Modern Diuretics and the Kidney

Total Page:16

File Type:pdf, Size:1020Kb

Modern Diuretics and the Kidney J Clin Pathol: first published as 10.1136/jcp.34.11.1267 on 1 November 1981. Downloaded from J Clin Pathol 1981;34:1267-1275 Modern diuretics and the kidney AF LANT From the Department of Therapeutics, Westminster Medical School, London SWIP 2AP It is particularly appropriate to discuss the pharma- THE DISTRIBUTION OF GLOMERULAR cology and mechanisms of action of diuretic drugs FILTRATION BETWEEN OUTER CORTICAL in a symposium on diseases of the kidney, since AND JUXTAMEDULLARY NEPHRONS diuretics were the first group of drugs to be devel- The functional unit of each kidney comprises oped for the control and manipulation of selected approximately one million nephrons which lack aspects of renal function. Despite a relatively short homogeneity in their structure. About 80% of history of less than three decades since the discovery them are in the outer cortex, have short loops of of the first orally acting diuretic, chlorothiazide, Henle, and have relatively low reabsorptive capacity modern diuretic therapy continues to enjoy an ever- for sodium. The remaining 20% are juxtamedullary, expanding clinical demand: worldwide expenditure possessing long loops of Henle, and are largely has been estimated at around US $800 million responsible for creating the hyperosmotic inter- per annum during the last five years. Though stitium in the medulla which meditates the process originally introduced for the treatment of oedema- of urine concentration. Redistribution of blood flow tous conditions it is interesting that application of from outer cortical to juxtamedullary nephrons diuretics to the treatment of hypertension has out- can contribute to abnormal sodium retention, stripped their use in oedema. This has happened whilst predominance of the effect of outer cortical notwithstanding the parallel discoveries of other nephrons may lead to saluresis. A reduction in blood copyright. major antihypertensive agents such as the beta- flow to the outer part of the cortex has been found adrenoceptor blocking drugs and powerful vaso- to occur in some sodium-retaining states. Conversely, dilators. a drug which could shift blood flow from juxta- The advent of novel, orally effective diuretics medullary to outer cortical nephrons would reduce following on the prototype benzothiadiazine, chloro- sodium reabsorption and result in an effective thiazide, has had a major influence in stimulating diuretic response. progess in the basic sciences relating to nephrology or electrolyte transport in body tissues in general. HAEMODYNAMIC AND PHYSICAL FACTORS3 http://jcp.bmj.com/ Advances in fundamental knowledge have in turn Changes in physical forces within the peritubular given the impetus to further discoveries of new and, capillaries have been shown to be important de- in some cases, unique substances possessing diuretic terminants of renal sodium reabsorption, especially activity. Byand large these compounds have attained a in the proximal tubule. Thus, for example, renal remarkable degree of sophistication while, at the arteriolar dilatation may, by increasing the hydro- same time, remaining relatively safe during long static pressure in the vasa recta, decrease net tubular term treatment of patients. The widespread use and, reabsorption of sodium with resulting natriuresis, at times, the regrettable abuse of any group of on October 1, 2021 by guest. Protected drugs whose primary effect is directed toward while the reverse occurs with any increase of plasma interference with the renal handling of electrolytes oncotic pressure. It seems probable that changes must inevitably generate secondary disturbances in in the oncotic or hydrostatic pressures within the body homeostasis which have particular relevance peritubular blood vessels achieve their effects on to the chemical pathologist. To understand these, net tubular reabsorption of sodium by influencing demands an understanding of how diuretics work the resistance of the intercellular channels or "shunt" in the context of modern views of the functional paths through which sodium ions pass to reach the organisation of the kidney. peritubular capillaries. Renal regulation of sodium excretionl 2 HORMONAL FACTORS A number of hormonal mechanisms operate singly Four main mechanisms are believed to be involved or together in encouraging sodium retention by the in the control of sodium excretion by the kidney. kidney. 1267 J Clin Pathol: first published as 10.1136/jcp.34.11.1267 on 1 November 1981. Downloaded from 1268 Lant Renin-angiotensin-aldosterone4 5 FEEDBACK CONTROL SYSTEMS INVOLVING The role of this humoral system in renal sodium THE MACULA DENSA9 regulation is considerable. Yet, because of the slug- A fourth intrarenal regulating system which has gish characteristics of the system, it is unlikely been proposed is that of a servo-mechanism operat- that these hormones, especially aldosterone, are ing between the macula densa cells of the ascending involved in fine "moment to moment" modulation. limb of Henle's loop and the glomerulus of the Aldosterone influences epithelial transport of sodium same nephron. This system functions by the release through activation of DNA-dependent RNA syn- of renin and angiotensin It locally in response to thesis, and the response to it follows a significant the sodium concentration in the tubular fluid lag period which corresponds to the time needed for impinging on the macula densa, the feedback the induction of new protein synthesis; this may loop being completed by appropriate alterations in amount to an hour or more in experimental systems. both GFR and proximal tubular reabsorption. The Yet it is clear that changes in sodium excretion detailed mechanisms involved in such an auto- in vivo may be induced abruptly by various ma- regulatory system which couples distal salt delivery noeuvres. Moreover, whenexcessive amounts ofaldos- to the filtration rate in individual nephrons remain terone or other mineralocorticoids are given experi- incompletely understood. mentally sodium retention occurs, but is transient. The "escape" from the action of aldosterone cannot Organisation of tubular function'° 11 be accounted for by changes in glomerular filtration rate or renal blood flow, and it is one of the pieces Diuretic drugs have actions on ion-transporting of evidence supporting the presence of another tissues as diverse as amphibian skin, intestinal humoral substance stimulating natriuresis-called epithelium, red and white blood cells and cornea. Third Factor or natriuretic hormone. The primary target for the action of these drugs however is the kidney, where they promote the Natriuretic hormone6 excretion of water and certain electrolytes such as sodium and chloride by interfering with tubularcopyright. A growing body of evidence supports the existence reasorptive mechanisms. Because these reabsorptive of a natriuretic humoral agent which promotes mechanisms vary according to the degree of sophisti- the renal elimination of sodium, by inhibiting sodium cation of different portions of the epithelium lining reabsorption in the proximal tubule. It may also the tubule, a brief survey of the organisation of work in harmony with the renin-angiotensin- is to understanding aldosterone system to provide fine control of tubular functions relevant sodium excretion by an action exerted mainly on diuretic action (Fig. 1). the collecting ducts. The chemical characterisation of the natriuretic hormone remains incomplete GLOMERULUS AND PROXIMAL TUBULE In normal man each day the renal glomeruli producehttp://jcp.bmj.com/ and its role in the sodium-retaining states is also approximately 180 litres of filtrate, and urine is uncertain. finally produced by the progressive reabsorption of 99% of this ultrafiltrate at various stages along Prostaglandins and kinins7 8 the nephron. About two-thirds of the glomerular Many experimental studies have demonstrated filtrate is reabsorbed iso-osmotically in the proximal the ability of renal tissues to generate prostaglandins tubule as a result of the active reabsorption of and kinins. Whereas renin, angiotensin and aldos- sodium chloride and sodium bicarbonate from the terone, like prostacyclin, are transported primarily tubular lumen into the peritubular fluid. The on October 1, 2021 by guest. Protected in the vascular compartment, kallikrein-kinin and mechanisms involved in transcellular ion movement prostaglandins of the E series are associated with are complex and involve a variety of energy- the renal interstitium and tubular lumen. One or dependent ion pumps as well as transfer paths or more prostaglandins, primarily PGE2, is probably channels in between the loose-fitting cells of the responsible for mediating the increase in medullary proximal tubule. The resistance to these intercellular blood flow that occurs in response to various stimuli shunts of ions is influenced considerably by changes including surgical trauma, salt loading, and the in the oncotic and hydrostatic pressures within the action of "loop" diuretics. The generation of peritubular capillaries. kinins in the distal tubules and collecting ducts results in the release of prostaglandins which in ASCENDING LIMB OF HENLE'S LOOP turn inhibit the local effects of antidiuretic hormone (MEDULLARY DILUTING SEGMENT)1213 (ADH) and thereby contribute to the tubular There are two morphologically distinct kinds of excretion of solute-free water. nephron, namely the outer cortical nephrons, J Clin Pathol: first published as 10.1136/jcp.34.11.1267 on 1 November 1981. Downloaded from Modern diuretics
Recommended publications
  • Use of ²-Blockers and Risk of Fractures
    ORIGINAL CONTRIBUTION Use of ␤-Blockers and Risk of Fractures Raymond G. Schlienger, PhD, MPH Context Animal studies suggest that the ␤-blocker propranolol increases bone for- Marius E. Kraenzlin, MD mation, but data on whether use of ␤-blockers (with or without concomitant use of thiazide diuretics) is associated with reduced fracture risk in humans are limited. Susan S. Jick, DSc Objective To determine whether use of ␤-blockers alone or in combination with thia- Christoph R. Meier, PhD, MSc zides is associated with a decreased risk of fracture in adults. Design, Setting, and Participants Case-control analysis using the UK General Prac- TUDIES HAVE SUGGESTED THAT tice Research Database (GPRD). The study included 30601 case patients aged 30 to the sympathetic nervous sys- 79 years with an incident fracture diagnosis between 1993 and 1999 and 120819 con- tem has a catabolic effect on trols, matched to cases on age, sex, calendar time, and general practice attended. bones.1-4 In vitro data show that Main Outcome Measures Odds ratios (ORs) of having a fracture in association Sadrenergic agonists stimulate bone re- with use of ␤-blockers or a combination of ␤-blockers with thiazides. sorption in organ culture of mouse cal- Results The most frequent fractures were of the hand/lower arm (n=12837 [42.0%]) variae.4 Chemical sympathectomy with and of the foot (n=4627 [15.1%]). Compared with patients who did not use either guanethidine, a sympathetic neuro- ␤-blockers or thiazide diuretics, the OR for current use of ␤-blockers only (Ն3 pre- toxic agent, impairs bone resorption by scriptions) was 0.77 (95% confidence interval [CI], 0.72-0.83); for current use of thia- inhibiting preosteoclast differentiation zides only (Ն3 prescriptions), 0.80 (95% CI, 0.74-0.86); and for combined current ␤ and disturbing osteoclast activation in use of -blockers and thiazides, 0.71 (95% CI, 0.64-0.79).
    [Show full text]
  • Interactions Medicamenteuses Index Des Classes Pharmaco
    INTERACTIONS MEDICAMENTEUSES INDEX DES CLASSES PHARMACO-THERAPEUTIQUES Mise à jour avril 2006 acides biliaires (acide chenodesoxycholique, acide ursodesoxycholique) acidifiants urinaires adrénaline (voie bucco-dentaire ou sous-cutanée) (adrenaline alcalinisants urinaires (acetazolamide, sodium (bicarbonate de), trometamol) alcaloïdes de l'ergot de seigle dopaminergiques (bromocriptine, cabergoline, lisuride, pergolide) alcaloïdes de l'ergot de seigle vasoconstricteurs (dihydroergotamine, ergotamine, methylergometrine) alginates (acide alginique, sodium et de trolamine (alginate de)) alphabloquants à visée urologique (alfuzosine, doxazosine, prazosine, tamsulosine, terazosine) amidons et gélatines (gelatine, hydroxyethylamidon, polygeline) aminosides (amikacine, dibekacine, gentamicine, isepamicine, kanamycine, netilmicine, streptomycine, tobramycine) amprénavir (et, par extrapolation, fosamprénavir) (amprenavir, fosamprenavir) analgésiques morphiniques agonistes (alfentanil, codeine, dextromoramide, dextropropoxyphene, dihydrocodeine, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil, tramadol) analgésiques morphiniques de palier II (codeine, dextropropoxyphene, dihydrocodeine, tramadol) analgésiques morphiniques de palier III (alfentanil, dextromoramide, fentanyl, hydromorphone, morphine, oxycodone, pethidine, phenoperidine, remifentanil, sufentanil) analogues de la somatostatine (lanreotide, octreotide) androgènes (danazol, norethandrolone, testosterone) anesthésiques volatils halogénés
    [Show full text]
  • Properties and Units in Clinical Pharmacology and Toxicology
    Pure Appl. Chem., Vol. 72, No. 3, pp. 479–552, 2000. © 2000 IUPAC INTERNATIONAL FEDERATION OF CLINICAL CHEMISTRY AND LABORATORY MEDICINE SCIENTIFIC DIVISION COMMITTEE ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)# and INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY CHEMISTRY AND HUMAN HEALTH DIVISION CLINICAL CHEMISTRY SECTION COMMISSION ON NOMENCLATURE, PROPERTIES, AND UNITS (C-NPU)§ PROPERTIES AND UNITS IN THE CLINICAL LABORATORY SCIENCES PART XII. PROPERTIES AND UNITS IN CLINICAL PHARMACOLOGY AND TOXICOLOGY (Technical Report) (IFCC–IUPAC 1999) Prepared for publication by HENRIK OLESEN1, DAVID COWAN2, RAFAEL DE LA TORRE3 , IVAN BRUUNSHUUS1, MORTEN ROHDE1, and DESMOND KENNY4 1Office of Laboratory Informatics, Copenhagen University Hospital (Rigshospitalet), Copenhagen, Denmark; 2Drug Control Centre, London University, King’s College, London, UK; 3IMIM, Dr. Aiguader 80, Barcelona, Spain; 4Dept. of Clinical Biochemistry, Our Lady’s Hospital for Sick Children, Crumlin, Dublin 12, Ireland #§The combined Memberships of the Committee and the Commission (C-NPU) during the preparation of this report (1994–1996) were as follows: Chairman: H. Olesen (Denmark, 1989–1995); D. Kenny (Ireland, 1996); Members: X. Fuentes-Arderiu (Spain, 1991–1997); J. G. Hill (Canada, 1987–1997); D. Kenny (Ireland, 1994–1997); H. Olesen (Denmark, 1985–1995); P. L. Storring (UK, 1989–1995); P. Soares de Araujo (Brazil, 1994–1997); R. Dybkær (Denmark, 1996–1997); C. McDonald (USA, 1996–1997). Please forward comments to: H. Olesen, Office of Laboratory Informatics 76-6-1, Copenhagen University Hospital (Rigshospitalet), 9 Blegdamsvej, DK-2100 Copenhagen, Denmark. E-mail: [email protected] Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible.
    [Show full text]
  • Health Reports for Mutual Recognition of Medical Prescriptions: State of Play
    The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein. Executive Agency for Health and Consumers Health Reports for Mutual Recognition of Medical Prescriptions: State of Play 24 January 2012 Final Report Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Acknowledgements Matrix Insight Ltd would like to thank everyone who has contributed to this research. We are especially grateful to the following institutions for their support throughout the study: the Pharmaceutical Group of the European Union (PGEU) including their national member associations in Denmark, France, Germany, Greece, the Netherlands, Poland and the United Kingdom; the European Medical Association (EMANET); the Observatoire Social Européen (OSE); and The Netherlands Institute for Health Service Research (NIVEL). For questions about the report, please contact Dr Gabriele Birnberg ([email protected] ). Matrix Insight | 24 January 2012 2 Health Reports for Mutual Recognition of Medical Prescriptions: State of Play Executive Summary This study has been carried out in the context of Directive 2011/24/EU of the European Parliament and of the Council of 9 March 2011 on the application of patients’ rights in cross- border healthcare (CBHC). The CBHC Directive stipulates that the European Commission shall adopt measures to facilitate the recognition of prescriptions issued in another Member State (Article 11). At the time of submission of this report, the European Commission was preparing an impact assessment with regards to these measures, designed to help implement Article 11.
    [Show full text]
  • Comprehensive Screening of Diuretics in Human Urine Using Liquid Chromatography Tandem Mass Spectrometry
    id5246609 pdfMachine by Broadgun Software - a great PDF writer! - a great PDF creator! - http://www.pdfmachine.com http://www.broadgun.com AAnnaallyyttiiccaaISllS N : 0974-7419 Volume 13 Issue 7 CCHHEEAnMM IndIIiSaSnT TJoRuRrnYaYl Full Paper ACAIJ, 13(7) 2013 [270-283] Comprehensive screening of diuretics in human urine using liquid chromatography tandem mass spectrometry Shobha Ahi1, Alka Beotra1*, G.B.K.S.Prasad2 1National Dope Testing Laboratory, Ministry of Youth Affairs and Sports, CGO Complex, Lodhi Road, New Delhi,-110003, (INDIA) 2SOS in Biochemistry, Jiwaji University, Gwalior, (INDIA) E-mail : [email protected] ABSTRACT KEYWORDS Diuretics are drugs that increase the rate of urine flow and sodium excretion Doping, diuretics; to adjust the volume and composition of body fluids. There are several LC-MS/MS; WADA; major categories of this drug class and the compounds vary greatly in Drugs of abuse. structure, physicochemical properties, effects on urinary composition and renal haemodynamics, and site mechanism of action. Diuretics are often abused by athletes to excrete water for rapid weight loss and to mask the presence of other banned substances. Because of their abuse by athletes, ’s (WADA) diuretics have been included in the World Anti-Doping Agency list of prohibited substances. The diuretics are routinely screened by anti- doping laboratories as the use of diuretics is banned both in-competition and out-of-competition. This work provides an improved, fast and selective –tandem mass spectrometric (LC/MS/MS) method liquid chromatography for the screening of 22 diuretics and probenecid in human urine. The samples preparation was performed by liquid-liquid extraction. The limit of detection (LOD) for all substances was between 10-20 ng/ml or better.
    [Show full text]
  • Liquid Chromatography Tandem Mass Spectrometry Determination Of
    The Pharma Innovation Journal 2018; 7(7): 57-61 ISSN (E): 2277- 7695 ISSN (P): 2349-8242 NAAS Rating: 5.03 Liquid chromatography tandem mass spectrometry TPI 2018; 7(7): 57-61 © 2018 TPI determination of prohibited diuretics and other acidic www.thepharmajournal.com Received: 01-05-2018 drugs in human urine: A Review Accepted: 05-06-2018 Anchal Sharma Anchal Sharma, Dr. Rajiv Tonk and Dr. Vivek Sharma M. Pharm Scholar, Delhi Pharmaceutical Sciences and Research University, New Delhi, Abstract India This paper reviews liquid chromatographic-mass spectrometric (LC-MS) procedures for the screening, identification and quantification of doping agents in urine and other biological samples and devoted to Dr. Rajiv Tonk drug testing in sports. Reviewed methods published approximately within the last five years and cited in Associate Professor, Delhi the PubMed database have been divided into groups using the same classification of the 2004 World Pharmaceutical Sciences and Anti-Doping Agency (WADA) Prohibited List. Together with procedures specifically developed for anti- Research University, New Delhi doping analysis, I.C-MS applications used in other fields (e.g., therapeutic drug monitoring, clinical and India forensic toxicology, and detection of drugs illicitly used in livestock production) have been included when considered as potentially extensible to doping control. Information on the reasons or potential Dr. Vivek Sharma abuse by athletes, on the requirements established by WADA for analysis, and on the WADA rules for Assistant Professor, Govt College of Pharmacy Rohru, Himachal the interpretation of analytical finding. The basis of human sports doping control is set by the World Pradesh.
    [Show full text]
  • )&F1y3x PHARMACEUTICAL APPENDIX to THE
    )&f1y3X PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE )&f1y3X PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 3 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. Product CAS No. Product CAS No. ABAMECTIN 65195-55-3 ACTODIGIN 36983-69-4 ABANOQUIL 90402-40-7 ADAFENOXATE 82168-26-1 ABCIXIMAB 143653-53-6 ADAMEXINE 54785-02-3 ABECARNIL 111841-85-1 ADAPALENE 106685-40-9 ABITESARTAN 137882-98-5 ADAPROLOL 101479-70-3 ABLUKAST 96566-25-5 ADATANSERIN 127266-56-2 ABUNIDAZOLE 91017-58-2 ADEFOVIR 106941-25-7 ACADESINE 2627-69-2 ADELMIDROL 1675-66-7 ACAMPROSATE 77337-76-9 ADEMETIONINE 17176-17-9 ACAPRAZINE 55485-20-6 ADENOSINE PHOSPHATE 61-19-8 ACARBOSE 56180-94-0 ADIBENDAN 100510-33-6 ACEBROCHOL 514-50-1 ADICILLIN 525-94-0 ACEBURIC ACID 26976-72-7 ADIMOLOL 78459-19-5 ACEBUTOLOL 37517-30-9 ADINAZOLAM 37115-32-5 ACECAINIDE 32795-44-1 ADIPHENINE 64-95-9 ACECARBROMAL 77-66-7 ADIPIODONE 606-17-7 ACECLIDINE 827-61-2 ADITEREN 56066-19-4 ACECLOFENAC 89796-99-6 ADITOPRIM 56066-63-8 ACEDAPSONE 77-46-3 ADOSOPINE 88124-26-9 ACEDIASULFONE SODIUM 127-60-6 ADOZELESIN 110314-48-2 ACEDOBEN 556-08-1 ADRAFINIL 63547-13-7 ACEFLURANOL 80595-73-9 ADRENALONE
    [Show full text]
  • High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity
    Western Michigan University ScholarWorks at WMU Dissertations Graduate College 5-2010 High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity Albert A. Barrese III Western Michigan University Follow this and additional works at: https://scholarworks.wmich.edu/dissertations Part of the Biochemistry, Biophysics, and Structural Biology Commons, and the Biology Commons Recommended Citation Barrese, Albert A. III, "High-Throughput Screening Studies of Inhibition of Human Carbonic Anhydrase II and Bacterial Flagella Antimicrobial Activity" (2010). Dissertations. 500. https://scholarworks.wmich.edu/dissertations/500 This Dissertation-Open Access is brought to you for free and open access by the Graduate College at ScholarWorks at WMU. It has been accepted for inclusion in Dissertations by an authorized administrator of ScholarWorks at WMU. For more information, please contact [email protected]. HIGH-THROUGHPUT SCREENING STUDIES OF INHIBITION OF HUMAN CARBONIC ANHYDRASE II AND BACTERIAL FLAGELLA ANTIMICROBIAL ACTIVITY by Albert A. Barrese III A Dissertation Submitted to the Faculty of The Graduate College in partial fulfillment of the requirements for the Degree of Doctor of Philosophy Department of Biological Sciences Advisor: Brian C. Tripp, Ph.D. Western Michigan University Kalamazoo, Michigan May 2010 UMI Number: 3410393 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMT Dissertation Publishing UMI 3410393 Copyright 2010 by ProQuest LLC.
    [Show full text]
  • Ovid MEDLINE(R)
    Supplementary material BMJ Open Ovid MEDLINE(R) and Epub Ahead of Print, In-Process & Other Non-Indexed Citations and Daily <1946 to September 16, 2019> # Searches Results 1 exp Hypertension/ 247434 2 hypertens*.tw,kf. 420857 3 ((high* or elevat* or greater* or control*) adj4 (blood or systolic or diastolic) adj4 68657 pressure*).tw,kf. 4 1 or 2 or 3 501365 5 Sex Characteristics/ 52287 6 Sex/ 7632 7 Sex ratio/ 9049 8 Sex Factors/ 254781 9 ((sex* or gender* or man or men or male* or woman or women or female*) adj3 336361 (difference* or different or characteristic* or ratio* or factor* or imbalanc* or issue* or specific* or disparit* or dependen* or dimorphism* or gap or gaps or influenc* or discrepan* or distribut* or composition*)).tw,kf. 10 or/5-9 559186 11 4 and 10 24653 12 exp Antihypertensive Agents/ 254343 13 (antihypertensiv* or anti-hypertensiv* or ((anti?hyperten* or anti-hyperten*) adj5 52111 (therap* or treat* or effective*))).tw,kf. 14 Calcium Channel Blockers/ 36287 15 (calcium adj2 (channel* or exogenous*) adj2 (block* or inhibitor* or 20534 antagonist*)).tw,kf. 16 (agatoxin or amlodipine or anipamil or aranidipine or atagabalin or azelnidipine or 86627 azidodiltiazem or azidopamil or azidopine or belfosdil or benidipine or bepridil or brinazarone or calciseptine or caroverine or cilnidipine or clentiazem or clevidipine or columbianadin or conotoxin or cronidipine or darodipine or deacetyl n nordiltiazem or deacetyl n o dinordiltiazem or deacetyl o nordiltiazem or deacetyldiltiazem or dealkylnorverapamil or dealkylverapamil
    [Show full text]
  • Diuretics in Clinical Practice. Part I: Mechanisms of Action, Pharmacological Effects and 1
    Review Diuretics in clinical practice. Part I: mechanisms of action, pharmacological effects and 1. Introduction clinical indications of diuretic 2. Principles of diuretic action and classification of diuretic compounds compounds † 3. Carbonic anhydrase inhibitors Pantelis A Sarafidis , Panagiotis I Georgianos & Anastasios N Lasaridis Aristotle University of Thessaloniki, AHEPA Hospital, Section of Nephrology and Hypertension, 4. Osmotic diuretics 1st Department of Medicine, Thessaloniki, St. Kiriakidi 1, 54636, Thessaloniki, Greece 5. Loop diuretics 6. Thiazides and thiazide-related Importance of the field: Diuretics are among the most important drugs of our diuretics therapeutic armamentarium and have been broadly used for > 50 years, 7. Potassium-retaining diuretics providing important help towards the treatment of several diseases. Although all diuretics act primarily by impairing sodium reabsorption in the renal 8. Conclusion tubules, they differ in their mechanism and site of action and, therefore, in 9. Expert opinion their specific pharmacological properties and clinical indications. Loop diure- tics are mainly used for oedematous disorders (i.e., cardiac failure, nephrotic syndrome) and for blood pressure and volume control in renal disease; thiazides and related agents are among the most prescribed drugs for hypertension treatment; aldosterone-blockers are traditionally used for primary or secondary aldosteronism; and other diuretic classes have more specific indications. Areas covered in this review: This article discusses the mechanisms of action, pharmacological effects and clinical indications of the various diuretic classes For personal use only. used in everyday clinical practice, with emphasis on recent knowledge sug- gesting beneficial effects of certain diuretics on clinical conditions distinct from the traditional indications of these drugs (i.e., heart protection for aldosterone blockers).
    [Show full text]
  • DIURETICS Diuretics Are Drugs That Promote the Output of Urine Excreted by the Kidneys
    DIURETICS Diuretics are drugs that promote the output of urine excreted by the Kidneys. The primary action of most diuretics is the direct inhibition of Na+ transport at one or more of the four major anatomical sites along the nephron, where Na+ reabsorption takes place. The increased excretion of water and electrolytes by the kidneys is dependent on three different processes viz., glomerular filtration, tubular reabsorption (active and passive) and tubular secretion. Diuretics are very effective in the treatment of Cardiac oedema, specifically the one related with congestive heart failure. They are employed extensively in various types of disorders, for example, nephritic syndrome, diabetes insipidus, nutritional oedema, cirrhosis of the liver, hypertension, oedema of pregnancy and also to lower intraocular and cerebrospinal fluid pressure. Therapeutic Uses of Diuretics i) Congestive Heart Failure: The choice of the diuretic would depend on the severity of the disorder. In an emergency like acute pulmonary oedema, intravenous Furosemide or Sodium ethacrynate may be given. In less severe cases. Hydrochlorothiazide or Chlorthalidone may be used. Potassium-sparing diuretics like Spironolactone or Triamterene may be added to thiazide therapy. ii) Essential hypertension: The thiazides usually sever as primary antihypertensive agents. They may be used as sole agents in patients with mild hypertension or combined with other antihypertensives in more severe cases. iii) Hepatic cirrhosis: Potassium-sparing diuretics like Spironolactone may be employed. If Spironolactone alone fails, then a thiazide diuretic can be added cautiously. Furosemide or Ethacrymnic acid may have to be used if the oedema is regractory, together with spironolactone to lessen potassium loss. Serum potassium levels should be monitored periodically.
    [Show full text]
  • Extracts from PRAC Recommendations on Signals Adopted at the 9-12 March 2020 PRAC
    6 April 20201 EMA/PRAC/111218/2020 Corr2,3 Pharmacovigilance Risk Assessment Committee (PRAC) New product information wording – Extracts from PRAC recommendations on signals Adopted at the 9-12 March 2020 PRAC The product information wording in this document is extracted from the document entitled ‘PRAC recommendations on signals’ which contains the whole text of the PRAC recommendations for product information update, as well as some general guidance on the handling of signals. It can be found here (in English only). New text to be added to the product information is underlined. Current text to be deleted is struck through. 1. Immune check point inhibitors: atezolizumab; cemiplimab; durvalumab – Tuberculosis (EPITT no 19464) IMFINZI (durvalumab) Summary of product characteristics 4.4. Special warnings and precautions for use Immune-mediated pneumonitis [..] Patients with sSuspected pneumonitis should be evaluated confirmed with radiographic imaging and other infectious and disease-related aetiologies excluded, and managed as recommended in section 4.2. LIBTAYO (cemiplimab) Summary of product characteristics 1 Expected publication date. The actual publication date can be checked on the webpage dedicated to PRAC recommendations on safety signals. 2 A footnote was deleted on 8 April 2020 for the signal on thiazide and thiazide-like diuretics (see page 3). 3 A minor edit was implemented in the product information of the signal on thiazide and thiazide-like diuretics on 5 June 2020 (see page 4). Official address Domenico Scarlattilaan 6 ● 1083 HS Amsterdam ● The Netherlands Address for visits and deliveries Refer to www.ema.europa.eu/how-to-find-us Send us a question Go to www.ema.europa.eu/contact Telephone +31 (0)88 781 6000 An agency of the European Union © European Medicines Agency, 2020.
    [Show full text]