Laser Learning Lecture and Lab: YAG Caps, LPI, And

Total Page:16

File Type:pdf, Size:1020Kb

Laser Learning Lecture and Lab: YAG Caps, LPI, And 5/9/17 Overview Laser Learning Lecture and Lab: • Why we use lasers YAG caps, LPI, and SLT • YAG capsulotomy • Laser Peripheral Iridotomy (LPI or PI) Aaron McNulty, O.D., F.A.A.O. • Argon Laser Peripheral Iridoplasty (ALPI) Nate Lighthizer, O.D., F.A.A.O. • Argon Laser Trabeculoplasty (ALT) • Selective Laser Trabeculoplasty (SLT) • Other Laser Trabeculoplasty Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 5/9/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1. Corneal problems 1. IOP spike/elevation • Slit Lamp Exam 2. Intraocular inflammation • Most often transient • IOP’s 3. Macular problems 2. Inflammation • Dilate – will be able to visualize • Pred Forte QID X 1 week 4. Patient unable to hold steady • Use appropriate laser energy the PCO much better or fixate • Posterior segment exam – Macula 3. Floaters – Periphery 4. Retinal detachment • Educate Pt 5. Permanent vision loss • Informed Consent Signed YAG Cap Procedure YAG Cap Procedure • Patient Pre-op Drops • Focus HeNe beams on the PCO – dilating drops • Perform the procedure – 1 drop Alphagan or Iopidine 15-30 minutes prior to – No pain for patients • Laser Settings – May feel popping/snap/clap in ears – Energy 1.3 – 2.5 mJ • Usually done in a cruciate pattern – Spot Size fixed – Duration fixed • Other patterns: – Pulses 1 – Horseshoe – Offset 250 microns – Circular YAG Cap Procedure 1 week post-operative exam • Post-op Care • VA’s – Remove laser lens – Rinse Eye/Clean eye • Anterior segment exam – 1 drop of Alphagan or Iopidine post-laser – Check for cell/flare – IOP measurement 15-30 minutes post-laser • Check IOP • Post-op drops • Dilate – Pred Forte QID to surgical eye X 1 week – Check for holes/tears/RD’s – Pt ed – S/S of RD • D/C Pred Forte • RTC 1 week for f/u • Release back to referring doc 2 5/9/17 Anatomically Narrow Angles / Angle YAG Cap Closure • Reimbursement codes • Anatomic disorder characterized by peripheral – 66821 $243.98 iris & TM apposition • 90 day global period • 4 basic forms: – Pupillary block – Plateau iris – Phacomorphic glaucoma – Malignant glaucoma Anatomically Narrow Angles / Angle Anatomically Narrow Angles / Angle Closure Closure • Anatomic disorder characterized by peripheral • Anatomic disorder characterized by peripheral iris & TM apposition iris & TM apposition • 4 basic forms: • 4 basic forms: – Pupillary block – Pupillary block – Plateau iris – Plateau iris – Phacomorphic glaucoma – Phacomorphic glaucoma – Malignant glaucoma – Malignant glaucoma PI Indications PI Indications • Primary angle closure • Primary angle closure • Plateau iris syndrome/configuration • Plateau iris syndrome/configuration • Secondary pupillary block • Secondary pupillary block – Phacomorphic, malignant glaucomas – Phacomorphic, malignant glaucomas • Pigmentary glaucoma • Pigmentary glaucoma • Prophylaxis* • Prophylaxis* – Narrow angles on gonioscopy – Narrow angles on gonioscopy – Most often reason why PI is done – Most often reason why PI is done 3 5/9/17 PI Alternatives PI Pre-op Exam • • Surgical Iridectomy Visual acuity • Slit Lamp Exam OU – Equal results to laser PI – Note lid position – Much more invasive – Note AC depth • • More trauma to iris Gonio OU – Pigment in the TM? • Infection – Neovascularization? – Peripheral anterior synechiae? – If concurrent surgery not occurring, laser PI is the • IOP’s OU way to go • Educate Pt • Informed Consent Signed PI Risks, Complications, PI Procedure Contraindications Contraindications Risks/complications 1. Corneal problems 1. Non-perforation • Patient Pre-op Drops 2. Intraocular inflammation 2. IOP spike/elevation – 1 drop Pilocarpine 1% or 2% OU 3. Iris in contact with endo • Most often transient – 1 drop Alphagan or Iopidine OU 3. Inflammation 4. Angle closure from NVG or • Laser Settings inflammatory glaucoma • Pred Forte QID X 1 week • Use appropriate laser energy 5. Patient unable to hold steady – Depends on which laser you use • Others: hyphema, or fixate synechiae, peaked pupil, 6. Macular problems? floaters, blur, monocular diplopia, RD, permanent vision loss PI Laser Options PI Procedure Argon laser Yag laser • Sit patient comfortably • Adjust laser for your comfort • Less commonly used • More commonly used – Armrest, oculars, controls • Advantages: • Advantages: • Instill proparacaine in both eyes – Less bleeding – Very good penetration rate • Select PI location – Less debris • Disadvantages: – Usually superiorly under lid • Disadvantages: – More likely to bleed – Crypt – Less successful compared to YAG laser in penetration – Much more debris – 11:00 or 1:00 • Requires more shots • Settings: • Place Abraham Iridotomy laser lens on eye with • Settings: – Spot size = fixed goniosol or celluvisc – Spot size = 50 microns – Duration = fixed – Orientation of lens matters – Duration = 0.1 sec – Energy = 2.0 – 5.0 mJ – Button @ 11 or 1 o’clock (for a superior PI) – Power = 300-1200 mW – Offset = 0 – 250 microns 4 5/9/17 PI Procedure PI Procedure • Focus HeNe beams on the iris • Perform the procedure OU • Often times it takes 2 visits to finish PI – Argon first for pre-treatment – YAG to finish PI – 70-80% through the first visit – No pain for patients - usually – 150-250 mJ maximum energy for me on 1 visit – May feel popping/snap/clap in ears • Goals: – Takes longer than a YAG Cap – patent PI ≈ 1mm in size • Occasional bleeding – Deepening of the AC • Debris/pigment – “pigment plume” – IOP control PI Procedure 1 week post-operative exam • Post-op Care • VA’s – Remove laser lens • Anterior segment exam – Rinse Eye/Clean eye – Check for cell/flare – 1 drop of Alphagan or Iopidine post-laser – Note AC depth – IOP measurement 30 minutes post-laser – Is the PI patent? • • Post-op drops Gonio – did angle deepen? – Pred Forte QID to surgical eye X 1 week • Check IOP • Pt ed • D/C Pred Forte • RTC 1 week for f/u • Release back to referring doc Peripheral Iridotomy (PI) Why do we need lasers? • Glaucoma is progressing in a pt on max meds • Reimbursement codes – Something else needs to be done – 66761 $222.05 – Surgery not wanted yet • 10 day global period • Compliance issues • Cost issues • Convenience/quality of life issues • Systemic side effect issues of drops • Doctor preference 5 5/9/17 Laser Trabeculoplasty (LTP) Laser Trabeculoplasty (LTP) • Use of laser light to burn areas of the TM to • Most common laser procedure for OAG increase aqueous outflow – ALT in the 90’s and early 2000’s – SLT has largely taken over • Two types • Usually a Secondary Line of Treatment – – Argon laser trabeculoplasty (ALT) After meds fail to control IOP – Selective laser trabeculoplasty (SLT) • Some use as Primary Treatment • Both increase aqueous outflow • Universally Accepted Laser Trabeculoplasty (LTP) LTP Indications • Glaucoma Laser Trial (1990) • POAG – Compared ALT to topical meds in the control of IOP • Normo-tensive glaucoma and VF and ONH status – Results: • Pigmentary dispersion glaucoma • Pts who underwent ALT as first-line therapy achieved better • Pseudoexfoliative glaucoma control of IOP and better VF and ONH status than those treated initially with topical meds • 44% proper IOP control in the ALT group • 30% proper IOP control in the meds group • Fewer eyes that underwent ALT as first-line therapy ultimately required 2 or more meds postoperatively to control IOP LTP Contraindications Argon Laser Trabeculoplasty (ALT) • Advanced POAG • • Narrow Angle Glaucoma Traditional form of laser therapy for patients • Angle Closure (Emergency IOP decrease) with glaucoma • Inflammatory Glaucoma • Presented as an alternative to filtering surgery • Angle Recession Glaucoma for patients whose open angle glaucoma was • Neovascular Glaucoma not controlled by meds • Congenital Glaucoma • Exact mechanism of effect is unknown but: • Prior LTP that failed – Mechanical effects from laser burns scarring tissue • Under 40 years of age and causing contracting of tissue and opening of • Hazy media adjacent areas of the TM – Biologic effects with increased inflammatory cells with “clean up” the TM 6 5/9/17 Argon Laser Trabeculoplasty (ALT) ALT Procedure • ALT complications/risks • Patient Pre-op Drops 1. IOP spike/elevation – 1 drop Alphagan or Iopidine 15-30 minutes prior • Most often transient to • High risk
Recommended publications
  • Utah Eye Centers Now Offers the Latest Advance in Laser Eye Surgery
    Mark G. Ballif, M.D. Scott O. Sykes, M.D. Michael B. Wilcox, M.D. John D. Armstrong, M.D. Robert W. Wing, M.D., FACS Keith Linford, O.D. Jed T. Poll, M.D. Claron D. Alldredge, M.D. Devin B. Farr, O.D. Michael L. Bullard, M.D. Court R. Wilkins, O.D. Utah Eye Centers Now Offers the Latest Advance In Laser Eye Surgery The New VICTUS® Femtosecond Laser Platform, from Bausch + Lomb is Designed to Support Positive Patient Experience and Outstanding Visual Results in Cataract and LASIK Procedures FOR RELEASE April 17, 2015 Ogden, Utah— Utah Eye Centers, the leading comprehensive ophthalmology practice in northern Utah, announced today the Mount Ogden facility now offers eye surgery for cataracts and LASIK with an advanced laser system, the VICTUS® femtosecond laser platform. They are the only practice north of Salt Lake City with a fixed site femtosecond laser for cataracts and LASIK. The versatile VICTUS platform is designed to provide greater precision compared to manual cataract and LASIK surgery techniques. According to Scott Sykes, M.D., the Victus laser is the only laser approved to perform treatments for both cataract and LASIK surgeries. "With the VICTUS platform, we are able to automate some of the steps that we have commonly performed manually," said Mark Ballif, M.D. "While we have performed thousands of successful cataract and LASIK surgeries, the VICTUS platform helps us to improve the procedures to give our patients the best outcomes possible." The VICTUS platform features a sophisticated, curved patient interface with computer-monitored pressure sensors designed to provide comfort during the procedure.
    [Show full text]
  • Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma
    Glaucoma Short-Term Changes in the Photopic Negative Response Following Intraocular Pressure Lowering in Glaucoma Jessica Tang,1,2 Flora Hui,1 Xavier Hadoux,1 Bernardo Soares,3 Michael Jamieson,3 Peter van Wijngaarden,1–3 Michael Coote,1–3 and Jonathan G. Crowston1,2,4,5 1Glaucoma Research Unit, Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, Melbourne, Australia 2Ophthalmology, Department of Surgery, The University of Melbourne, Melbourne, Australia 3Royal Victorian Eye and Ear Hospital, Melbourne, Australia 4Centre for Vision Research, Duke-NUS Medical School, Singapore, Singapore 5Singapore Eye Research Institute, Singapore National Eye Centre, Singapore, Singapore Correspondence: Jessica Tang, PURPOSE. To evaluate the short-term changes in inner retinal function using the photopic Glaucoma Research Unit, Centre for negative response (PhNR) after intraocular pressure (IOP) reduction in glaucoma. Eye Research Australia, Royal Victorian Eye and Ear Hospital, METHODS. Forty-seven participants with glaucoma who were commencing a new or addi- Level 7, Peter Howson Wing, 32 tional IOP-lowering therapy (treatment group) and 39 participants with stable glau- Gisborne St, East Melbourne, VIC coma (control group) were recruited. IOP, visual field, retinal nerve fiber layer thick- 3002, Australia; ness, and electroretinograms (ERGs) were recorded at baseline and at a follow-up visit [email protected]. (3 ± 2 months). An optimized protocol developed for a portable ERG device was used Received: August 29, 2019 to record the PhNR. The PhNR saturated amplitude (Vmax), Vmax ratio, semi-saturation Accepted: June 16, 2020 constant (K), and slope of the Naka–Rushton function were analyzed. Published: August 7, 2020 RESULTS.
    [Show full text]
  • Nd:YAG CAPS ULOTOMY AS a PRIMARY TREATMENT
    PSEUDOPHAKIC MALIGNANT GLAUCOMA: Nd:YAG CAPS ULOTOMY AS A PRIMARY TREATMENT B. C. LITTLE and R. A. HITCHINGS London SUMMARY anisms of ciliolenticular block of aqueous flow leading to Malignant glaucoma is one of the most serious but rare the misdirection of aqueous posteriorly into or in front of complications of anterior segment surgery. It is best the vitreous gel leading to the characteristic diffuse shal­ known following trabeculectomy but has been reported lowing of the anterior chamber accompanied by a precipi­ following a wide variety of anterior segment procedures tous rise in intraocular pressure. The mechanistic including extracapsular cataract extraction with pos­ understanding of its pathogenesis has led to the use of the terior chamber lens implantation. It is notoriously refrac­ synonyms 'ciliolenticular block',7 'ciliovitreal block', tory to medical treatment alone and surgical intervention 'iridovitreal block',8 'aqueous misdirection' and 'aqueous has had only limited success. An additional treatment diversion syndrome'. Although probably more precise option in pseudophakic eyes is that of peripheral these are unlikely to succeed the original term 'malignant Nd:YAG posterior capsulotomy, which is minimally glaucoma', which more accurately evokes the fulminant invasive and can re-establish forward flow of posteriorly nature of the condition as well as the justified anxiety asso­ misdirected aqueous through into the drainage angle of ciated with it. Medical treatment alone is rarely successful the anterior chamber. We report our experience of seven in establishing control of the intraocular pressure.2•8 Pars cases of malignant glaucoma in pseudophakic eyes and of plana vitrectomy has been used in the surgical managment the successful use of Nd:YAG posterior capsulotomy in of malignant glaucoma with some definite but limited suc­ re-establishing pressure control in' five of these eyes, cess in phakic as well as pseudophakic eyes.9•10 thereby obviating the need for acute surgical However, when malignant glaucoma develops in intervention.
    [Show full text]
  • Outcome of Lens Aspiration and Intraocular Lens Implantation in Children Aged 5 Years and Under
    540 Br J Ophthalmol 2001;85:540–542 Outcome of lens aspiration and intraocular lens implantation in children aged 5 years and under Lorraine Cassidy, Jugnoo Rahi, Ken Nischal, Isabelle Russell-Eggitt, David Taylor Abstract However, final refraction is variable, such that Aims—To determine the visual outcome emmetropia in adulthood cannot be guaran- and complications of lens aspiration with teed, as there are insuYcient long term studies. intraocular lens implantation in children There have been many reports of the visual aged 5 years and under. outcome and complications of posterior cham- Methods—The hospital notes of all chil- ber lens implantation in children.4–12 Most of dren aged 5 years and under, who had these have been based on older children, undergone lens aspiration with intraocu- secondary lens implants, a high number of lar lens implantation between January traumatic cataracts, and many have reported 1994 and September 1998, and for whom early outcome. We report visual outcome and follow up data of at least 1 year were avail- complications of primary IOL implantation at able, were reviewed. least 1 year after surgery, in children aged 5 Results—Of 50 children who underwent years and under, with mainly congenital or surgery, 45 were eligible based on the juvenile lens opacities. follow up criteria. 34 children had bilat- eral cataracts and, of these, 30 had surgery Methods on both eyes. Cataract was unilateral in 11 SUBJECTS cases; thus, 75 eyes of 45 children had sur- We reviewed the notes of all children aged 5 gery. Cataracts were congenital in 28 years and under, who had undergone lens aspi- cases, juvenile in 16, and traumatic in one ration with primary posterior chamber in- case.
    [Show full text]
  • Laser Procedures for the Management of Glaucoma and More Handout
    4/25/17 Overview Laser Procedures for the Management • Why we use lasers of Glaucoma and More • YAG capsulotomy Nate Lighthizer, O.D., F.A.A.O. • Laser Peripheral Iridotomy (LPI or PI) Assistant Professor, NSUOCO • Argon Laser Peripheral Iridoplasty (ALPI) Assistant Dean, Clinical Care Services • Argon Laser Trabeculoplasty (ALT) Director of CE Chief of Specialty Care Clinics • Selective Laser Trabeculoplasty (SLT) Chief of Electrodiagnostics Clinic • Other Laser Trabeculoplasty [email protected] Why do we use lasers? Posterior Capsular Opacification (PCO) • Vision is decreased from PCO following cataract surgery • Lens capsular bag has an anterior and • Narrow angles/angle closure posterior surface • Glaucoma is progressing in a pt on max meds – Anterior surface usually removed w/ capsulorhexis – Something else needs to be done – Surgery not wanted yet • PCO is the formation of a cloudy membrane • Compliance issues on the posterior surface of the capsular bag • Cost issues following ECCE • Convenience issues – AKA: Secondary cataract • Doctor preference PCO YAG Laser • Incidence: • Nd: YAG laser – Most common complication of post ECCE – Neodymium: Yttrium aluminum garnet laser – 10-80% of eyes following cataract surgery – Can form anywhere from a few days to years post surgery • Tissue interaction: Photodisruptive laser – Younger patients higher risk of PCO – High light energy levels cause the tissues to be reduced – IOL’s to plasma, disintegrating the tissue • Silicone > acrylic – A large amount of energy is delivered into very small focal spots in a very brief duration of time • Prevention: • 4 nsec – – Capsulotomy during surgery No thermal reaction/No coagulation when bv’s are hit – Posterior capsular polishing – Pigment independent* 1 4/25/17 YAG Cap Risks, Complications, YAG Cap Pre-op Exam Contraindications • Visual acuity, glare testing, PAM/Heine lambda Contraindications Risks/complications – Vision 20/30 or worse 1.
    [Show full text]
  • Bjophthalmol-2020-318090 1..2
    At a glance Br J Ophthalmol: first published as 10.1136/bjophthalmol-2020-318090 on 26 October 2020. Downloaded from Highlights from this issue doi:10.1136/bjophthalmol-2020-318090 Keith Barton , James Chodosh , Jost B Jonas , Editors in chief Glaucoma in the Northern Ireland Cohort The effect of partial posterior vitreous Comparison of OCT angiography in for the Longitudinal Study of Ageing detachment on spectral-domain optical children with a history of intravitreal (NICOLA): cohort profile, prevalence, coherence tomography retinal nerve fibre injection of ranibizumab vs laser awareness and associations (seepage1492) layer thickness measurements photocoagulation for retinopathy of The crude prevalence of glaucoma in (seepage1524) prematurity (see page 1556) Northern Ireland of 2.83% (95% CI Among glaucoma suspects, eyes with par- In this cross-sectional study, we found that 2.31%, 3.46%) is comparable to other tial posterior vitreous detachments, com- the central foveal vessel length density and European population-based studies. pared to eyes without, were associated perfusion density, the foveal avascular Approximately two thirds of people with with greater average, superior, and inferior zone area and central foveal thicknesses glaucoma were undiagnosed. Associations retinal nerve fibre layer thickness of children who had undergone different with glaucoma were consistent with cur- measurements. treatments, might vary. rent understanding of the disease. Three-year follow-up of choroidal Comparison of central visual sensitivity Selective
    [Show full text]
  • A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives
    Ophthalmol Ther DOI 10.1007/s40123-017-0082-x REVIEW A Review of Selective Laser Trabeculoplasty: Recent Findings and Current Perspectives Yujia Zhou . Ahmad A. Aref Received: January 17, 2017 Ó The Author(s) 2017. This article is published with open access at Springerlink.com ABSTRACT explored, revealing that minor modifications may lead to a more favorable or safer clinical Selective laser trabeculoplasty (SLT) has been outcome. The utilization of postoperative widely used in the clinical management of medications remains controversial based on the glaucoma, both as primary and adjunctive current evidence. A short-term IOP increase treatment. As new evidence continues to arise, may complicate SLT and can also persist in we review the current literature in terms of certain cases such as in exfoliation glaucoma. indications and efficacy, surgical technique, The efficacy and safety of repeat SLT are shown postoperative care, repeatability, and compli- in multiple studies, and the timing of repeat cations of this therapy. SLT has been shown to procedures may affect the success rate. be effective in various glaucomas, including primary open-angle glaucoma (POAG), nor- mal-tension glaucoma (NTG), steroid-induced Keywords: Glaucoma; Intraocular pressure; glaucoma, pseudoexfoliation glaucoma (PXFG), Laser; Selective laser trabeculoplasty and primary angle-closure glaucoma (PACG), as well as other glaucoma subtypes. Relatively high preoperative intraocular pressure (IOP) INTRODUCTION may predict surgical success, while other parameters that have been studied do not seem Intraocular pressure (IOP) reduction is the to affect the outcome. Different techniques for mainstay of therapy for glaucomatous optic performing the procedure have recently been neuropathy. Selective laser trabeculoplasty (SLT) has been widely employed for this pur- Enhanced content To view enhanced content for this pose over the past several years as both a pri- article go to http://www.medengine.com/Redeem/ mary and adjunctive treatment [1].
    [Show full text]
  • Laser Trabeculoplasty for Open-Angle Glaucoma a Report by the American Academy of Ophthalmology
    Laser Trabeculoplasty for Open-Angle Glaucoma A Report by the American Academy of Ophthalmology John R. Samples, MD,1 Kuldev Singh, MD, MPH,2 Shan C. Lin, MD,3 Brian A. Francis, MD,4 Elizabeth Hodapp, MD,5 Henry D. Jampel, MD, MHS,6 Scott D. Smith, MD, MPH7 Objective: To provide an evidence-based summary of the outcomes, repeatability, and safety of laser trabeculoplasty for open-angle glaucoma. Methods: A search of the peer-reviewed literature in the PubMed and the Cochrane Library databases was conducted in June 2008 and was last repeated in March 2010 with no date or language restrictions. The search yielded 637 unique citations, of which 145 were considered to be of possible clinical relevance for further review and were included in the evidence analysis. Results: Level I evidence indicates an acceptable long-term efficacy of initial argon laser trabeculoplasty for open-angle glaucoma compared with initial medical treatment. Among the remaining studies, level II evidence supports the efficacy of selective laser trabeculoplasty for lowering intraocular pressure for patients with open-angle glaucoma. Level III evidence supports the efficacy of repeat use of laser trabeculoplasty. Conclusions: Laser trabeculoplasty is successful in lowering intraocular pressure for patients with open- angle glaucoma. At this time, there is no literature establishing the superiority of any particular form of laser trabeculoplasty. The theories of action of laser trabeculoplasty are not elucidated fully. Further research into the differences among the lasers used in trabeculoplasty, the repeatability of the procedure, and techniques of treatment is necessary. Financial Disclosure(s): Proprietary or commercial disclosure may be found after the references.
    [Show full text]
  • Objective Assessment of Retinal Ganglion Cell Function in Glaucoma
    Objective Assessment of Retinal Ganglion Cell Function in Glaucoma Submitted by Nabin R. Joshi DISSERTATION In partial satisfaction of the requirements for the degree of Doctor of Philosophy SUNY College of Optometry (September 25th, 2017) 1 Abstract Background Glaucoma refers to a group of diseases causing progressive degeneration of the retinal ganglion cells. It is a clinical diagnosis based on the evidence of structural damage of the optic nerve head with corresponding visual field loss. Structural damage is assessed by visualization of the optic nerve head (ONH) through various imaging and observational techniques, while the behavioral loss of sensitivity is assessed with an automated perimeter. However, given the subjective nature of visual field assessment in patients, visual function examination suffers from high variability as well as patient and operator- related biases. To overcome these drawbacks, past research has focused on the use of objective methods of quantifying retinal function in patients with glaucoma such as electroretinograms, visually evoked potentials, pupillometry etc. Electroretinograms are objective, non-invasive method of assessing retinal function, and careful manipulation of the visual input or stimulus can result in extraction of signals particular to select classes of the retinal cells, and photopic negative response (PhNR) is a component of ERG that reflects primarily the retinal ganglion cell function. On the other hand, pupillary response to light, measured objectively with a pupillometer, also indicates the functional state of the retina and the pupillary pathway. Hence, the study of both ERGs and pupillary response to light provide an objective avenue of research towards understanding the mechanisms of neurodegeneration in glaucoma, possibly affecting the clinical care of the patients in the long run.
    [Show full text]
  • (YAG) Laser Capsulotomy Reference Number: CP.VP.65 Coding Implications Last Review Date: 12/2020 Revision Log
    Clinical Policy: Yttrium Aluminium Garnet (YAG) Laser Capsulotomy Reference Number: CP.VP.65 Coding Implications Last Review Date: 12/2020 Revision Log See Important Reminder at the end of this policy for important regulatory and legal information. Description This policy describes the medical necessity requirements for yttrium aluminium garnet (YAG) laser capsulotomy. Policy/Criteria I. It is the policy of health plans affiliated with Centene Corporation® (Centene) that YAG laser capsulotomy is medically necessary for the following indications: A. Posterior capsular opacification following cataract surgery resulting in best corrected visual acuity of 20/30 or worse associated with symptoms of blurred vision, visual distortion or glare affecting activities of daily living; B. Contraction of the posterior capsule with resulting displacement of the intraocular lens; C. Posterior capsular opacification resulting in best corrected visual acuity of 20/25 or worse, reducing the ability to evaluate and treat retinal detachment. Background YAG capsulotomy is the incision of an opaque posterior lens capsule in an aphakic or pseudophakic eye. This incision allows the capsule to retract and no longer serve as an obstruction to the passage of light through the media to the retina. The incision is performed with YAG laser. The eye examination must confirm the diagnosis of posterior capsular opacification and excludes other ocular causes of functional impairment by one of the following methods: The eye examination should demonstrate decreased light transmission (visual acuity worse than 20/30 or 20/25 if the procedure is performed to assist in the diagnosis and treatment of retinal detachment). Manifest refraction must be recorded with decrease in best-corrected visual acuity.
    [Show full text]
  • Retinal Detachment Following YAG Laser Capsulotomy
    Eye (1989) 3, 759-763 Retinal Detachment Following YAG Laser Capsulotomy C. 1. MacEWEN and P. S. BAINES Dundee Summary A retrospective study of 12 patients with rhegmatogenous retinal detachment follow­ ing YAG posterior capsulotomy is reported. Eleven out of these 12 were at increased risk of detachment. Three had lattice degeneration, three had previous detachment and five had axial myopia. Only 50% of the holes were typical "aphakic" post-oral breaks. Extra-capsular extraction, currently the tech­ 2% of patients.26 ,27 It has been suggested that nique of choice in cataract surgery, has the there may be a direct relationship between the main advantage over the previously preferred two events and that retinal detachments after intra-capsular method of facilitating intra­ YAG laser are distinct from other aphakic ocular lens implantation.1 In addition it is detachments, with most patients having pre­ associated with fewer posterior segment com­ disposing risk factors (myopia, lattice degen­ plications such as cystoid macular oedema2 eration or previous detachment).26 ,28 Other and retinal detachment.3 studies have indicated that they are indis­ An important disadvantage of extra-capsu­ tinguishable from other aphakic lar surgery is opacification of the posterior detachments.25,27,29 capsule, resulting in reduction of visual acuity We therefore carried out a retrospective in up to 50% of cases, depending on the length study of 12 patients who developed rheg­ of follow-up and the age of the patients matogenous retinal detachment following studied.4.9 At present posterior capsulotomy YAG capsulotomy to determine the charac­ can be carried out either by surgical discis­ teristics of these detachments and any pre­ sion6,7 or by photo-disruption using the neo­ disposing risk factors.
    [Show full text]
  • Glaucoma Comanagement: Surgical
    6/27/2017 Virginia Eye Consultants Tertiary Referral Eye Care Since 1963 • John D. Sheppard, MD, MMSc • Walter O. Whitley, OD, MBA, FAAO Innovations in Glaucoma • Stephen V. Scoper, MD • Mark Enochs, OD • David Salib, MD • Cecelia Koetting, OD, FAAO COPE#52116-GL • Elizabeth Yeu, MD • Christopher Kuc, OD • Thomas J. Joly, MD, PhD • Leanna Olennikov, OD • Dayna M. Lago, MD • Jillian Janes, OD • Constance Okeke, MD, MSCE Walter O. Whitley, OD, MBA, FAAO • Esther Chang, MD Director of Optometric Services • Jay Starling, MD Virginia Eye Consultants • Samantha Dewundara, MD Residency Program Supervisor • Surajit Saha, MD Pennsylvania College of Optometry Disclosures Walter O. Whitley, OD, MBA, FAAO has received consulting fees, honorarium or research funding from: • Alcon • Diopsys • Allergan • Ocusoft • Bausch and Lomb • Science Based Health • Biotissue • Shire • Beaver-Visitec • TearLab Corporation • Publications – Advanced Ocular Care – Co-Chief Medical Editor – Review of Optometry – Contributing Editor – Optometry Times – Editorial Advisory Board The Most Valuable Glaucoma Tool Glaucoma: Diagnosis • We know it when we see it IOP: 26 OU 1 6/27/2017 Glaucoma Diagnosis Glaucoma Diagnosis • Gonioscopy • Central corneal thickness • Visual fields • Fundus photography • Scanning lasers • Serial tonometry • Electrodiagnositics – VEP / PERG GLAUCOMA SEVERITY SCALE Managing Glaucoma Patients DEFINITIONS • Mild Stage: optic nerve changes consistent with glaucoma but • Monitor IOP reduction: 1-2 week, 1 month NO visual field abnormalities on any visual field test OR abnormalities present only on short-wavelength automated • Check IOP every 3-4 months perimetry or frequency doubling perimetry. • Repeat VF every 6-12 months • Moderate Stage: optic nerve changes consistent with • Disc photos every 1-2 years glaucoma AND glaucomatous visual field abnormalities in one hemifield and not within 5 degrees of fixation.
    [Show full text]