1.2 Regulation of Arthropod Pests in Agroecosystems : Effects

Total Page:16

File Type:pdf, Size:1020Kb

1.2 Regulation of Arthropod Pests in Agroecosystems : Effects université de la réunion Ecole Doctorale « Sciences, Technologies et Santé » (ED542) UMR Peuplements Végétaux et Bioagresseurs en Milieu tropical Cirad - Université de La Réunion thèse Présentée par Maxime JACQUOT Pour obtenir le diplôme de doctorat en sciences Discipline : Biologie des populations et écologie Biodiversité et fonctionnement écologique des agroécosystèmes à base de manguiers à La Réunion Soutenue publiquement le 17 novembre 2016 devant le jury composé de : Jean-Noël AUBERTOT Directeur de recherche, INRA Toulouse Rapporteur Sabrina GABA Chargée de recherche HDR, INRA Dijon Rapporteure Sergine PONSARD Professeur, Université de Toulouse 3 Rapporteure Dominique STRASBERG Professeur, Université de La Réunion Examinateur Jean-Philippe DEGUINE Chercheur HDR, CIRAD Réunion Directeur de thèse Philippe TIXIER Chercheur HDR, CIRAD Montpellier Membre invité à ma famille Remerciements La réalisation de ce travail a été permis grâce aux contributions de nombreuses personnes. Tout d’abord, je tiens à remercier mon directeur de thèse, Jean-Philippe Deguine, et mon co- directeur de thèse, Philippe Tixier. Je remercie Jean-Philippe de m’avoir permis de réaliser cette thèse et de m’avoir donné les moyens de la réaliser, merci pour son encadrement et en particulier pour m’avoir énormément appris sur l’écriture, merci de m’avoir donner l’opportunité d’être formateur et de participer aux ouvrages de vulgarisation et de transfert. Je remercie Philippe pour avoir partagé son expérience dès la conception de la thèse, merci pour son encadrement et sa disponibilité, malgré les milliers de kilomètre nous séparant. Merci à vous deux pour votre sympathie. Je tiens à remercier les membres du jury, Jean-Noël Aubertot, Sabrina Gaba, Sergine Ponsard et Dominique Strasberg, pour avoir accepté d’évaluer ce travail. Je remercie mes co-encadrants et les membres du comité de thèse pour leurs conseils avisés et l’orientation qu’ils ont donné à ce travail ; merci à : Pierre-François Duyck, Claire Lavigne, François Massol, Jean-Pierre Sarthou et Muriel Valantin-Morison. Je tiens à remercier les nombreux membres de l’équipe qui ont contribué à ce travail et pour le plaisir d’avoir travaillé à leurs côtés. Je remercie Morguen Atiama, Cédric Ajaguin Soleyen, Marie-Ludders Moutoussamy et Tristan Schmitt pour leurs aides dans les (très) nombreuses activités réalisées depuis mon arrivée au CIRAD. Je remercie Carla Baltzer, Justin Collard et Ségolène Plessix pour leur aide précieuse dans les échantillonnages et les tris des échantillons. Je remercie mes collègues VSC entomologistes pour leur motivation, leur investissement et le travail conséquent que nous avons réalisé pour déterminer ces dizaines de milliers d’arthropodes. Ce fut un plaisir de travailler avec vous, merci à Brice Derepas, David Muru, Mickaël Tenailleau. Je remercie Frédéric Chiroleu pour m’avoir initié et aidé dans l’utilisation de R et pour son appui en statistique. Merci également aux « Frédettes » : Charlotte Giraud-Carrier, Sandrine Le Squin et Agathe Allibert, pour leur aide. Je tiens à remercier mes collaborateurs. Je remercie les entomologistes et les arach- nologues pour leurs formations et leurs aides dans l’identification des arthropodes, merci à : Grégory Casanove, Gérard Delvare, Antoine Franck, Sophie Gasnier, Jean-Claude Ledoux, Olivier Levoux, Bruno Michel, Franck Noël, Jacques Poussereau, Serge Quilici, Jacques Rochat, Pascal Rousse, Joëlle Sadeyen et Jean-Claude Streito. Je remercie Olivier Flores pour m’avoir initié au bayésien et pour son aide indispensable pour les analyses et la rédaction de mon premier article. Je remercie François Massol pour avoir travaillé activement à mes côtés et pour la grande disponibilité qu’il a montrée lors des analyses. Je remercie Cyril Jourda pour m’avoir appris à utiliser le cluster de calcul. Je tiens à remercier l’ensemble des membres du projet Biophyto, les partenaires et les agriculteurs pour leur aide et tout simplement pour le plaisir que cela a été de travailler avec eux. Je remercie particulièrement Caroline Gloanec, Eric Rivière et Didier Vincenot. Je tiens à remercier la direction de l’UMR PVBMT, Bernard Reynaud, Samuel Nibouche et Stéphane Poussier, pour m’avoir accueilli au sein de l’unité. Je tiens à remercier l’ensemble des collègues du Pôle de Protection des Plantes pour leur accueil et pour leur sympathie, ainsi que pour les moments que nous avons partagés aux pauses café et déjeuner, et à l’extérieur du 3P ; merci à Abir, Adrien, Alassane, Cathleen, Chantal, Christophe, Cynthia, David, Enric, Florent, Hélène, Hugo, Issa, Jean-Mi, Jean-Pierre, Jim, Johanna, Magalie, Martial, Micheline, Océane, Samuel, Serge, Sylvain, Vincent, et bien d’autres... Je tiens à remercier les naturalistes qui m’ont énormément appris depuis mon enfance. Je remercie en particulier les membres de la Société d’Etude du Milieu Naturel en Mâconnais d’avoir partagé leurs savoirs et leurs passions. Ce travail n’aurait pas été permis sans eux. Je tiens à remercier ma famille et mes amis pour leur soutient tout au long de ce projet. Je tiens à remercier mes amis pour les bons moments que l’on a partagé ici ou ailleurs ; merci à Brice, David D., David M., Coline et Emeric, Alicia et Mathieu, Laura et Gwen, Jocelyn, Jane-Lore, Solène, Caro et Pierre, Guillaume... Merci à mes parents, mon frère et mes grands-parents pour m’avoir toujours encouragé dans mes passions et mes objectifs, merci de m’avoir accompagné, mille merci pour tout ! ! ! Enfin, je tiens à adresser d’énormes remerciements à Sylvia pour m’avoir accompagné, soutenu et encouragé tout au long de la thèse, malgré la réalisation de sa propre thèse, merci pour m’avoir donné un équilibre indispensable. Ce travail de thèse a été financé par une bourse de thèse octroyée par le CIRAD, les activités relatives à la thèse ont été financées par l’Union Européenne (FEDER, FEADER), Le Ministère de l’Agriculture, de l’agroalimentaire et de la forêt (projet CASDAR « Biophyto », projet ECOPHYTO « Rescam »), par la Région Réunion, le Conseil départemental de La Réunion et le CIRAD. Je tiens à remercier l’ensemble des financeurs pour m’avoir permis de réaliser ce travail. Je remercie, tout particulièrement, le CIRAD qui, outre les financements de la bourse de thèse et de mes activités, a financé ma participation à des congrès internationaux et des formations. Table des matières Liste des figures . 5 Liste des tableaux . 7 Liste des publications . 8 Introduction générale 11 1 Contexte et enjeux . 11 1.1 La biodiversité dans les communautés . 12 1.2 La biodiversité dans les agroécosystèmes . 15 1.3 Enjeux scientifiques de l’étude de la biodiversité dans le fonctionnement écologique des agroécosystèmes . 16 2 Modèle d’étude : les agroécosystèmes à base de manguiers à La Réunion . 17 2.1 La culture du manguier à La Réunion . 17 2.2 Les insectes nuisibles aux inflorescences . 19 La Cécidomyie des fleurs . 19 La Punaise du manguier . 19 Les Thrips . 21 La Cochenille des Seychelles . 21 La lutte chimique dans une impasse . 22 3 Objectifs et démarche scientifique . 22 1 Biodiversité et fonctionnement écologique des écosystèmes pour la ré- gulation naturelle des insectes nuisibles des cultures 27 Introduction . 27 1.1 Mechanisms involved in the relationship between biodiversity and ecosystem processes . 29 1.1.1 Biodiversity of a single trophic level . 29 1.1.2 Biodiversity in consumer-resource systems (2 trophic levels) . 30 1.1.3 Biodiversity in systems with more than two trophic levels . 34 1.2 Regulation of arthropod pests in agroecosystems : effects of biodiversity, agricultural practices and landscape . 36 1.2.1 Bottom-up and top-down effects of biodiversity on the control of arthropod pests . 36 1.2.2 Effects of agricultural practices at local level . 38 1 TABLE DES MATIÈRES Effect of plant diversification through habitat manipulation . 38 Effects of farming intensity . 40 1.2.3 Landscape effects . 41 1.2.4 Simultaneous effects of agricultural practices and landscape . 43 Effects considered separately . 43 Impact of landscape on the effect of agricultural practices . 45 2 Caractérisation des agroécosystèmes à base de manguiers à La Réunion 47 Introduction . 47 2.1 Cadre de l’étude : le projet Biophyto . 49 Objectifs de Biophyto . 49 Dispositif de Biophyto . 49 2.2 Matériels et méthodes . 51 2.2.1 Localisation de l’étude . 51 2.2.2 Démarche de collecte des données . 51 2.2.3 Caractérisation des communautés d’arthropodes . 51 Echantillonnage . 52 Identification des arthropodes . 53 Attribution des espèces à des groupes trophiques . 53 Analyses isotopiques . 54 2.2.4 Caractérisation des pratiques agricoles . 54 Gestion de la végétation adventice (communautés végétales) . 55 Traitements insecticides . 55 2.2.5 Caractérisation du paysage . 56 2.3 Les communautés d’arthropodes . 57 2.3.1 Importance des groupes taxonomiques . 57 2.3.2 Composition et importance des groupes trophiques . 57 Les groupes trophiques par type de piège et par strate échantillonnée 61 Analyses isotopiques des communautés des inflorescences de manguiers 61 2.4 Pratiques agricoles . 63 2.4.1 Communautés végétales . 63 2.4.2 Traitements insecticides . 64 2.5 Paysage . 65 2.6 Conclusion . 65 3 Interactions multi-trophiques dans les communautés des vergers 67 Introduction . 67 Evidence of bottom-up and top-down biodiversity controls in a tropical agroeco- system . 69 3.1 Introduction . 70 3.2 Materials and Methods . 73 2 TABLE DES MATIÈRES 3.2.1 Study area and sampling . 73 3.2.2 Arthropod communities . 74 3.2.3 Farming practices . 74 3.2.4 Landscape complexity . 74 3.2.5 Structural equation models . 75 3.3 Results . 77 3.3.1 Composition of arthropod communities . 77 3.3.2 SEM based on diversities of trophic groups . 77 3.3.3 SEM based on abundances of trophic groups . 79 3.4 Discussion . 79 3.5 Conclusion . 83 Acknowledgements . 84 4 Régulation naturelle des insectes nuisibles dans les vergers 85 Introduction .
Recommended publications
  • Hellula Undalis (Lepidoptera: Pyralidae)—A Possible Control Agent?
    Biological Control 26 (2003) 202–208 www.elsevier.com/locate/ybcon First detection of a microsporidium in the crucifer pest Hellula undalis (Lepidoptera: Pyralidae)—a possible control agent? Inga Mewis,a,d,* Regina G. Kleespies,b Christian Ulrichs,c,d and Wilfried H. Schnitzlerd a Pesticide Research Laboratory, Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA b Federal Biological Research Centre for Agriculture and Forestry, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany c USDA-ARS, Beneficial Insect Introduction Research, 501 South Chapel Str., Newark, DE 19713, USA d Technical University Munich, Institute of Vegetable Science, D€urnast II, 85350 Freising, Germany Received 18 April 2002; accepted 11 September 2002 Abstract For the first time, a microsporidian infection was observed in the pest species Hellula undalis (Lepidoptera: Pyralidae) in crucifer fields in Nueva–Ecija, Philippines. Because H. undalis is difficult to control by chemical insecticides and microbiological control techniques have not been established, we investigated the biology, the pathogenicity and transmission of this pathogen found in H. undalis. An average of 16% of larvae obtained from crucifer fields in Nueva–Ecija displayed microsporidian infections and 75% of infected H. undalis died during larval development. Histopathological studies revealed that the infection is initiated in the midgut and then spreads to all organs. The microsporidium has two different sporulation sequences: a disporoblastic development pro- ducing binucleate free mature spores and an octosporoblastic development forming eight uninucleate spores. These two discrete life cycles imply its taxonomic assignment to the genus Vairimorpha. The size of the binucleate, diplokaryotic spores as measured on Giemsa-stained smears was 3:56 Æ 0:29lm in length and 2:18 Æ 0:21lm in width, whereas the uninucleate octospores measured 2:44 Æ 0:20 Â 1:64 Æ 0:14lm.
    [Show full text]
  • Local and Regional Influences on Arthropod Community
    LOCAL AND REGIONAL INFLUENCES ON ARTHROPOD COMMUNITY STRUCTURE AND SPECIES COMPOSITION ON METROSIDEROS POLYMORPHA IN THE HAWAIIAN ISLANDS A DISSERTATION SUBMITTED TO THE GRADUATE DIVISION OF THE UNIVERSITY OF HAWAI'I IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY IN ZOOLOGY (ECOLOGY, EVOLUTION AND CONSERVATION BIOLOGy) AUGUST 2004 By Daniel S. Gruner Dissertation Committee: Andrew D. Taylor, Chairperson John J. Ewel David Foote Leonard H. Freed Robert A. Kinzie Daniel Blaine © Copyright 2004 by Daniel Stephen Gruner All Rights Reserved. 111 DEDICATION This dissertation is dedicated to all the Hawaiian arthropods who gave their lives for the advancement ofscience and conservation. IV ACKNOWLEDGEMENTS Fellowship support was provided through the Science to Achieve Results program of the U.S. Environmental Protection Agency, and training grants from the John D. and Catherine T. MacArthur Foundation and the National Science Foundation (DGE-9355055 & DUE-9979656) to the Ecology, Evolution and Conservation Biology (EECB) Program of the University of Hawai'i at Manoa. I was also supported by research assistantships through the U.S. Department of Agriculture (A.D. Taylor) and the Water Resources Research Center (RA. Kay). I am grateful for scholarships from the Watson T. Yoshimoto Foundation and the ARCS Foundation, and research grants from the EECB Program, Sigma Xi, the Hawai'i Audubon Society, the David and Lucille Packard Foundation (through the Secretariat for Conservation Biology), and the NSF Doctoral Dissertation Improvement Grant program (DEB-0073055). The Environmental Leadership Program provided important training, funds, and community, and I am fortunate to be involved with this network.
    [Show full text]
  • Universidad Nacional Mayor De San Marcos Universidad Del Perú
    Universidad Nacional Mayor de San Marcos Universidad del Perú. Decana de América Facultad de Ciencias Biológicas Escuela Profesional de Ciencias Biológicas Aplicación del código de barras de ADN en la identificación de insectos fitófagos asociados al cultivo de quinua (Chenopodium quinoa Willd.) en Perú TESIS Para optar el Título Profesional de Biólogo con mención en Zoología AUTOR Nilver Jhon ZENTENO GUILLERMO ASESOR Dra. Diana Fernanda SILVA DÁVILA Lima, Perú 2019 DEDICATORIA A mis padres, Juan Clemente Zenteno Rodriguez y Leyda Eddy Guillermo Chávez por su apoyo incondicional y cariño a lo largo de esta aventura en mi vida. Jamás terminaré de agradecerles por todo. AGRADECIMIENTOS La vida me ha dado muchas cosas durante mi breve permanencia en este planeta, cosas para las cuales, unas cuantas palabras no bastarán para poder expresar cuan agradecido estoy. En primera instancia quiero dar gracias a mis padres Juan y Leyda y a mis hermanos Dennis y Jhovani por todo su cariño y apoyo. A mi asesora de tesis, la Dra. Diana Silva Dávila por su gran paciencia durante toda la etapa desde el proyecto hasta la tesis concluida. Al proyecto PNIA N° 038-2015-INIA-PNIA/UPMSI/IE “Optimización de la identificación de plagas entomológicas en cultivos de importancia económica mediante código de barras de ADN y construcción de base de datos” por el financiamiento que hizo posible el presente estudio. A la Dra. Ida Bartolini, al Blgo. Arturo Olortegui, y a la Blga. Rosalyn Acuña por su ayuda y guía en los procesamientos moleculares de las muestras de especímenes en el laboratorio de Biología Molecular de la Unidad del Centro de Diagnóstico de Sanidad Vegetal del Servicio Nacional de Sanidad Agraria.
    [Show full text]
  • Lepidoptera Collecting in Kenya and Tanzania
    Vol. 4 No. 1 1993 BROS: Kenya and Tanzania Lepidoptera 17 TROPICAL LEPIDOPTERA, 4(1): 16-25 LEPIDOPTERA COLLECTING IN KENYA AND TANZANIA EMMANUEL BROS DE PUECHREDON1 "La Fleurie," Rebgasse 28, CH-4102 Binningen BL, Switzerland ABSTRACT.- Situated in tropical Africa, on both sides of the Equator, Kenya and Tanzania possess an extraordinary rich Lepidoptera fauna (according to Larsen's latest book on Kenya: 871 species only for the Rhopalocera and Grypocera). The present paper reports on the author's participation in a non-entomological mini-expedition during January 1977 across those two countries, with comments on the areas where collecting was possible and practiced by him as a serious amateur lepidopterist. In addition there are photos of some interesting landscapes and, last but not least, a complete list of all the species captured and noted. RESUME.- En pleine Afrique equatoriale, a cheval sur 1'Equateur, le Kenya et la Tanzanie possedent une faune de Lepidopteres extraordinairement riche (871 especes seulement pour les Rhopaloceres et Hesperiides du Kenya, selon le tout recent ouvrage de Larsen). La presente note relate une mini-expedition non specifiquement entomologique en Janvier 1977 a travers ces deux pays, avec commmentaires de 1'auteur, lepidopteriste amateur eclaire, sur les lieux ou il a eu la possibilite de collectionner, recit agremente de quelques photos de biotopes interessants et surtout avec la liste complete des especes capturees et notees. KEY WORDS: Acraeinae, Africa, Arctiidae, Cossidae, Danainae, distribution, Ethiopian, Eupterotidae, Hesperiidae, Limacodidae, Lymantriidae, Noctuidae, Notodontidae, Nymphalidae, Papilionidae, Pieridae, Psychidae, Pyralidae, Saturniidae, Satyrinae, Thaumetopoeinae. In January 1977, I had the opportunity of participating in a Mt.
    [Show full text]
  • Insects and Molluscs, According to the Procedures Outlined Below
    Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 ACT Expedition Bush Blitz Hemiptera, Hymenoptera, Lepidoptera, Orthoptera, Terrestrial molluscs 26 Nov – 6 Dec 2018 Submitted: 5 April 2019 Debbie Jennings and Olivia Evangelista Nomenclature and taxonomy used in this report is consistent with: The Australian Faunal Directory (AFD) http://www.environment.gov.au/biodiversity/abrs/online-resources/fauna/afd/home Page 1 of 43 Bush Blitz – ACT Expedition 26 Nov – 6 Dec 2018 Contents Contents .................................................................................................................................. 2 List of contributors ................................................................................................................... 3 Abstract ................................................................................................................................... 4 1. Introduction ...................................................................................................................... 4 2. Methods .......................................................................................................................... 6 2.1 Site selection ............................................................................................................. 6 2.2 Survey techniques ..................................................................................................... 6 2.2.1 Methods used at standard survey sites ................................................................... 7 2.3 Identifying
    [Show full text]
  • Ballistic® Elite Insecticide
    POISON KEEP OUT OF REACH OF CHILDREN READ SAFETY DIRECTIONS BEFORE OPENING OR USING Ballistic® Elite Insecticide ACTIVE CONSTITUENT: 27.5 g/L DELTAMETHRIN SOLVENT: 811 g/L HYDROCARBON LIQUID GROUP 3A INSECTICIDE For the control of Heliothis (Helicoverpa spp.) and other specified pests on cotton and various other crops as specified in the Directions for Use table Formulation type Emulsifiable Concentrate EC adama.com CONTENTS: 20 L, 110 L, 200 L, 1000 L, 20,000 L DIRECTIONS FOR USE CROP PEST STATE RATE WHP CRITICAL COMMENTS Berry Vegetables: Native Budworm All States 50 mL/100 L 1 day Apply as thorough spray. Use sufficient water to Cape Goose (Heliothis, ensure adequate penetration and coverage. Repeat Berries, Helicoverpa spp.) sprays at 7 - 14 day intervals, depending upon pest Rosella incidence. Cereals Native Budworm, 500 mL/ha 7 days Apply at first sign of infestation, before larvae are Corn Earworm 5 mm, for best results. (Heliothis) Southern and Apply when larvae numbers exceed threshold. Common Armyworm Webworm 200 mL/ha Pre-seeding: BALLISTIC® ELITE may be tank mixed (Hednota pedionoma) with knockdown herbicides and applied prior to seeding. Apply once larvae have emerged, i.e. from last week in May onwards. Closely graze pasture prior to application. To ensure good penetration, use high water volume, i.e. 100 L/ha. DO NOT apply on dense pasture. Post crop emergence: Inspect crop regularly from seeding onwards, and spray at first sign of damage. Check with local Department of Agriculture adviser for further details. Cutworms NSW only Check emerging and establishing crops in the (Agrotis spp.) late afternoon or evening for caterpillars crawling on the soil surface and feeding on the seedlings.
    [Show full text]
  • View the PDF File of the Tachinid Times, Issue 8
    The Tachinid Times ISSUE 8 February 1995 Jim O'Hara, editor Agriculture & Agri-Food Canada, Biological Resources Division Centre for Land & Biological Resources Research C.E.F., Ottawa, Ontario, Canada, K1A 0C6 This issue marks the eighth year of The Tachinid Basic methodology: A team of (currently 9) Costa Rican Times. It is the largest issue so far, with the largest paraecologists range throughout all habitats night and mailing list as well (90). I hope you find this issue of day searching opportunistically and directedly for Lepid- interest. To keep this newsletter going, remember to optera larvae. These habitats are "wild", though they contribute some news from time to time. As usual, the represent the earliest stages of succession to virtually next issue will be distributed next February. undisturbed forest. When a caterpillar is found it is placed in a plastic bag with its presumed food (normally The Caterpillars and their Parasitoids of a Tropical this is the plant on which it was found). If it feeds, it is Dry Forest (by D.H. Janzen) then given a unique voucher number (e.g., 94-SRNP- Project name: The caterpillars and their parasitoids of 7857; this would be the 7857th caterpillar recorded in a tropical dry forest, Guanacaste Conservation Area, 1994; SRNP stands for Santa Rosa National Park, which northwestern Costa Rica. is today the Santa Rosa Sector of the GCA). That vou- Project goal: To determine the host-plant specificity of cher number is written on the plastic bag. The collection the entire set of macro caterpillars (and miners where information is recorded in field notebooks by the feasible) for the tropical dry forest in the Guanacaste collectors, and this information is later computer- Conservation Area in northwestern Costa Rica (0-300 m captured into a Filemaker Pro 2.0 flatfile database (de- elevation, six month dry season, total annual rainfall tails available on request).
    [Show full text]
  • Biology and Control of Araecerus Levipennis Jordan ( Coleoptera: Anthribidae )X
    138 Proceedings, Hawaiian Entomological Society Biology and Control of Araecerus levipennis Jordan ( Coleoptera: Anthribidae )x Martin Sherman and Minoru Tamashiro2 UNIVERSITY OF HAWAII AGRICULTURAL EXPERIMENT STATION HONOLULU, HAWAII (Presented at the meeting of December 12, 1953) Koa haole, Leucaenaglauca (L.) Bentham, is a leguminous plant introduced into Hawaii prior to 1888 (Takahashi and Ripperton, 1949). Because of its high protein content, it is a valuable forage crop and many ranches have spread its seed over rangeland. In addition to this important use, it is of some value as a raw material in the manufacture of Hawaiian seed jewelry. During 1954 a small beetle, previously unknown in Hawaii, was found to be damaging a large percentage of the seed of koa haole (Ford and Chilson, 1955; Sherman, 1955). Specimens were sent to the U.S. National Museum and were identified as Araecerus sp., evidently simulatus Gyllenhal. However, additional specimens sent to Dr. H. E. Karl Jordan were identified by him as Araecerus levipennis Jordan. This species was described from the Philippines and Cochin China (Jordan, 1924). In a letter to Dr. D. Elmo Hardy of the University of Hawaii3 Dr. Jordan wrote, "It is a near relative of Araecerus simulatus Gyllenh. 1833 (Java), which is a species of very wide distribution in the Oriental Region and varying much in size and pattern. .. Araecerus levipennis differs from the four other species of Araecerus known from the Hawaiian Islands in the following combination of distinctions: club of antennae almost sym metrical; upper side pale tawny (ochraceous) with diffuse grey spots, im pressed stripes, and their punctures distinct only at sides and bases, absent dorsally from before middle to apex of elytra, which gives the elytra a smooth appearance; legs pale testaceous, tibia without dark markings; anterior tibia of o71 hairy on underside, without teeth; sutural area sometimes dark (as happens also in A.
    [Show full text]
  • Chapter 2 Diopsoidea
    Chapter 2 Diopsoidea DiopsoideaTeaching material only, not intended for wider circulation. [email protected] 2:37 Diptera: Acalyptrates DIOPSOI D EA 50: Tanypezidae 53 ------ Base of tarsomere 1 of hind tarsus very slightly projecting ventrally; male with small stout black setae on hind trochanter and posterior base of hind femur. Postocellar bristles strong, at least half as long as upper orbital seta; one dorsocentral and three orbital setae present Tanypeza ----------------------------------------- 55 2 spp.; Maine to Alberta and Georgia; Steyskal 1965 ---------- Base of tarsomere 1 of hind tarsus strongly projecting ventrally, about twice as deep as remainder of tarsomere 1 (Fig. 3); male without special setae on hind trochanter and hind femur. Postocellar bristles weak, less than half as long as upper orbital bristle; one to three dor socentral and zero to two orbital bristles present non-British ------------------------------------------ 54 54 ------ Only one orbital bristle present, situated at top of head; one dorsocentral bristle present --------------------- Scipopeza Enderlein Neotropical ---------- Two or three each of orbital and dorsocentral bristles present ---------------------Neotanypeza Hendel Neotropical Tanypeza Fallén, 1820 One species 55 ------ A black species with a silvery patch on the vertex and each side of front of frons. Tho- rax with notopleural depression silvery and pleurae with silvery patches. Palpi black, prominent and flat. Ocellar bristles small; two pairs of fronto orbital bristles; only one (outer) pair of vertical bristles. Frons slightly narrower in the male than in the female, but not with eyes almost touching). Four scutellar, no sternopleural, two postalar and one supra-alar bristles; (the anterior supra-alar bristle not present). Wings with upcurved discal cell (11) as in members of the Micropezidae.
    [Show full text]
  • Lepidoptera of the Tolman Bridge Area (2000-2011)
    LEPIDOPTERA OF THE TOLMAN BRIDGE AREA, ALBERTA, 2000-2011 Charles Bird, 8 March 2012 Box 22, Erskine, AB T0C 1G0 [email protected] The present paper includes a number of redeterminations and additions to the information in earlier reports. It also follows the up-to-date order and taxonomy of Pohl et al. (2010), rather than that of Hodges et al. (1983). Brian Scholtens, Greg Pohl and Jean-François Landry collecting moths at a sheet illuminated by a mercury vapor (MV) light, Tolman Bridge, 24 July 2003, during the 2003 Olds meetings of the Lepidopterist’s Society (C.D. Bird image). Tolman Bridge, is located in the valley of the Red Deer River, 18 km (10 miles) east of the town of Trochu. The bridge and adjoining Park land are in the north half of section 14, range 22, township 34, west of the Fourth Meridian. The coordinates at the bridge are 51.503N and 113.009W. The elevation ranges from around 600 m at the river to 800 m or so near the top of the river breaks. In a Natural Area Inspection Report dated 25 June 1982 and in the 1989 Trochu 82 P/14, 1:50,000 topographic map, the land southwest of the bridge was designated as the “Tolman Bridge Municipal Park” while that southeast of the bridge was referred to as the “Tolman Bridge Recreation Area”. In an Alberta, Department of the Environment, Parks and Protected Areas Division paper dated 9 May 2000, the areas on both sides of the river are included in “Dry Island Buffalo Jump Provincial Park”.
    [Show full text]
  • Crucifer Insect Pest Problems: Trends, Issues and Management Strategies
    Crucifer insect pest problems: trends, issues and management strategies G.S. Lim1, A. Sivapragasam2 and W.H. Loke2 1IIBC Station Malaysia, P.O. Box 210, 43409 UPM Serdang 2Strategic, Environment and Natural Resources Center, MARDI, P.O. Box 12301, 50774, Kuala Lumpur Abstract Crucifer vegetables are important cultivated crops and are widely grown in many parts of the world, including the highlands in most tropical countries. They are frequently attacked by a number of important insect pests. Some have been a problem for a long time while others have become important only recently. For many, trends are apparent pertaining to their changing status, including other aspects and strategies associated with efforts to counter them. In some cases, they are also closely associated with other agricultural developments and agronomic practices which are driven by commercial interests in vegetable production. Among the major trends recognised are: (1) A number of pests persisting to be important (e.g., Plutella xylostella or diamondback moth (DBM), Pieris rapae, Hellula undalis), (2) Negative impacts of pesticides continuing to be of major concern where DBM remains a serious problem, (3) Some pests becoming more important, either independently of DBM suppression (e.g., leafminer and Spodoptera exigua) or as a consequence of effective DBM control (e.g., aphid and Crocidolomia binotalis), (4) DBM becoming increasingly resistant to Bacillus thuringiensis, and (5) New cultivation practices emerging, such as rain shelter and hydroponic systems. All these have generated new concerns, additional issues and challenges, and have demanded a review of crucifer cultivation and the associated pest problems, including their management practices and approach.
    [Show full text]
  • Araneae: Lycosidae) from Canada: a Morphological Description Supported by DNA Barcoding of 19 Congeners
    Zootaxa 3894 (1): 152–160 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3894.1.12 http://zoobank.org/urn:lsid:zoobank.org:pub:66AD348F-5A04-4A9F-ADC5-501B4B10804F A new species of Alopecosa (Araneae: Lycosidae) from Canada: a morphological description supported by DNA barcoding of 19 congeners GERGIN A. BLAGOEV1 & CHARLES D. DONDALE2 1 Research Associate, Biodiversity Institute of Ontario, University of Guelph, Guelph, Ontario N1G 2W1, [email protected] 2 Retiree, Biodiversity Program, Research Branch, Agriculture & Agri-Food Canada, Ottawa, Ontario K1A 0C6, [email protected] Abstract A new species, Alopecosa koponeni sp. n., is described from the Arctic part of Manitoba. Individuals of A. koponeni most resemble those of A. pictilis (Emerton, 1885), but are smaller than the latter and differ in the epiginum and in colour pattern in both sexes. DNA barcode results show an interspecific distance of 0.93 between A. koponeni sp. n. and A. pictilis, a shallow genetic divergence that suggests a recent separation. Introduction Spiders of the Canadian Arctic are becoming better known through recent collecting efforts and through published revisions such as those by Dupérré (2013), Marusik et al. (2006), Marusik & Koponen (2001), Saaristo & Koponen (1998), and Saaristo & Marusik (2004). Additionally, two recent checklists also included arctic species (Buckle et al. 2001; Paquin et al. 2010) and a recent study on the spiders of Churchill revealed an undescribed species of Alopecosa, which was given the interim name Alopecosa sp. 1GAB (Blagoev et al.
    [Show full text]