Pest Management for Head Cabbage Production on Guam R
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Hellula Undalis (Lepidoptera: Pyralidae)—A Possible Control Agent?
Biological Control 26 (2003) 202–208 www.elsevier.com/locate/ybcon First detection of a microsporidium in the crucifer pest Hellula undalis (Lepidoptera: Pyralidae)—a possible control agent? Inga Mewis,a,d,* Regina G. Kleespies,b Christian Ulrichs,c,d and Wilfried H. Schnitzlerd a Pesticide Research Laboratory, Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA b Federal Biological Research Centre for Agriculture and Forestry, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany c USDA-ARS, Beneficial Insect Introduction Research, 501 South Chapel Str., Newark, DE 19713, USA d Technical University Munich, Institute of Vegetable Science, D€urnast II, 85350 Freising, Germany Received 18 April 2002; accepted 11 September 2002 Abstract For the first time, a microsporidian infection was observed in the pest species Hellula undalis (Lepidoptera: Pyralidae) in crucifer fields in Nueva–Ecija, Philippines. Because H. undalis is difficult to control by chemical insecticides and microbiological control techniques have not been established, we investigated the biology, the pathogenicity and transmission of this pathogen found in H. undalis. An average of 16% of larvae obtained from crucifer fields in Nueva–Ecija displayed microsporidian infections and 75% of infected H. undalis died during larval development. Histopathological studies revealed that the infection is initiated in the midgut and then spreads to all organs. The microsporidium has two different sporulation sequences: a disporoblastic development pro- ducing binucleate free mature spores and an octosporoblastic development forming eight uninucleate spores. These two discrete life cycles imply its taxonomic assignment to the genus Vairimorpha. The size of the binucleate, diplokaryotic spores as measured on Giemsa-stained smears was 3:56 Æ 0:29lm in length and 2:18 Æ 0:21lm in width, whereas the uninucleate octospores measured 2:44 Æ 0:20 Â 1:64 Æ 0:14lm. -
Application of Trap Cropping As Companion Plants for the Management of Agricultural Pests: a Review
Review Application of Trap Cropping as Companion Plants for the Management of Agricultural Pests: A Review Shovon Chandra Sarkar, Endong Wang, Shengyong Wu * and Zhongren Lei * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (S.C.S.); [email protected] (E.W.) * Correspondence: [email protected] (S.W.); [email protected] (Z.L.) Received: 20 August 2018; Accepted: 21 September 2018; Published: 25 September 2018 Abstract: Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control. -
Crocidolomia, Cabbage, and Culture
Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 The World Vegetable Center Shanhua, Taianan, Taiwan Priyanka Bonifaz Naithani Crocidolomia, Cabbage, and Culture 2016 Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 Table of Context I. Acknowledgments II. Introduction A. Personal Remarks B. The World Vegetable Center III. Research Project A. Direct and Indirect Effects of Neem against Cabbage Head Caterpillar in Vegetable Brassica IV. Specializing my Scientific Perspective A. Shadowing in Different Departments 2016 | V. Exploring the Culture and Country VI. Final Remarks A. Stepping Stone to Global Food Security VII. Works Cited Crocidolomia, Cabbage, and Culture 1 Crocidolomia, Cabbage, and Culture 2016 Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 I. Acknowledgments My first and foremost thanks go out to Norman Borlaug for his commitment to feeding the world. I, one day, hope to follow in his footsteps in helping billions of people. I would also like to formally thank the World Food Prize Foundation (WFP) for providing an opportunity of a life time. My relationship with WFP began in October 2015 when I was selected to be a Global Youth Institute Scholar. Since then, WFP has welcomed me into their family and I am extremely grateful for that. Also, thank you to the WFP for providing programs like these that empower the youth to be agents of change. Thank you to Ambassador Quinn for supporting the Borlaug ~ Ruan interns and making the Borlaug Dialogue possible. Thank you to Ms. Lisa Fleming for being like a second mom while I was abroad. You were always happy to guide me and provide valuable advice. -
Crucifer Insect Pest Problems: Trends, Issues and Management Strategies
Crucifer insect pest problems: trends, issues and management strategies G.S. Lim1, A. Sivapragasam2 and W.H. Loke2 1IIBC Station Malaysia, P.O. Box 210, 43409 UPM Serdang 2Strategic, Environment and Natural Resources Center, MARDI, P.O. Box 12301, 50774, Kuala Lumpur Abstract Crucifer vegetables are important cultivated crops and are widely grown in many parts of the world, including the highlands in most tropical countries. They are frequently attacked by a number of important insect pests. Some have been a problem for a long time while others have become important only recently. For many, trends are apparent pertaining to their changing status, including other aspects and strategies associated with efforts to counter them. In some cases, they are also closely associated with other agricultural developments and agronomic practices which are driven by commercial interests in vegetable production. Among the major trends recognised are: (1) A number of pests persisting to be important (e.g., Plutella xylostella or diamondback moth (DBM), Pieris rapae, Hellula undalis), (2) Negative impacts of pesticides continuing to be of major concern where DBM remains a serious problem, (3) Some pests becoming more important, either independently of DBM suppression (e.g., leafminer and Spodoptera exigua) or as a consequence of effective DBM control (e.g., aphid and Crocidolomia binotalis), (4) DBM becoming increasingly resistant to Bacillus thuringiensis, and (5) New cultivation practices emerging, such as rain shelter and hydroponic systems. All these have generated new concerns, additional issues and challenges, and have demanded a review of crucifer cultivation and the associated pest problems, including their management practices and approach. -
Resistance to Chlorpyrifos and Their Sensitivity to Neem Oil Insecticides
Open Agriculture 2020; 5: 785–791 Research Article Yuliani Yuliani, Safri Ismayana, Rani Maharani, Fitri Widiantini, Danar Dono* Evaluation and possible mechanism of beet armyworm (Spodoptera exigua Hubner) resistance to chlorpyrifos and their sensitivity to neem oil insecticides https://doi.org/10.1515/opag-2020-0078 Keywords: Spodoptera exigua, resistance, chlorpyrifos, received January 6, 2020; accepted November 16, 2020 enzyme, neem oil insecticides Abstract: The uncontrolled and excessive use of insecti- cides on Spodoptera exigua can cause resistance. The aim of this study is to test resistance of S. exigua to chlor- pyrifos and determine the possible mechanism of resis- 1 Introduction tance to S. exigua. The resistance assay was carried out on chlorpyrifos by determining the level of resistance by the It is common when farmers use synthetic insecticides - comparison of LC50 between the field samples and the to overcome the invasion of pests. However, an exces standard samples. The resistivity of S. exigua was corre- sive application of the insecticides can cause various ff lated with the activity of acetylcholinesterase (AChE), adverse e ects, including pest resistance. One of the esterase, and glutathione S-transferase (GST) enzymes. pests Spodoptera exigua has been reported resistant to fl - The samples of S. exigua were also tested for their sensi- various insecticide including tebufenozide, meta umi ( tivity to neem oil insecticides. The results showed that zone, and chlorpyrifos Jia et al. 2009;Cheetal.2013;Su ) S. exigua samples from Brebes and Cipanas had a resis- and Sun 2014; Ahmad et al. 2018 . tance ratio (RR) of 5.50 and 3.26, respectively. -
Storage Temperature of Botanical Insecticide Mixture Formulations and Its Activity Againsts Crocidolomia Pavonana
Storage Temperature of Botanical Insecticide Mixture Formulations and Its Activity Againsts Crocidolomia pavonana (F.) (Lepidoptera: Crambidae) Eka Candra Lina *), Nia Yulianti, Gustria Ernis, Arneti and Novri Nelly Department of Plant Protection, Faculty of Agriculture, Andalas University, Kampus Unand Limau Manis, Padang, Indonesia *) Corresponding author E-mail: [email protected], [email protected] Received: February 16, 2018 /Accepted: August 10, 2018 ABSTRACT The purpose of this research was to evaluate the safety of mixture formulations of Tephrosia vogelii and Piper aduncum at various storage temperatures and their insecticidal activity against C. pavonana larvae. Formulations were made from T. vogelii and P. aduncum (1:5) in emulsifiable concentrate (EC) and wettable powder (WP) form. Both formulations have strong insecticidal activity against C. pavonana. This research used a randomized completed design in different temperature treatments. Insecticidal activity of formulations after storage was tested against C. pavonana. The treatments were done using deep leaf method in 5 concentrations and 5 replications. The results showed that LC95 value of EC formulation after storage at condition: below 4°C, room temperature, and 40°C were 0.19%, 0.34% and 0.21% respectively. Based on LC95 value of EC formulation from each treatment, indicated that EC formulation after storage could hold insecticidal activity as good as insecticidal activity before storage due to LC95 value after storage relatively lower than LC95 value before storage (0.35%). In the contrary, WP formulation activity was significantly decreased in all treatments compared to WP formulation activity before storage based on LC95 value. Keywords: botanical insecticide; Crocidolomia pavonana; formulation; storage; temperature INTRODUCTION Storing insecticide including botanical insecticide formulations becomes critical control points in pesticide distribution and pesticide storage. -
Insect Morphology and Systematics (Ento-131) - Notes
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/276175248 Insect Morphology and Systematics (Ento-131) - Notes Book · April 2010 CITATIONS READS 0 14,110 1 author: Cherukuri Sreenivasa Rao National Institute of Plant Health Management (NIPHM), Hyderabad, India 36 PUBLICATIONS 22 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Agricultural College, Jagtial View project ICAR-All India Network Project on Pesticide Residues View project All content following this page was uploaded by Cherukuri Sreenivasa Rao on 12 May 2015. The user has requested enhancement of the downloaded file. Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL EntoEnto----131131131131 Insect Morphology & Systematics Prepared by Dr. Cherukuri Sreenivasa Rao M.Sc.(Ag.), Ph.D.(IARI) Associate Professor & Head Department of Entomology Agricultural College Jagtial-505529 Karminagar District 1 Page 2010 Insect Morphology and Systematics ENTO-131 (2+1) Revised Syllabus Dr. Cherukuri Sreenivasa Rao Associate Professor & Head, Department of Entomology, Agricultural College, JAGTIAL ENTO 131 INSECT MORPHOLOGY AND SYSTEMATICS Total Number of Theory Classes : 32 (32 Hours) Total Number of Practical Classes : 16 (40 Hours) Plan of course outline: Course Number : ENTO-131 Course Title : Insect Morphology and Systematics Credit Hours : 3(2+1) (Theory+Practicals) Course In-Charge : Dr. Cherukuri Sreenivasa Rao Associate Professor & Head Department of Entomology Agricultural College, JAGTIAL-505529 Karimanagar District, Andhra Pradesh Academic level of learners at entry : 10+2 Standard (Intermediate Level) Academic Calendar in which course offered : I Year B.Sc.(Ag.), I Semester Course Objectives: Theory: By the end of the course, the students will be able to understand the morphology of the insects, and taxonomic characters of important insects. -
Efficacy of Jatropha Curcas L. Seed Extract on Mortality of Cabbage Crop Larvae (Crocidolomia Binotalis Zeller: Lepidoptera: Pyralidae)
DOI: 10.46909/cerce-2020-026 Original Article Available online: www.uaiasi.ro/CERCET_AGROMOLD/ Print ISSN 0379-5837; Electronic ISSN 2067-1865 Cercetări Agronomice în Moldova Vol. LIII , No. 3 (183) / 2020: 307-313 EFFICACY OF JATROPHA CURCAS L. SEED EXTRACT ON MORTALITY OF CABBAGE CROP LARVAE (CROCIDOLOMIA BINOTALIS ZELLER: LEPIDOPTERA: PYRALIDAE) E.L. BAIDENG1,*, J.J. PELEALU1, B.H. ASSA2, H.A.W. LENGKEY3 *E-mail: [email protected] Received: July 10, 2020. Revised: July 24, 2020. Accepted: Aug. 10, 2020. Published online: Oct. 16, 2020 ABSTRACT. Along with the awareness stages, namely 1) the extraction stage of to obtain quality plant products, the use of Jatropha curcas L. seeds and the breeding plant-based insecticides is increasingly of the Crocidolomia binotalis test larvae being used. One of the plants used as a and 2) the testing stage with seven plant-based insecticide is Jatropha curcas concentration levels of Jatropha curcas L. L. (Jarak pagar) because it contains toxic extract as a plant-based insecticide. ingredients to kill cabbage caterpillar ANOVA test showed that the treatments pests (Crocidolomia binotalis). This study of Jatropha curcas L. extract gave the aims to determine the effectiveness of death effect on larvae [F-count > F-table Jatropha curcas L. on the mortality of (116.8 > 2.37)]. Dead larvae change color Crocidolomia binotalis cabbage to black and their body shape will curve. caterpillars. The research method used The fastest larval death occurs 24 HAA, was a Completely Randomized Design with a concentration of 40,000 ppm, which (CRD) 7 × 3, consisting of seven is 50%. -
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4 -
Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales
1 Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales. Annals of the Entomological Society of America 112: 318-329. 3 https://doi.org/10.1093/aesa/say043 4 5 6 Trap Crops and Insectary Plants in the Order Brassicales 7 Francisco Rubén Badenes-Perez 8 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 9 Madrid, Spain 10 E-mail: [email protected] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABSTRACT This paper reviews the most important cases of trap crops and insectary 26 plants in the order Brassicales. Most trap crops in the order Brassicales target insects that 27 are specialist in plants belonging to this order, such as the diamondback moth, Plutella 28 xylostella L. (Lepidoptera: Plutellidae), the pollen beetle, Meligethes aeneus Fabricius 29 (Coleoptera: Nitidulidae), and flea beetles inthe genera Phyllotreta Psylliodes 30 (Coleoptera: Chrysomelidae). In most cases, the mode of action of these trap crops is the 31 preferential attraction of the insect pest for the trap crop located next to the main crop. 32 With one exception, these trap crops in the order Brassicales have been used with 33 brassicaceous crops. Insectary plants in the order Brassicales attract a wide variety of 34 natural enemies, but most studies focus on their effect on aphidofagous hoverflies and 35 parasitoids. The parasitoids benefiting from insectary plants in the order Brassicales 36 target insects pests ranging from specialists, such as P. xylostella, to highly polyfagous, 37 such as the stink bugs Euschistus conspersus Uhler and Thyanta pallidovirens Stål 38 (Hemiptera: Pentatomidae). -
Potential of Controlling Common Bean Insect Pests (Bean Stem Maggot (Ophiomyia Phaseoli), Ootheca (Ootheca Bennigseni) and Aphid
Agricultural Sciences, 2015, 6, 489-497 Published Online May 2015 in SciRes. http://www.scirp.org/journal/as http://dx.doi.org/10.4236/as.2015.65048 Potential of Controlling Common Bean Insect Pests (Bean Stem Maggot (Ophiomyia phaseoli), Ootheca (Ootheca bennigseni) and Aphids (Aphis fabae)) Using Agronomic, Biological and Botanical Practices in Field Regina W. Mwanauta, Kelvin M. Mtei, Patrick A. Ndakidemi School of Life Sciences and Bioengineering, The Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania Email: [email protected] Received 27 March 2015; accepted 22 May 2015; published 27 May 2015 Copyright © 2015 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract Common bean production in Africa suffers from different constrains. The main damage is caused by insect pest infestations in the field. The most common insects pests which attack common bean in the field are the bean stem maggot (Ophiomyia phaseoli), ootheca (Ootheca bennigseni) and aphids (Aphis fabae). Currently, few farmers in Africa are using commercial pesticides for the con- trol of these insect pests. Due to the negative side effects of commercial pesticides to human health and the environment, there is a need for developing and recommending alternative methods such as those involving agronomic and botanical/biological measures in controlling common bean in- sect pests. This review aim to report the most common insects pests which attack common bean (Phaseolus vulgaris L.) in the field and explore the potential of agronomic, biological and botanical methods as a low-cost, safe and environmentally friendly means of controlling insect pests in le- gumes. -
Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods
CORE Metadata, citation and similar papers at core.ac.uk Provided by Greenwich Academic Literature Archive ORIGINAL RESEARCH published: 28 September 2018 doi: 10.3389/fpls.2018.01425 Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods Yolice Tembo 1, Angela G. Mkindi 2, Prisila A. Mkenda 2, Nelson Mpumi 2, Regina Mwanauta 2, Philip C. Stevenson 3,4, Patrick A. Ndakidemi 2 and Steven R. Belmain 4* 1 Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi, 2 Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 3 Jodrell Laboratory, Royal Botanic Gardens, Richmond, United Kingdom, 4 Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom In the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, Edited by: few natural products are commercialized for pest management whilst on-farm use of Giovanni Benelli, existing botanically-based pesticides remains a small, but growing, component of crop Scuola Sant’Anna di Studi Avanzati, Italy protection practice. Uptake of natural pesticides is at least partly constrained by limited Reviewed by: data on the trade-offs of their use on farm. The research presented here assessed Marcel Amichot, the potential trade-offs of using pesticidal plant extracts on legume crop yields and UMR7254 Institut Sophia Agrobiotech the regulating ecosystem services of natural pests enemies. The application of six (ISA), France Carlos L.