The Coccinellidae (Ladybird Beetles) of Minnesota (Coleoptera)

Total Page:16

File Type:pdf, Size:1020Kb

The Coccinellidae (Ladybird Beetles) of Minnesota (Coleoptera) University of Minnesota Agricultural Experiment Station The Coccinellidae (Ladybird Beetles) of Minnesota (Coleoptera) Wm. C. Stehr Division of Entomology and Economic Zoology UNIVERSITY FARM, ST. PAUL CONTENTS Page Biology and characteristics 5 Summary 13 Key to the Minnesota species of Coccinellidae 13 Literature cited 52 ELYTRA THORAX EYE FRONT- f/61 front view of' F/0/I firont view of/h;opo- Chilocoreis to show front ec7/7ile to show front no/ extendiny before eyes. extern:O./79 before eyes FRONT AP/CAL LATgA)AL "0,41?73 - Of' THORAX BASAL J 71-/- ORA x SCUTEL L UM 8,4.5-AL HUMERAL EL YTRA L 5(in/Re- D/SCAL LATERAL PARTS OF EL YTRA L'ZYTRA AP/CAL F/C ///. Dorsa/ view ofa Coccine///o' 0/;o,00den7/;9) to show ,ocrpts of the thorax and e/yfra. Quadrate J Ociedrete Sii77,o/e tooth tooth inner Outer c/eW A. Claw of 8. C/aw of C. C/akv of C/aw Co CC/>7 e//a • Chi/ocorus /Ve0/77y.rth Fle. /V B/e79/-c7/77.7 of the C/akvs of Coccine///ds. THE COCCINELLIDAE(LADYBIRD BEETLES) OF MINNESOTA WM. C. STEHR BIOLOGY AND CHARACTERISTICS The Coccinellidac, commonly known as ladybird beetles or lady "bugs," have long been of interest because of their habits, both bene- ficial and destructive, and because of their attractive coloration. Many references to them occur in the literature and folklore of medieval times. In Scandinavia the number of spots on the wing covers was believed to indicate whether the prices of grain would be high or low. If there were more than seven spots the price would be low and if less than seven the price would be high. In Germany, France, and England girls would catch beetles and allow them to fly from their hands; the direction they took was believed to indicate the direction from which their lovers would come. There are many references to their beneficial nature, and the esteem in which they were held by earlier generations is still reflected in the common names applied to them in some of the European countries today. In France they are called "les bêtes du bon Dieu" (the creatures of the good God) and "les vaches de la Vierge" (cows of the Virgin) ; and in Germany they are often called "Marienkafer" (Mary's beetles). There are upward of 1,5oo species of Coccinellidae in the world, about 300 in the United States, and of these probably 5o species occur in Minnesota. By far the greater number of species are beneficial to mankind, and, fortunately, all found in Minnesota belong to this group. In general the tribe Epllachninac are plant feeders and thus are eco- nomic pests. Only two species of any importance in the latter group are found in the United States. One of these, the Mexican bean beetle, Epi/achna corrupta, ranks as a major pest in our southern states.. It appeared in the semi-arid region of Arizona, New Mexico, Colorado, and western Texas about 1864 and for many years was confined to that region. Its original home was probably in southern Mexico or in Central America. It attacks leguminous crops, especially beans, and causes great economic loss to the growers by destroying the leaves of the plants. In 1920 it was accidentally introduced into the region near Birmingham, Alabama, and since then has spread very rapidly throughout the southeastern and eastern states. In 1928 it had reached Pennsylvania, New York, Ohio, Indiana, Michigan, Kentucky, Tennessee, Mississippi, and all states nearer to Alabama. There are also several records from the 6 MINNESOTA TECHNICAL BULLETIN 75 Province of Ontario, Canada. Today the majority of the states east of the Mississippi River have to cope with this pest, which very often entirely destroys the bean crop in certain districts. Soybeans are espe- cially injured by it. How far this pest will spread is not known, for each year sees further advances to the north and west. Only Illinois and Wisconsin are between its northern limits and Minnesota today. Dusting or spraying with arsenicals is the most effective control, but the arsenical dust or spray must lodge on the under side of the leaves, for the beetles eat only the under surface and internal tissues of the leaves, leaving the tough upper epidermis untouched. The other species, Epilachna borealis, feeds on cucurbits. It is not, however, the serious pest that the Mexican bean beetle has become. The other Epilachninae are mainly tropical species and the chances of their establishment in Minnesota are small. There are many species in Mexico and South America but most of them feed on native plants, especially of the family Solanaceae. In southern Europe and Asia, Epi- lachna chrysomeliiia is a serious pest, and in Australia Epi/achna 28- punctata causes much damage each year. But the Epilachninae are the aberrant group of the family and the others are, in general, among the best insect friends of the farmer, fruit grower, and nurseryman. The other groups feed mainly on plant lice, scale insects, eggs and larvae of other insects, and on pollen of plants and spores of fungi. S. A. Forbes (1883) examined the stomachs of 39 beetles and found the following percentages of food eaten: 37 animal food (mainly aphids and scale insects) 45 spores of fungi 4 lichens 14 pollen (mainly of grasses and weeds) These are fairly erepresentative of the food of Minnesota species. Wadley (1928), in a study of the ecology of the green bug, Toxop- tera graminum, made sonic observations on the number of aphids de- stroyed by various Minnesota lady beetles. The following are some of his data: Grain Species Stage in life aphids eaten Coccinella 9-notata Larva up to pupation 133 Coccinella 9-notata Adult female per day 85 Coccinella 9-notata Adult male per day 50 Coccinella transversoguttata Larva up to pupation 104 Hippodamia convergens Larva up to pupation 124 Hippodamia convergens Adult female per day 50-75 Hippodamia convergens Adult male per day 30-40 Hippodanfia /3-pit/feta/a Adult beetle per day 30 Hippodamia parenthesis Pair of adults per day ' 46 COCCINELLIDAE OF MINNESOTA 7 Wadley calculated hypothetically that a pair of Coccinella 9-notata Herbst would wipe out a colony of 1,000 grain aphids in less than a week. Cutright (1924) gives similar data for Hippodantia 13-punctata (L) throughout its life. Av. aphids Maximum Mininnun Instar destroyed no. no. First 17 38 7 Second 16 31 5 Third 32 56 io Fourth 55 82 25 Adult female 42 aphids per day. Adult male 20 aphids per day. It is difficult to estimate how much benefit the lady beetles render in the control of plant lice, but it is certain that unless the outbreak gets very severe, they exert a great limiting influence upon their multi- plication. Many cases are on record of outbreaks on apple trees, grains, and vegetables that have been efficiently controlled by some of the common lady beetles. Aphids are the most common food of the Minnesota lady beetles. Some, as Hyperaspis binotata (Say), feed on scale insects. A few years ago the young pines at Lake Vadnais, St. Paul, were badly infested with scale insects. In the summer of 1929 Hy- peraspis binotata (Say), a little black beetle with a red spot on each wing cover, became very numerous and in the unsprayed por- tion of the plantation was very effective in diminishing the number of scales. L. W. Orr reported the same beetle at work on scales in Hubbard County the same year. Since food was plentiful, the beetles multiplied rapidly and by midsummer thousands of larvae were busily devouring scales. The larvae attack the young scales and eggs under the old females. They take a position near the females and then insert their heads under the bodies of the scales and start .fceding on the young and eggs. They bite into the young scale and suck out the body fluids, then puff up the body of the scale several times as if they were blowing up balloons. This is probably a means of loosening the soft internal parts of the scale from the exoskeleton. Finally the body is sucked dry and the hard outer body covering cast away. Larvae ob- served by Mr. Orr and the author ate an average of one young scale each 2/,1 minutes. 'Speaking of the same species, Simanton (1916) says: "One of the most effective enemies of the Lecanium scales is the coccinellid beetle, Hyperaspis binotata (Say). Throughout the spring and early summer the larvae, conspicuous by their flocculent covering, could be found in large numbers feeding upon immature scales and over-turning the adult scales. The adult beetles do not feed upon the mature scales, 8 MINNESOTA TECHNICAL BULLETIN 75 but they destroy the young and also attack aphids and other soft-bodied insects." J. B. Smith (1904)• reports the same species as "reducing an in- festation of Pulvinaria spp. at Montclair, N. J., from 500 to 1,000 scales per leaf to about one dozen scales per leaf." In California the lady beetles have been used more than anywhere else in the control of pests of orchard and field crops. The story of the introduction of foreign species of lady beetles to control the dreaded citrus scale is one of the most interesting chapters in the history of biological control. In 1868 the fluted, or cottony, cushion scale, Icerya purchasi Maskell, was introduced into California at Menlo Park, near San Francisco, on some orange trees from Australia.
Recommended publications
  • Atlantic Canada
    Appendix I.1 ACCDC Report Beaver Dam Mine Site and Haul Road (DATA REPORT 6749: Marinette, NS)- January 4, 2021 Completed for the Updated 2021 Beaver Dam Mine EIS DATA REPORT 6749: Marinette, NS Prepared 4 January 2021 by C. Robicheau, Data Manager CONTENTS OF REPORT 1.0 Preface 1.1 Data List 1.2 Restrictions 1.3 Additional Information Map 1: Buffered Study Area 2.0 Rare and Endangered Species 2.1 Flora 2.2 Fauna Map 2: Flora and Fauna 3.0 Special Areas 3.1 Managed Areas 3.2 Significant Areas Map 3: Special Areas 4.0 Rare Species Lists 4.1 Fauna 4.2 Flora 4.3 Location Sensitive Species Map 1. A 100 km buffer around the study area 4.4 Source Bibliography 5.0 Rare Species within 100 km 5.1 Source Bibliography 1.0 PREFACE The Atlantic Canada Conservation Data Centre (AC CDC; www.accdc.com) is part of a network of NatureServe data centres and heritage programs serving 50 states in the U.S.A, 10 provinces and 1 territory in Canada, plus several Central and South American countries. The NatureServe network is more than 30 years old and shares a common conservation data methodology. The AC CDC was founded in 1997, and maintains data for the jurisdictions of New Brunswick, Nova Scotia, Prince Edward Island, and Newfoundland and Labrador. Although a non-governmental agency, the AC CDC is supported by 6 federal agencies and 4 provincial governments, as well as through outside grants and data processing fees. Upon request and for a fee, the AC CDC queries its database and produces customized reports of the rare and endangered flora and fauna known to occur in or near a specified study area.
    [Show full text]
  • Ladybirds, Ladybird Beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1
    Archival copy: for current recommendations see http://edis.ifas.ufl.edu or your local extension office. EENY-170 Ladybirds, Ladybird beetles, Lady Beetles, Ladybugs of Florida, Coleoptera: Coccinellidae1 J. H. Frank R. F. Mizell, III2 Introduction Ladybird is a name that has been used in England for more than 600 years for the European beetle Coccinella septempunctata. As knowledge about insects increased, the name became extended to all its relatives, members of the beetle family Coccinellidae. Of course these insects are not birds, but butterflies are not flies, nor are dragonflies, stoneflies, mayflies, and fireflies, which all are true common names in folklore, not invented names. The lady for whom they were named was "the Virgin Mary," and common names in other European languages have the same association (the German name Marienkafer translates Figure 1. Adult Coccinella septempunctata Linnaeus, the to "Marybeetle" or ladybeetle). Prose and poetry sevenspotted lady beetle. Credits: James Castner, University of Florida mention ladybird, perhaps the most familiar in English being the children's rhyme: Now, the word ladybird applies to a whole Ladybird, ladybird, fly away home, family of beetles, Coccinellidae or ladybirds, not just Your house is on fire, your children all gone... Coccinella septempunctata. We can but hope that newspaper writers will desist from generalizing them In the USA, the name ladybird was popularly all as "the ladybird" and thus deluding the public into americanized to ladybug, although these insects are believing that there is only one species. There are beetles (Coleoptera), not bugs (Hemiptera). many species of ladybirds, just as there are of birds, and the word "variety" (frequently use by newspaper 1.
    [Show full text]
  • Wild Species 2010 the GENERAL STATUS of SPECIES in CANADA
    Wild Species 2010 THE GENERAL STATUS OF SPECIES IN CANADA Canadian Endangered Species Conservation Council National General Status Working Group This report is a product from the collaboration of all provincial and territorial governments in Canada, and of the federal government. Canadian Endangered Species Conservation Council (CESCC). 2011. Wild Species 2010: The General Status of Species in Canada. National General Status Working Group: 302 pp. Available in French under title: Espèces sauvages 2010: La situation générale des espèces au Canada. ii Abstract Wild Species 2010 is the third report of the series after 2000 and 2005. The aim of the Wild Species series is to provide an overview on which species occur in Canada, in which provinces, territories or ocean regions they occur, and what is their status. Each species assessed in this report received a rank among the following categories: Extinct (0.2), Extirpated (0.1), At Risk (1), May Be At Risk (2), Sensitive (3), Secure (4), Undetermined (5), Not Assessed (6), Exotic (7) or Accidental (8). In the 2010 report, 11 950 species were assessed. Many taxonomic groups that were first assessed in the previous Wild Species reports were reassessed, such as vascular plants, freshwater mussels, odonates, butterflies, crayfishes, amphibians, reptiles, birds and mammals. Other taxonomic groups are assessed for the first time in the Wild Species 2010 report, namely lichens, mosses, spiders, predaceous diving beetles, ground beetles (including the reassessment of tiger beetles), lady beetles, bumblebees, black flies, horse flies, mosquitoes, and some selected macromoths. The overall results of this report show that the majority of Canada’s wild species are ranked Secure.
    [Show full text]
  • Lessons from Genome Skimming of Arthropod-Preserving Ethanol Benjamin Linard, P
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Archive Ouverte en Sciences de l'Information et de la Communication Lessons from genome skimming of arthropod-preserving ethanol Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler To cite this version: Benjamin Linard, P. Arribas, C. Andújar, A. Crampton-Platt, A. P. Vogler. Lessons from genome skimming of arthropod-preserving ethanol. Molecular Ecology Resources, Wiley/Blackwell, 2016, 16 (6), pp.1365-1377. 10.1111/1755-0998.12539. hal-01636888 HAL Id: hal-01636888 https://hal.archives-ouvertes.fr/hal-01636888 Submitted on 17 Jan 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 Lessons from genome skimming of arthropod-preserving 2 ethanol 3 Linard B.*1,4, Arribas P.*1,2,5, Andújar C.1,2, Crampton-Platt A.1,3, Vogler A.P. 1,2 4 5 1 Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 6 5BD, UK, 7 2 Department of Life Sciences, Imperial College London, Silwood Park Campus, Ascot 8 SL5 7PY, UK, 9 3 Department
    [Show full text]
  • Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation
    Studies of the Laboulbeniomycetes: Diversity, Evolution, and Patterns of Speciation The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:40049989 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA ! STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION A dissertation presented by DANNY HAELEWATERS to THE DEPARTMENT OF ORGANISMIC AND EVOLUTIONARY BIOLOGY in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology HARVARD UNIVERSITY Cambridge, Massachusetts April 2018 ! ! © 2018 – Danny Haelewaters All rights reserved. ! ! Dissertation Advisor: Professor Donald H. Pfister Danny Haelewaters STUDIES OF THE LABOULBENIOMYCETES: DIVERSITY, EVOLUTION, AND PATTERNS OF SPECIATION ABSTRACT CHAPTER 1: Laboulbeniales is one of the most morphologically and ecologically distinct orders of Ascomycota. These microscopic fungi are characterized by an ectoparasitic lifestyle on arthropods, determinate growth, lack of asexual state, high species richness and intractability to culture. DNA extraction and PCR amplification have proven difficult for multiple reasons. DNA isolation techniques and commercially available kits are tested enabling efficient and rapid genetic analysis of Laboulbeniales fungi. Success rates for the different techniques on different taxa are presented and discussed in the light of difficulties with micromanipulation, preservation techniques and negative results. CHAPTER 2: The class Laboulbeniomycetes comprises biotrophic parasites associated with arthropods and fungi.
    [Show full text]
  • Newsletter of the Biological Survey of Canada
    Newsletter of the Biological Survey of Canada Vol. 40(1) Summer 2021 The Newsletter of the BSC is published twice a year by the In this issue Biological Survey of Canada, an incorporated not-for-profit From the editor’s desk............2 group devoted to promoting biodiversity science in Canada. Membership..........................3 President’s report...................4 BSC Facebook & Twitter...........5 Reminder: 2021 AGM Contributing to the BSC The Annual General Meeting will be held on June 23, 2021 Newsletter............................5 Reminder: 2021 AGM..............6 Request for specimens: ........6 Feature Articles: Student Corner 1. City Nature Challenge Bioblitz Shawn Abraham: New Student 2021-The view from 53.5 °N, Liaison for the BSC..........................7 by Greg Pohl......................14 Mayflies (mainlyHexagenia sp., Ephemeroptera: Ephemeridae): an 2. Arthropod Survey at Fort Ellice, MB important food source for adult by Robert E. Wrigley & colleagues walleye in NW Ontario lakes, by A. ................................................18 Ricker-Held & D.Beresford................8 Project Updates New book on Staphylinids published Student Corner by J. Klimaszewski & colleagues......11 New Student Liaison: Assessment of Chironomidae (Dip- Shawn Abraham .............................7 tera) of Far Northern Ontario by A. Namayandeh & D. Beresford.......11 Mayflies (mainlyHexagenia sp., Ephemerop- New Project tera: Ephemeridae): an important food source Help GloWorm document the distribu- for adult walleye in NW Ontario lakes, tion & status of native earthworms in by A. Ricker-Held & D.Beresford................8 Canada, by H.Proctor & colleagues...12 Feature Articles 1. City Nature Challenge Bioblitz Tales from the Field: Take me to the River, by Todd Lawton ............................26 2021-The view from 53.5 °N, by Greg Pohl..............................14 2.
    [Show full text]
  • Modification of Insect and Arachnid Behaviours by Vertically Transmitted Endosymbionts: Infections As Drivers of Behavioural Change and Evolutionary Novelty
    Insects 2012, 3, 246-261; doi:10.3390/insects3010246 OPEN ACCESS insects ISSN 2075-4450 www.mdpi.com/journal/insects/ Review Modification of Insect and Arachnid Behaviours by Vertically Transmitted Endosymbionts: Infections as Drivers of Behavioural Change and Evolutionary Novelty Sara L. Goodacre 1,* and Oliver Y. Martin 2 1 School of Biology, University of Nottingham, NG7 2RD, UK 2 ETH Zurich, Experimental Ecology, Institute for Integrative Biology, Universitätsstrasse 16, CH-8092 Zurich, Switzerland; E-Mail: [email protected] * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +44-115-8230334. Received: 29 January 2012; in revised form: 17 February 2012 / Accepted: 21 February 2012 / Published: 29 February 2012 Abstract: Vertically acquired, endosymbiotic bacteria such as those belonging to the Rickettsiales and the Mollicutes are known to influence the biology of their arthropod hosts in order to favour their own transmission. In this study we investigate the influence of such reproductive parasites on the behavior of their insects and arachnid hosts. We find that changes in host behavior that are associated with endosymbiont infections are not restricted to characteristics that are directly associated with reproduction. Other behavioural traits, such as those involved in intraspecific competition or in dispersal may also be affected. Such behavioural shifts are expected to influence the level of intraspecific variation and the rate at which adaptation can occur through their effects on effective population size and gene flow amongst populations. Symbionts may thus influence both levels of polymorphism within species and the rate at which diversification can occur.
    [Show full text]
  • Functional Response and Predation Potential of Hyperaspis Campestris
    January - February 2020 ISSN: 0193 - 4120 Page No. 5976 - 5985 Functional Response and Predation Potential of Hyperaspis Campestris (Herbst 1783) (Coleoptera: Coccinellidae) on Opuntiae Cochineal Dactylopius Opuntiae (Hemiptera: Dactylopiidae) in Morocco Mohamed El Aalaoui,1,4*, Rachid Bouharroud,1 Mohamed Sbaghi,2 Mustapha El Bouhssini,3 and Lahoucine Hilali,4 1Integrated Crop Production Unit, Regional Center of Agadir, National Institute of Agronomic Research, Morocco. Emails: [email protected] (Corresponding author) and [email protected], 2National Institute of Agronomic Research, Plant Protection Department, Scientific Division, Rabat Morocco. Emails: [email protected] 3 International Center for Agricultural Research in the Dry Areas (ICARDA), Rabat, Morocco. Email: [email protected] 4Faculty of Science and Technology of Settat, Morocco. Email: [email protected] *Corresponding author: [email protected], Article Info Abstract: Volume 82 Functional response of the lady beetle Hyperaspis campestris (Herbst 1783) Page Number: 5976 - 5985 to varying densities (1, 5, 10, 15, 20 and 25) of Dactylopius opuntiae Publication Issue: (Cockerell) young females (20 days old) were determined under controlled January-February 2020 conditions at 26±2°C, 60±10 % RH and 12:12 h L:D regime. The searching efficiency of H. campestris considerably decreased as prey density increased. The significant linear coefficient (P1) obtained by logistic regression had a negative indicating functional response type II. Attack rates (0.151, 0.101, 0.097, 0.122, 0.124 and 0.135) and handling times (3.848, 5.171, 5.417, 4.245, 4.356 and 3.940) for 1 to 25 density, respectively, were recorded using Holling‘s disc equation.
    [Show full text]
  • Coccinellid Beetles Diversity in Agro-Climatic Zones of Bhubaneswar
    Journal of Entomology and Zoology Studies 2017; 5(4): 1244-1248 E-ISSN: 2320-7078 P-ISSN: 2349-6800 Coccinellid beetles diversity in agro-climatic JEZS 2017; 5(4): 1244-1248 © 2017 JEZS zones of Bhubaneswar Received: 09-05-2017 Accepted: 10-06-2017 Sandeep Kumar Mukherjee Sandeep Kumar Mukherjee and Sushree Shailani Suman Associate Professor, Department of Entomology, OUAT, Abstract Bhubaneswar, India The current research was conducted to study the abundance and diversity of various species of Sushree Shailani Suman coccinellid beetles around the agro-climatic zone of Bhubaneswar. It revealed the presence of 10 1) Study Conducted at different species of lady bird beetles viz. E. vigintioctopunctata, B. suturalis, C. transversalis, C. Department of Entomology, undecimpunctata, C. septempunctata, C. sexmaculata, H. maindroni, A. cardoni, S. coccivora and P. OUAT, Bhubaneswar, India dissecta. All total of 1363 numbers of beetles have been collected (few visually counted) from different 2) PhD scholar, KIIT vegetation including vegetables, crop field, fruit orchards, etc. The abundance of P. dissecta species was University, Bhubaneswar, highest (344) contributing about 25.24% of the total population, followed by C. septempunctata (230, Odisha, India 16.87%), and C. transversalis (226, 16.58%). But in terms of species diversity, C. transversalis was the most diversified species among all followed by P. dissecta and E. vigintioctopunctata. The collected species of coccinellid were classified into three groups as per their sub-family viz. Epilachninae, Chilocorinae and Coccinellinae. Among them the coccinellinae sub-family included highest numbers of species (6) with maximum abundance in the area having 701 beetles contributing about 51.42% of all coccinellids collected.
    [Show full text]
  • VINEYARD BIODIVERSITY and INSECT INTERACTIONS! ! - Establishing and Monitoring Insectariums! !
    ! VINEYARD BIODIVERSITY AND INSECT INTERACTIONS! ! - Establishing and monitoring insectariums! ! Prepared for : GWRDC Regional - SA Central (Adelaide Hills, Currency Creek, Kangaroo Island, Langhorne Creek, McLaren Vale and Southern Fleurieu Wine Regions) By : Mary Retallack Date : August 2011 ! ! ! !"#$%&'(&)'*!%*!+& ,- .*!/'01)!.'*&----------------------------------------------------------------------------------------------------------------&2 3-! "&(')1+&'*&4.*%5"/0&#.'0.4%/+.!5&-----------------------------------------------------------------------------&6! ! &ABA <%5%+3!C0-72D0E2!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!F! &A&A! ;D,!*2!G*0.*1%-2*3,!*HE0-3#+3I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!J! &AKA! ;#,2!0L!%+D#+5*+$!G*0.*1%-2*3,!*+!3D%!1*+%,#-.!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!B&! 7- .*+%)!"/.18+&--------------------------------------------------------------------------------------------------------------&,2! ! ! KABA ;D#3!#-%!*+2%53#-*MH2I!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!BN! KA&A! O3D%-!C#,2!0L!L0-H*+$!#!2M*3#G8%!D#G*3#3!L0-!G%+%L*5*#82!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&P! KAKA! ?%8%53*+$!3D%!-*$D3!2E%5*%2!30!E8#+3!AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA!&B! 9- :$"*!.*;&5'1/&.*+%)!"/.18&-------------------------------------------------------------------------------------&3<!
    [Show full text]
  • Coccinellidae)
    ECOLOGY AND BEHAVIOUR OF THE LADYBIRD BEETLES (COCCINELLIDAE) Edited by I. Hodek, H.E van Emden and A. Honek ©WILEY-BLACKWELL A John Wiley & Sons, Ltd., Publication CONTENTS Detailed contents, ix 8. NATURAL ENEMIES OF LADYBIRD BEETLES, 375 Contributors, xvii Piotr Ccryngier. Helen E. Roy and Remy L. Poland Preface, xviii 9. COCCINELLIDS AND [ntroduction, xix SEMIOCHEMICALS, 444 ]an Pettcrsson Taxonomic glossary, xx 10. QUANTIFYING THE IMPACT OF 1. PHYLOGENY AND CLASSIFICATION, 1 COCCINELLIDS ON THEIR PREY, 465 Oldrich Nedved and Ivo Kovdf /. P. Mid'laud and James D. Harwood 2. GENETIC STUDIES, 13 11. COCCINELLIDS IN BIOLOGICAL John J. Sloggett and Alois Honek CONTROL, 488 /. P. Midland 3. LIFE HISTORY AND DEVELOPMENT, 54 12. RECENT PROGRESS AND POSSIBLE Oldrkli Nedved and Alois Honek FUTURE TRENDS IN THE STUDY OF COCCINELLIDAE, 520 4. DISTRIBUTION AND HABITATS, 110 Helmut /; van Emden and Ivo Hodek Alois Honek Appendix: List of Genera in Tribes and Subfamilies, 526 5. FOOD RELATIONSHIPS, 141 Ivo Hodek and Edward W. Evans Oldrich Nedved and Ivo Kovdf Subject index. 532 6. DIAPAUSE/DORMANCY, 275 Ivo Hodek Colour plate pages fall between pp. 250 and pp. 251 7. INTRAGUILD INTERACTIONS, 343 Eric Lucas VII DETAILED CONTENTS Contributors, xvii 1.4.9 Coccidulinae. 8 1.4.10 Scymninae. 9 Preface, xviii 1.5 Future Perspectives, 10 References. 10 Introduction, xix Taxonomic glossary, xx 2. GENETIC STUDIES, 13 John J. Sloggett and Alois Honek 1. PHYLOGENY AND CLASSIFICATION, 1 2.1 Introduction, 14 Oldrich Nedved and Ivo Kovdf 2.2 Genome Size. 14 1.1 Position of the Family. 2 2.3 Chromosomes and Cytology.
    [Show full text]
  • Transgenic Crops.Pdf
    MICHEL TEMER President of the Republic ELISEU PADILHA Chief of Staff of the Presidency of the Republic JOSÉ RICARDO ROSENO Special Secretary for Family Farming and Agrarian Development JEFFERSON CORITEAC Deputy Executive Secretary of for Family Farming and Agrarian Development JOSÉ ROBERTO VIEIRA SANTOS Subsecretary of Planning and Management RAQUEL SANTORI Subsecretary of de Agrarian Reordering EVERTON AUGUSTO PAIVA FERREIRA Subsecretary of Family Farming MARCELO MARTINS Subsecretary of Rural Development SORRIVAL DE LIMA Subsecretary of Land Regularization in the Legal Amazon CARLOS EDUARDO BOVO Director of the Coordination of Strategic Management, Monitoring and Evaluation (CGMA / NEAD) WILLY DE LA PIEDRA MESONES Coordinator-General for Strategic Management, Monitoring and Evaluation (CGMA / NEAD) Copyright 2017 MDA mda.gov.br Series NEAD Debate 27 Agrarian Studies and Rural Development Centre/ Coordination of Strategic Management, Monitoring and Evaluation (NEAD) Esplanada dos Ministérios, Bloco C, 5º andar – sala 543 CEP 70.046-900 Brasília/DF Editorial staff Editorial production: Ana Carolina Fleury and Mariana Camargo Spelling and grammar review: Ana Carolina Fleury, Mariana Camargo and Grafica Ideal Graphic and editorial design: Aline Pereira - Ascom/MDA Transgenic Crops – hazards and uncertainties: More than 750 studies disregarded by the GMOs regulatory bodies / Gilles Ferment ... [ et al. ].– Brasília: Ministry of Agrarian Development, 2017. 450p. _ ( Nead debate ; 27 ) ISBN 978-85- 8354-015- 1 1. Trangenic plants. 2. Agrobiodiversity.
    [Show full text]