of Procedure or Service Optical Coherence Tomography Optical coherence tomography (OCT) is a noninvasive, high-resolution imaging method that can be used to visualize ocular structures. OCT creates an image of light reflected from the ocular structures. In this technique, a reflected light beam interacts with a reference light beam. The coherent (positive) interference between the 2 beams (reflected and reference) is measured by an interferometer, allowing construction of an image of the ocular structures. This method allows cross-sectional imaging a t a resolution of 6 to 25 μm. The Stratus OCT, which uses a 0.8-μm wavelength light source, was designed to evaluate the optic nerve head, retinal nerve fiber layer, and retinal thickness in the posterior segment. The Zeiss Visante OCT and AC Cornea OCT use a 1.3-μm wavelength light source designed specifically for imaging the a nterior eye segment. Light of this wa velength penetrates the sclera, a llowing high-resolution cross- sectional imaging of the anterior chamber (AC) angle and ciliary body. The light is, however, typically blocked by pigment, preventing exploration behind the iris. Ultrahigh resolution OCT can achieve a spatial resolution of 1.3 μm, allowing imaging and measurement of corneal layers. Applications of OCT OCT of the anterior eye segment is being eva luated as a noninvasive dia gnostic and screening tool with a number of potential a pplications.
    [Show full text]
  • Refractive Surgery Faqs. Refractive Surgery the OD's Role in Refractive
    9/18/2013 Refractive Surgery Refractive Surgery FAQs. Help your doctor with refractive surgery patient education Corneal Intraocular Bill Tullo, OD, FAAO, LASIK Phakic IOL Verisys Diplomate Surface Ablation Vice-President of Visian PRK Clinical Services LASEK CLE – Clear Lens Extraction TLC Laser Eye Centers Epi-LASIK Cataract Surgery AK - Femto Toric IOL Multifocal IOL ICRS - Intacs Accommodative IOL Femtosecond Assisted Inlays Kamra The OD’s role in Refractive Surgery Refractive Error Determine the patient’s interest Myopia Make the patient aware of your ability to co-manage surgery Astigmatism Discuss advancements in the field Hyperopia Outline expectations Presbyopia/monovision Presbyopia Enhancements Risks Make a recommendation Manage post-op care and expectations Myopia Myopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 1D – 14D LASIK: 1D – 8D LASIK: -0.25D – -6D LASIK: -0.25D – -3.50D PRK: 1D – 13D PRK: 1D – 6D PRK: -0.25D – -6D PRK: -0.25D – -3.50D Intacs: 1D- 3D Intacs: 1D- 3D Intacs NONE Intacs: NONE P-IOL: 3D- 20D P-IOL: 8D- 20D P-IOL: NONE P-IOL: NONE CLE/CAT: any CLE/CAT: any CLE/CAT: -0.75D - -3D CLE/CAT: -0.75D - -3D 1 9/18/2013 Hyperopia Hyperopic Astigmatism FDA Approval Common Use FDA Approval Common Use LASIK: 0.25D – 6D LASIK: 0.25D – 4D LASIK: 0.25D – 6D LASIK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D PRK: 0.25D – 6D PRK: 0.25D – 4D Intacs: NONE Intacs: NONE Intacs: NONE Intacs: NONE P-IOL: NONE P-IOL: NONE P-IOL: NONE P-IOL:
    [Show full text]
  • Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma
    Glaucoma Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma Jessica Tang,1,2 Flora Hui,1 Xavier Hadoux,1 Bernardo Soares,3 Michael Jamieson,3 Peter van Wijngaarden,1–3 Michael Coote,1–3 and Jonathan G. Crowston1,2,4,5 1Glaucoma Research Unit, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 2Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia 3Royal Victorian Eye and Ear Hospital, Melbourne, Australia 4Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore 5Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore Correspondence: Jessica Tang, PURPOSE. To evaluate the short-term changes in inner retinal function using the photopic Glaucoma Research Unit, Centre for negative response (PhNR) after intraocular pressure (IOP) reduction in glaucoma. Eye Research Australia, Royal Victorian Eye and Ear Hospital, METHODS. Forty-seven participants with glaucoma who were commencing a new or addi- Level 7, Peter Howson Wing, 32 tional IOP-lowering therapy (treatment group) and 39 participants with stable glau- Gisborne St, East Melbourne, VIC coma (control group) were recruited. IOP, visual field, retinal nerve fiber layer thick- 3002, Australia; ness, and electroretinograms (ERGs) were recorded at baseline and at a follow-up visit [email protected]. (3 ± 2 months). An optimized protocol developed for a portable ERG device was used Received: August 29, 2019 to record the PhNR. The PhNR saturated amplitude (Vmax), Vmax ratio, semi-saturation Accepted: June 16, 2020 constant (K), and slope of the Naka–Rushton function were analyzed. Published: August 7, 2020 RESULTS.
    [Show full text]
  • Bilateral Acute Angle Closure Glaucoma After Hyperopic LASIK Correction
    Saudi Journal of Ophthalmology (2009) 23, 215– 217 King Saud University Saudi Journal of Ophthalmology www.ksu.edu.sa www.sciencedirect.com CASE REPORT Bilateral acute angle closure glaucoma after hyperopic LASIK correction Essam A. Osman, MD *, Ahmed A. Alsaleh, MD, Turki Al Turki, MD, Saleh A. AL Obeidan, MD Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia Received 25 May 2009; accepted 13 July 2009 Available online 24 October 2009 KEYWORDS Abstract Acute angle closure glaucoma is unexpected complication following laser in situ ker- Acute glaucoma; atomileusis (LASIK). We are reporting a 49-years-old lady that was presented to the emergency Hyperopia; department with acute glaucoma in both eyes soon after LASIK correction. Diagnosis was made LASIK on detailed clinical history and examination, slit lamp examination, intraocular pressure measure- ment and gonioscopy. Laser iridotomy in both eyes succeeded in controlling the attack and normal- izing the intraocular pressure (IOP) more than 6 months of follow-up. Prophylactic laser iridotomy is essential for narrow angle patients before LASIK surgery if refractive laser surgery is indicated. ª 2009 King Saud University. All rights reserved. 1. Introduction Paciuc et al. reported a case of unilateral acute angle clo- sure glaucoma 1 year after hyperopic LASIK correction (Paci- Primary angle closure glaucoma (PACG) is a vision-threaten- uc et al., 2000). However, we are reporting a case of bilateral ing type of glaucoma. A high prevalence of PACG has been re- acute glaucoma soon after LASIK correction. LASIK surgery ported in the Asian region (Kunimatsu, 2007). Angle closure is the most popular form of laser eye surgery, in which an oph- glaucoma soon after LASIK procedure is an unexpected thalmic surgeon reshapes the cornea using an excimer laser complication.
    [Show full text]
  • Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients with Initial Parafoveal Scotoma and Peripheral Nasal Step
    Comparison of Retinal Vessel Diameter Between Open-Angle Glaucoma Patients With Initial Parafoveal Scotoma and Peripheral Nasal Step EUNJOO YOO, CHUNGKWON YOO, TAE-EUN LEE, AND YONG YEON KIM PURPOSE: To compare retinal vessel diameters (RVDs) LTHOUGH INTRAOCULAR PRESSURE (IOP) IS THE between open-angle glaucoma (OAG) patients with most important and only known modifiable risk initial parafoveal scotoma (PFS) and those with initial pe- A factor for glaucoma,1–4 not all patients with ripheral nasal step (PNS). glaucoma show elevated IOP. The Collaborative Normal- DESIGN: Retrospective, cross-sectional study. Tension Glaucoma study reported that 20% of the patients METHODS: We enrolled 151 eyes of 151 patients with with normal-tension glaucoma (NTG) show visual field OAG (83 with normal-tension glaucoma [NTG] and 68 (VF) deterioration, even after a 30% IOP reduction from with primary open-angle glaucoma [POAG]). The pa- baseline.2 Accumulating evidence indicates that, in addi- tients were categorized into the PFS and PNS groups ac- tion to mechanical factors, vascular pathology plays a role cording to the location of the initial visual field (VF) in open-angle glaucoma (OAG). The relationships between defect. Clinical characteristics and RVD indices—central glaucoma and vascular factors, such as migraine,5,6 optic retinal arteriolar equivalent (CRAE) and central retinal disc hemorrhage,7,8 and vasospasm,9 are well established. venular equivalent (CRVE)—were compared between Furthermore, many reports have suggested that glaucoma it- the groups. Subgroup analyses were conducted in the self is associated with the retinal vasculature. A previous NTG and POAG groups. study showed that retinal vessel diameter (RVD) decreases RESULTS: Forty-six patients had PFS and 105 had significantly with increasing glaucoma stage, independently PNS.
    [Show full text]
  • Laser Learning Lecture and Lab: YAG Caps, LPI, And
    5/9/17 Overview Laser Learning Lecture and Lab: • Why we use lasers YAG caps, LPI, and SLT • YAG capsulotomy • Laser Peripheral Iridotomy (LPI or PI) Aaron McNulty, O.D., F.A.A.O. • Argon Laser Peripheral Iridoplasty (ALPI) Nate Lighthizer, O.D., F.A.A.O. • Argon Laser Trabeculoplasty (ALT) • Selective Laser Trabeculoplasty (SLT) • Other Laser Trabeculoplasty Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 5/9/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1.
    [Show full text]
  • Bioptics with LASIK Flap First for the Treatment of High Ametropia
    Bioptics With LASIK Flap First for the Treatment of High Ametropia Merab L. Dvali, MD, PhD; Nana A. Tsinsadze, MD, PhD; Bella V. Sirbiladze, MD, PhD ioptics, fi rst described by Zaldivar et al,1 is the treat- ABSTRACT ment of refractive error using phakic intraocular PURPOSE: To report the safety and predictability of an B lens (IOL) implantation and excimer laser corneal alternate sequence of the bioptics procedure. ablation. Candidates for this procedure included patients with high refractive errors (with astigmatism) that surpass METHODS: In this prospective study of 50 eyes, pha- the treatment range for excimer laser refractive surgery and kic intraocular lenses (IOLs) and pseudophakic IOLs were patients whose corneal thickness will not allow full treat- implanted, followed by LASIK. The corneal fl ap was cre- ment of refractive error. ated, followed by lens implantation 3 days later. Laser ablation was performed to the stromal bed 3 months Over time, the defi nition of bioptics has expanded to in- later. Fifty eyes with varying degrees of refractive clude phakic, pseudophakic, and clear lens extraction cases error (range of manifest refraction spherical equivalent followed by surgery on the corneal plane. Phakic or pseudo- [MRSE], Ϫ19.50 to ϩ8.50 diopters [D]) were treated. phakic surgery followed by refractive surgery is the most com- Follow-up ranged from 3 months to 4 years postopera- mon form of bioptics.2 In this procedure, the lens is implanted tively. to correct the majority of refractive error followed by LASIK RESULTS: No intra- or postoperative complications performed at least 3 months postoperatively to correct the re- occurred.
    [Show full text]
  • The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence
    Journal of Clinical Medicine Review The Use of Anterior-Segment Optical-Coherence Tomography for the Assessment of the Iridocorneal Angle and Its Alterations: Update and Current Evidence Giacinto Triolo 1,* , Piero Barboni 2,3, Giacomo Savini 4, Francesco De Gaetano 1, Gaspare Monaco 1, Alessandro David 1 and Antonio Scialdone 1 1 Ophthalmic Institute, ASST Fatebenefratelli-Sacco, 20121 Milan, Italy; [email protected] (F.D.G.); [email protected] (G.M.); [email protected] (A.D.); [email protected] (A.S.) 2 San Raffaele Scientific Institute, University Vita-Salute, 20133 Milan, Italy; [email protected] 3 Studio Oculistico D’Azeglio, 40123 Bologna, Italy 4 G.B. Bietti Foundation I.R.C.C.S., 00198 Rome, Italy; [email protected] * Correspondence: [email protected] Abstract: The introduction of anterior-segment optical-coherence tomography (AS-OCT) has led to improved assessments of the anatomy of the iridocorneal-angle and diagnoses of several mechanisms of angle closure which often result in raised intraocular pressure (IOP). Continuous advancements in AS-OCT technology and software, along with an extensive research in the field, have resulted in a wide range of possible parameters that may be used to diagnose and follow up on patients with this spectrum of diseases. However, the clinical relevance of such variables needs to be explored thoroughly. The aim of the present review is to summarize the current evidence supporting the use of AS-OCT for the diagnosis and follow-up of several iridocorneal-angle and anterior-chamber Citation: Triolo, G.; Barboni, P.; alterations, focusing on the advantages and downsides of this technology.
    [Show full text]
  • Bjophthalmol-2020-318090 1..2
    At a glance Br J Ophthalmol: first published as 10.1136/bjophthalmol-2020-318090 on 26 October 2020. Downloaded from Highlights from this issue doi:10.1136/bjophthalmol-2020-318090 Keith Barton , James Chodosh , Jost B Jonas , Editors in chief Glaucoma in the Northern Ireland Cohort The effect of partial posterior vitreous Comparison of OCT angiography in for the Longitudinal Study of Ageing detachment on spectral-domain optical children with a history of intravitreal (NICOLA): cohort profile, prevalence, coherence tomography retinal nerve fibre injection of ranibizumab vs laser awareness and associations (seepage1492) layer thickness measurements photocoagulation for retinopathy of The crude prevalence of glaucoma in (seepage1524) prematurity (see page 1556) Northern Ireland of 2.83% (95% CI Among glaucoma suspects, eyes with par- In this cross-sectional study, we found that 2.31%, 3.46%) is comparable to other tial posterior vitreous detachments, com- the central foveal vessel length density and European population-based studies. pared to eyes without, were associated perfusion density, the foveal avascular Approximately two thirds of people with with greater average, superior, and inferior zone area and central foveal thicknesses glaucoma were undiagnosed. Associations retinal nerve fibre layer thickness of children who had undergone different with glaucoma were consistent with cur- measurements. treatments, might vary. rent understanding of the disease. Three-year follow-up of choroidal Comparison of central visual sensitivity Selective
    [Show full text]
  • Ophthalmology Abbreviations Alphabetical
    COMMON OPHTHALMOLOGY ABBREVIATIONS Listed as one of America’s Illinois Eye and Ear Infi rmary Best Hospitals for Ophthalmology UIC Department of Ophthalmology & Visual Sciences by U.S.News & World Report Commonly Used Ophthalmology Abbreviations Alphabetical A POCKET GUIDE FOR RESIDENTS Compiled by: Bryan Kim, MD COMMON OPHTHALMOLOGY ABBREVIATIONS A/C or AC anterior chamber Anterior chamber Dilators (red top); A1% atropine 1% education The Department of Ophthalmology accepts six residents Drops/Meds to its program each year, making it one of nation’s largest programs. We are anterior cortical changes/ ACC Lens: Diagnoses/findings also one of the most competitive with well over 600 applicants annually, of cataract whom 84 are granted interviews. Our selection standards are among the Glaucoma: Diagnoses/ highest. Our incoming residents graduated from prestigious medical schools ACG angle closure glaucoma including Brown, Northwestern, MIT, Cornell, University of Michigan, and findings University of Southern California. GPA’s are typically 4.0 and board scores anterior chamber intraocular ACIOL Lens are rarely lower than the 95th percentile. Most applicants have research lens experience. In recent years our residents have gone on to prestigious fellowships at UC Davis, University of Chicago, Northwestern, University amount of plus reading of Iowa, Oregon Health Sciences University, Bascom Palmer, Duke, UCSF, Add power (for bifocal/progres- Refraction Emory, Wilmer Eye Institute, and UCLA. Our tradition of excellence in sives) ophthalmologic education is reflected in the leadership positions held by anterior ischemic optic Nerve/Neuro: Diagno- AION our alumni, who serve as chairs of ophthalmology departments, the dean neuropathy ses/findings of a leading medical school, and the director of the National Eye Institute.
    [Show full text]
  • A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives
    Ophthalmol Ther DOI 10.1007/s40123-017-0082-x REVIEW A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives Yujia Zhou . Ahmad A. Aref Received: January 17, 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com ABSTRACT explored, revealing that minor modifications may lead to a more favorable or safer clinical Selective laser trabeculoplasty (SLT) has been outcome. The utilization of postoperative widely used in the clinical management of medications remains controversial based on the glaucoma, both as primary and adjunctive current evidence. A short-term IOP increase treatment. As new evidence continues to arise, may complicate SLT and can also persist in we review the current literature in terms of certain cases such as in exfoliation glaucoma. indications and efficacy, surgical technique, The efficacy and safety of repeat SLT are shown postoperative care, repeatability, and compli- in multiple studies, and the timing of repeat cations of this therapy. SLT has been shown to procedures may affect the success rate. be effective in various glaucomas, including primary open-angle glaucoma (POAG), nor- mal-tension glaucoma (NTG), steroid-induced Keywords: Glaucoma; Intraocular pressure; glaucoma, pseudoexfoliation glaucoma (PXFG), Laser; Selective laser trabeculoplasty and primary angle-closure glaucoma (PACG), as well as other glaucoma subtypes. Relatively high preoperative intraocular pressure (IOP) INTRODUCTION may predict surgical success, while other parameters that have been studied do not seem Intraocular pressure (IOP) reduction is the to affect the outcome. Different techniques for mainstay of therapy for glaucomatous optic performing the procedure have recently been neuropathy. Selective laser trabeculoplasty (SLT) has been widely employed for this pur- Enhanced content To view enhanced content for this pose over the past several years as both a pri- article go to http://www.medengine.com/Redeem/ mary and adjunctive treatment [1].
    [Show full text]