Spinosad Controls a Range of Lepidopteran Pests in Crucifers in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Spinosad Controls a Range of Lepidopteran Pests in Crucifers in Australia The management of diamondback moth and other crucifer pests Spinosad controls a range of lepidopteran pests in crucifers in Australia Paul Downard Dow AgroSciences (Australia) Ltd, Locked Bag 502 Frenchs Forest NSW 1640, Australia [email protected] Abstract Spinosad is one of the most widely used products for control of diamondback moth (Plutella xylostella) in Australia. Since the launch of Success* Naturalyte* in 1999, it has rapidly gained wide acceptance in all crucifer growing areas of the country. This has occurred, not only because spinosad is highly effective against diamondback moth, but because it also controls several other important lepidopteran pests such as heliothis (Helicoverpa spp.), cabbage white butterfly (Pieris rapae), cabbage centre grub (Hellula hydralis) and cabbage cluster caterpillar (Crocidolomia pavonana) at rates which provide growers with excellent value for money. Spinosad is highly active against loopers (Chrysodeixis spp.) and affords some control of cluster caterpillar (Spodoptera litura) and onion thrips (Thrips tabaci). There is no diamondback moth resistance to spinosad in Australia, the product has a favourable toxicological profile and it is selective to a range of beneficial predators and parasitoids. The value of insect control is best gauged by assessing the quality of produce at harvest of the crop. In a small scale trial, a crop of broccoli infested with P. rapae, P. xylostella, S. litura and C. pavonana received a programme of six applications of spinosad at 7-10 day intervals. Spinosad at 48 g ai/ha resulted in 97.2% marketable heads, not significantly different (P>0.05) from the standard, prothiophos, at 750 g/ha which gave 100% marketable heads. Spinosad at 96 g ai/ha resulted in 98.7% marketable heads, reflecting superior control of S. litura at this higher use rate. Keywords Lepidoptera, yield, Plutella xylostella, Helicoverpa, Pieris rapae, Hellula hydralis, Crocidolomia pavonana, Chrysodeixis, Spodoptera litura, Thrips tabaci Introduction Spinosad is widely used for control of lepidopteran pests in crucifer crops in Australia. Success* Naturalyte* (containing 120 g/L spinosad, marketed by Dow AgroSciences) is labelled for use at 48 g ai/ha against diamondback moth (Plutella xylostella (L.) (Lepidoptera: Plutellidae)) and cabbage white butterfly (Pieris rapae (L.) (Lepidoptera: Pieridae), and at 48-96 g ai/ha for heliothis (Helicoverpa spp. (Hübner) (Lepidoptera: Noctuidae)). There are several factors which have contributed to the market place acceptance of Success*, including cost- effectiveness against the key target pests P. xylostella and P. rapae, selectivity to a range of beneficial species and a favourable eco-toxicology profile. In south-east Queensland, including the Lockyer Valley vegetable-basket region, brassicas are sporadically attacked by a number of lepidopteran pests in addition to those mentioned above. These include cluster caterpillar (Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae)), cabbage cluster caterpillar (Crocidolomia pavonana (Fabricius) (Lepidoptera: Pyralidae)) and cabbage centre grub (Hellula hydralis (Guenée) (Lepidoptera: Pyralidae)). Ability to control this spectrum of lepidopteran Brassica pests is a desirable trait in any product in this market. This paper reports a single multiple application trial conducted at the QDPI Redlands Research Station in December 1999 by John Hargreaves in which lepidopteran insect control and its effect on broccoli yield was assessed. Materials and methods Seeds of the broccoli cultivar Dome (Yates Seeds) were sown into speedling trays containing a soilless mixture of peat and vermiculite (1:1), plus 100 g dolomite, 50 g potassium nitrate, 50 g superphosphate and 50 g blood and bone per 25 L of mixture. Seeds were sown on 05 November 1999 and sprayed once with sodium molybdate 1 g/L, Solubor® 2 g/L and Nitofol® 1.9 mL/L as the seedlings developed. Proceedings of the 4th International Workshop, Nov. 2001, Melbourne, Australia 351 The management of diamondback moth and other crucifer pests The transplants were planted into a 700 m2 border of the Redlands Research Station on 13 December 1999. The red krasnozem soil had been pre-drilled with a basal fertilizer (Granular 4®) at the rate of 0.1 kg/m. Rows were spaced 1.2 m apart and eight rows were drilled into the border with plants spaced 30 cm apart along the row. Four weeks after transplanting, plants were side-dressed with urea 9 g/m. Overhead irrigation was applied on demand and although conditions were wet through the period, overhead irrigation was generally applied once per week. Four replicates of each treatment were laid out in a randomised block design. Plots were two rows wide by 30 plants long (24 m2, 60 plants per plot). Five randomly selected plants from the middle of each plot were examined at each assessment. Populations of pests built up slowly and no insecticides were applied until plots received their prescribed treatments. Plants were examined for the presence of larvae of all species as well as the eggs of P. rapae, C. pavonana and S. litura. The pupae of both P. rapae and P. xylostella were also counted. Sprays were applied 7-10 days apart, depending on rain, from the 8th January. Initially 500 L of spray mix per hectare was applied by an Echo® power knapsack sprayer delivering 800 kPa pressure through a horizontal boom. Two hollow cone, sintered aluminum nozzles (Albuz® yellow 212) delivering 0.95 L/min, were spaced at 220 mm centres on the boom. An application speed of 1.9 km/h was maintained. On the 28th January, the boom was increased to 4 nozzles, spaced at 220 mm centres, but changed to Albuz® lilac 208 nozzles, delivering 0.45 L/min at 800 kPa. The wash volume was increased to 1000 L/ha. A non-ionic wetter was used with all treatments (Agral® 600) at the rate of 0.1 mL/L. At maturity, terminal flower heads were harvested progressively over the period 10th - 13th March. A flower head was considered “prime” when inspection of the surface and floret bases showed no larvae present nor obvious signs of gross feeding. Processing grade allowed only a degree of scarring to the floret bases, indicative of earlier feeding. Data were statistically analysed by analysis of variance using the QDPI ranb programme with appropriate transformations. Materials used: x Agral® 600 a non-ionic surfactant containing 600 g/L nonyl phenol ethylene oxide condensate (CropCare Australia Ltd). x Success* Naturalyte* containing 120 g/L spinosad as a suspension concentrate (* trademark of Dow AgroSciences (Australia) Ltd). x Tokuthion containing 500 g/L prothiophos as an emulsifiable concentrate (trademark of Bayer Germany). Results and discussion No obvious phytotoxicity, with any concentration of spinosad, was noticed during the trial. Crocidolomia pavonana (Table 1) All treatments significantly reduced C. pavonana numbers at each assessment, but until the final assessment there was no difference between spinosad treatments and the standard, prothiophos. At the final assessment, spinosad at 6 g ai/ha gave a significant level of control, but itself was significantly poorer (P=0.05) than spinosad 12 g ai/ha and above, and prothiophos. Numerical equivalence with prothiophos was achieved with spinosad at 24 g ai/ha. Egg deposition by this species appeared to be unaffected by insecticide concentration. Spodoptera litura (Table 2) Spodoptera infestation was low at the start of the trial, but gradually increased over time. The peak of infestation occurred in early February with an average of 50 larvae per plant in the untreated controls. Prothiophos showed excellent activity maintaining numbers at a very low level, matched by spinosad at 96 g ai/ha. Lower rates of spinosad, although not significantly poorer, were less effective numerically. The egg deposition by cluster caterpillar, Spodoptera litura, appeared unaffected by chemical concentration. 352 Proceedings of the 4th International Workshop, Nov. 2001, Melbourne, Australia The management of diamondback moth and other crucifer pests Table 1. The numbers of cabbage cluster caterpillar, Crocidolomia pavonana (F.) larvae per broccoli plant after a range of insecticide treatments were applied to the foliage, Jan-Feb 2000 Treatment Inspection date 7 Jan 00 17 Jan 00 27 Jan 00 7 Feb 00 17 Feb 00 28 Feb 00 Untreated 2.0 a 4.7 a 33.2 a 9.3 a 23.7 a 27.1 a Success* 50 mL/ha 1.5 a 0.0 b 0.4 b 0.3 b 3.5 b 12.1 b Success* 100 mL/ha 0.0 a 0.0 b 0.0 b 0.1 b 0.3 b 1.6 c Success* 200 mL/ha 0.0 a 0.0 b 0.0 b 0.0 b 0.0 b 0.1 c Success* 400 mL/ha 1.8 a 0.0 b 0.0 b 0.0 b 0.0 b 0.0 c Success* 800 mL/ha 0.0 a 0.0 b 0.0 b 0.0 b 0.3 b 0.1 c Tokuthion® 1.5 L/ha 0.0 a 0.0 b 0.0 b 0.0 b 0.0 b 0.1 c All treatments applied with Agral® 600 at 10 mL/100 L. Values within columns, followed by a common letter, do not differ at the P=0.05 level of probability. Values quoted are re-transformed means from the ¥x + 0.5 transformation. Table 2. The numbers of cluster caterpillar, Spodoptera litura (L.) per broccoli plant, after a range of insecticide treatments had been applied sequentially to the foliage, Jan-Feb 2000 Treatment Inspection date 7 Jan 00 17 Jan 00 27 Jan 00 7 Feb 00 17 Feb 00 28 Feb 00 Untreated - 0.0 a 1.3 a 18.6 a 52.4 a 38.6 a 33.3 a Success* 50 mL/ha 0.0 a 0.1 a 13.0 a 18.2 b 44.8 a 30.0 ab Success* 100 mL/ha 0.0 a 0.0 a 1.2 a 5.8 bc 28.8 bc 18.4 ab Success* 200 mL/ha 2.1 a 0.8 a 7.5 a 3.7 bc 12.4 cd 16.2 b Success* 400 mL/ha 0.0 a 0.2 a 8.7 a 1.0 c 7.0 de 1.6 c Success* 800 mL/ha 1.7 a 0.7 a 0.9 a 0.5 c 1.9 e 0.7 c Tokuthion® 1.5 L/ha 1.6 a 0.1 a 3.8 a 0.2 c 3.2 de 2.2 c All treatments applied with Agral® 600 at 10 mL/100 L.
Recommended publications
  • Hellula Undalis (Lepidoptera: Pyralidae)—A Possible Control Agent?
    Biological Control 26 (2003) 202–208 www.elsevier.com/locate/ybcon First detection of a microsporidium in the crucifer pest Hellula undalis (Lepidoptera: Pyralidae)—a possible control agent? Inga Mewis,a,d,* Regina G. Kleespies,b Christian Ulrichs,c,d and Wilfried H. Schnitzlerd a Pesticide Research Laboratory, Department of Entomology, Pennsylvania State University, University Park, PA 16802, USA b Federal Biological Research Centre for Agriculture and Forestry, Institute for Biological Control, Heinrichstr. 243, 64287 Darmstadt, Germany c USDA-ARS, Beneficial Insect Introduction Research, 501 South Chapel Str., Newark, DE 19713, USA d Technical University Munich, Institute of Vegetable Science, D€urnast II, 85350 Freising, Germany Received 18 April 2002; accepted 11 September 2002 Abstract For the first time, a microsporidian infection was observed in the pest species Hellula undalis (Lepidoptera: Pyralidae) in crucifer fields in Nueva–Ecija, Philippines. Because H. undalis is difficult to control by chemical insecticides and microbiological control techniques have not been established, we investigated the biology, the pathogenicity and transmission of this pathogen found in H. undalis. An average of 16% of larvae obtained from crucifer fields in Nueva–Ecija displayed microsporidian infections and 75% of infected H. undalis died during larval development. Histopathological studies revealed that the infection is initiated in the midgut and then spreads to all organs. The microsporidium has two different sporulation sequences: a disporoblastic development pro- ducing binucleate free mature spores and an octosporoblastic development forming eight uninucleate spores. These two discrete life cycles imply its taxonomic assignment to the genus Vairimorpha. The size of the binucleate, diplokaryotic spores as measured on Giemsa-stained smears was 3:56 Æ 0:29lm in length and 2:18 Æ 0:21lm in width, whereas the uninucleate octospores measured 2:44 Æ 0:20 Â 1:64 Æ 0:14lm.
    [Show full text]
  • Application of Trap Cropping As Companion Plants for the Management of Agricultural Pests: a Review
    Review Application of Trap Cropping as Companion Plants for the Management of Agricultural Pests: A Review Shovon Chandra Sarkar, Endong Wang, Shengyong Wu * and Zhongren Lei * State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; [email protected] (S.C.S.); [email protected] (E.W.) * Correspondence: [email protected] (S.W.); [email protected] (Z.L.) Received: 20 August 2018; Accepted: 21 September 2018; Published: 25 September 2018 Abstract: Companion planting is a well-known strategy to manage insect pests and support a natural enemy population through vegetative diversification. Trap cropping is one such type of special companion planting strategy that is traditionally used for insect pest management through vegetative diversification used to attract insect pests away from the main crops during a critical time period by providing them an alternative preferred choice. Trap crops not only attract the insects for feeding and oviposition, but also act as a sink for any pathogen that may be a vector. Considerable research has been conducted on different trap crops as companion plant species to develop improved pest management strategies. Despite this, little consensus exists regarding optimal trap cropping systems for diverse pest management situations. An advantage of trap cropping over an artificially released natural enemy-based biological control could be an attractive remedy for natural enemies in cropping systems. Besides, many trap crop species can conserve natural enemies. This secondary effect of attracting natural enemies may be an advantage compared to the conventional means of pest control.
    [Show full text]
  • Identification of Insects, Spiders and Mites in Vegetable Crops: Workshop Manual Loopers Chrysodeixis Spp
    Important pests in vegetable crops This section gives descriptions of common pests found in Australian vegetable crops. They are listed according to the insect order they belong to. Moths and butterflies (Lepidoptera) Heliothis (corn earworm, tomato budworm, native budworm) Helicoverpa spp. Heliothis larvae feed as leaf eaters and bud and fruit borers on a wide range of plants, including many weeds. Adults lay round, domed, ribbed eggs that are cream when newly laid, turning brownish (‘brown ring’ stage) as they mature. Larvae grow up to 40 mm long and vary in colour from green through yellow and brown to almost black, with a pale stripe down each side. The moths have a wing span of 35–45 mm. Heliothis moth at rest These are some examples of heliothis damage to vegetable crops: • On lettuce and brassicas, larvae feed on the outer leaves or tunnel into the heart of the plant. • In tomato crops, eggs are laid on the leaves, flowers and fruit. Young larvae burrow into flowers causing them to fall and they cause pinhole damage to very young tomato fruit. Older larvae burrow into the fruit, creating holes and encouraging rots to develop. • In capsicum, larvae feed on the fruit and the seed inside the fruit. Eggs are laid mainly on leaves, but also on flowers and buds. Heliothis eggs on tomato shoot • In sweet corn, eggs are laid on the silks and leaves. Larvae feed on the developing grains on the cob, sometimes on the leaves and often inside the tip of the corn cob. • In green beans and peas, the larvae feed on the flowers, pods and developing seed inside the pods.
    [Show full text]
  • Crocidolomia, Cabbage, and Culture
    Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 The World Vegetable Center Shanhua, Taianan, Taiwan Priyanka Bonifaz Naithani Crocidolomia, Cabbage, and Culture 2016 Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 Table of Context I. Acknowledgments II. Introduction A. Personal Remarks B. The World Vegetable Center III. Research Project A. Direct and Indirect Effects of Neem against Cabbage Head Caterpillar in Vegetable Brassica IV. Specializing my Scientific Perspective A. Shadowing in Different Departments 2016 | V. Exploring the Culture and Country VI. Final Remarks A. Stepping Stone to Global Food Security VII. Works Cited Crocidolomia, Cabbage, and Culture 1 Crocidolomia, Cabbage, and Culture 2016 Crocidolomia, Cabbage, and Culture Borlaug~Ruan Internship 2016 I. Acknowledgments My first and foremost thanks go out to Norman Borlaug for his commitment to feeding the world. I, one day, hope to follow in his footsteps in helping billions of people. I would also like to formally thank the World Food Prize Foundation (WFP) for providing an opportunity of a life time. My relationship with WFP began in October 2015 when I was selected to be a Global Youth Institute Scholar. Since then, WFP has welcomed me into their family and I am extremely grateful for that. Also, thank you to the WFP for providing programs like these that empower the youth to be agents of change. Thank you to Ambassador Quinn for supporting the Borlaug ~ Ruan interns and making the Borlaug Dialogue possible. Thank you to Ms. Lisa Fleming for being like a second mom while I was abroad. You were always happy to guide me and provide valuable advice.
    [Show full text]
  • Crucifer Insect Pest Problems: Trends, Issues and Management Strategies
    Crucifer insect pest problems: trends, issues and management strategies G.S. Lim1, A. Sivapragasam2 and W.H. Loke2 1IIBC Station Malaysia, P.O. Box 210, 43409 UPM Serdang 2Strategic, Environment and Natural Resources Center, MARDI, P.O. Box 12301, 50774, Kuala Lumpur Abstract Crucifer vegetables are important cultivated crops and are widely grown in many parts of the world, including the highlands in most tropical countries. They are frequently attacked by a number of important insect pests. Some have been a problem for a long time while others have become important only recently. For many, trends are apparent pertaining to their changing status, including other aspects and strategies associated with efforts to counter them. In some cases, they are also closely associated with other agricultural developments and agronomic practices which are driven by commercial interests in vegetable production. Among the major trends recognised are: (1) A number of pests persisting to be important (e.g., Plutella xylostella or diamondback moth (DBM), Pieris rapae, Hellula undalis), (2) Negative impacts of pesticides continuing to be of major concern where DBM remains a serious problem, (3) Some pests becoming more important, either independently of DBM suppression (e.g., leafminer and Spodoptera exigua) or as a consequence of effective DBM control (e.g., aphid and Crocidolomia binotalis), (4) DBM becoming increasingly resistant to Bacillus thuringiensis, and (5) New cultivation practices emerging, such as rain shelter and hydroponic systems. All these have generated new concerns, additional issues and challenges, and have demanded a review of crucifer cultivation and the associated pest problems, including their management practices and approach.
    [Show full text]
  • Resistance to Chlorpyrifos and Their Sensitivity to Neem Oil Insecticides
    Open Agriculture 2020; 5: 785–791 Research Article Yuliani Yuliani, Safri Ismayana, Rani Maharani, Fitri Widiantini, Danar Dono* Evaluation and possible mechanism of beet armyworm (Spodoptera exigua Hubner) resistance to chlorpyrifos and their sensitivity to neem oil insecticides https://doi.org/10.1515/opag-2020-0078 Keywords: Spodoptera exigua, resistance, chlorpyrifos, received January 6, 2020; accepted November 16, 2020 enzyme, neem oil insecticides Abstract: The uncontrolled and excessive use of insecti- cides on Spodoptera exigua can cause resistance. The aim of this study is to test resistance of S. exigua to chlor- pyrifos and determine the possible mechanism of resis- 1 Introduction tance to S. exigua. The resistance assay was carried out on chlorpyrifos by determining the level of resistance by the It is common when farmers use synthetic insecticides - comparison of LC50 between the field samples and the to overcome the invasion of pests. However, an exces standard samples. The resistivity of S. exigua was corre- sive application of the insecticides can cause various ff lated with the activity of acetylcholinesterase (AChE), adverse e ects, including pest resistance. One of the esterase, and glutathione S-transferase (GST) enzymes. pests Spodoptera exigua has been reported resistant to fl - The samples of S. exigua were also tested for their sensi- various insecticide including tebufenozide, meta umi ( tivity to neem oil insecticides. The results showed that zone, and chlorpyrifos Jia et al. 2009;Cheetal.2013;Su ) S. exigua samples from Brebes and Cipanas had a resis- and Sun 2014; Ahmad et al. 2018 . tance ratio (RR) of 5.50 and 3.26, respectively.
    [Show full text]
  • Pest Management for Head Cabbage Production on Guam R
    60 Pest management for Head Cabbage Production on Guam R. Muniappan and Mari Marutani Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, Mangilao, GU 96923 USA Abstract Cruciferous crops on Guam are infested by cabbage webworm, Hellula undalis (F.), cabbage cluster caterpillar, Crocidolomia pavonana Zeller, mustard aphid, Lipaphis erysimi (Davis), armyworm, Spodoptera litura (F.), flea hopper, Halticus tibialis (Reuter), fire ant, Solenopsis geminata (F.), leaf miners, Liriomyza spp., diamondback moth, Plutella xylostella (L.), corn earworm, Helicoverpa armigera (Hübner), and garden looper, Chrysodeixis chalcites (Esper.). Because cabbage (Brassica oleracea var. capitata L.) is one of the economically important vegetables on Guam, we have been developing an integrated pest management program for this crop. Hellula undalis is a serious problem on seedlings in nurseries as well as transplanted young plants in the field. Naled was effective in contolling this pest on young seedlings. Radish (Raphanus sativus L.) and green mustard (B. juncea L.) can be utilized as trap crops in the field for this pest. Similarly, the incidence of C. pavonana on cabbage was curtailed by growing Chinese cabbage (B. pekinensis (Lour.) Rupr. cv. Tempest), or flowering green mustard next to cabbage. The population of H. tibialis on cabbage was also considerably reduced when it was grown with radish, Chinese cabbage or mustard as trap crops. Liriomyza spp. population was very low as the introduced parasites effectively suppressed them. Spodoptera litura was attracted to cabbage more than other crucifers. Pydrin (fenvalerate) is effective in controlling this pest. Solenopsis geminata occasionally became a problem in newly transplanted fields during the dry season.
    [Show full text]
  • Storage Temperature of Botanical Insecticide Mixture Formulations and Its Activity Againsts Crocidolomia Pavonana
    Storage Temperature of Botanical Insecticide Mixture Formulations and Its Activity Againsts Crocidolomia pavonana (F.) (Lepidoptera: Crambidae) Eka Candra Lina *), Nia Yulianti, Gustria Ernis, Arneti and Novri Nelly Department of Plant Protection, Faculty of Agriculture, Andalas University, Kampus Unand Limau Manis, Padang, Indonesia *) Corresponding author E-mail: [email protected], [email protected] Received: February 16, 2018 /Accepted: August 10, 2018 ABSTRACT The purpose of this research was to evaluate the safety of mixture formulations of Tephrosia vogelii and Piper aduncum at various storage temperatures and their insecticidal activity against C. pavonana larvae. Formulations were made from T. vogelii and P. aduncum (1:5) in emulsifiable concentrate (EC) and wettable powder (WP) form. Both formulations have strong insecticidal activity against C. pavonana. This research used a randomized completed design in different temperature treatments. Insecticidal activity of formulations after storage was tested against C. pavonana. The treatments were done using deep leaf method in 5 concentrations and 5 replications. The results showed that LC95 value of EC formulation after storage at condition: below 4°C, room temperature, and 40°C were 0.19%, 0.34% and 0.21% respectively. Based on LC95 value of EC formulation from each treatment, indicated that EC formulation after storage could hold insecticidal activity as good as insecticidal activity before storage due to LC95 value after storage relatively lower than LC95 value before storage (0.35%). In the contrary, WP formulation activity was significantly decreased in all treatments compared to WP formulation activity before storage based on LC95 value. Keywords: botanical insecticide; Crocidolomia pavonana; formulation; storage; temperature INTRODUCTION Storing insecticide including botanical insecticide formulations becomes critical control points in pesticide distribution and pesticide storage.
    [Show full text]
  • Efficacy of Jatropha Curcas L. Seed Extract on Mortality of Cabbage Crop Larvae (Crocidolomia Binotalis Zeller: Lepidoptera: Pyralidae)
    DOI: 10.46909/cerce-2020-026 Original Article Available online: www.uaiasi.ro/CERCET_AGROMOLD/ Print ISSN 0379-5837; Electronic ISSN 2067-1865 Cercetări Agronomice în Moldova Vol. LIII , No. 3 (183) / 2020: 307-313 EFFICACY OF JATROPHA CURCAS L. SEED EXTRACT ON MORTALITY OF CABBAGE CROP LARVAE (CROCIDOLOMIA BINOTALIS ZELLER: LEPIDOPTERA: PYRALIDAE) E.L. BAIDENG1,*, J.J. PELEALU1, B.H. ASSA2, H.A.W. LENGKEY3 *E-mail: [email protected] Received: July 10, 2020. Revised: July 24, 2020. Accepted: Aug. 10, 2020. Published online: Oct. 16, 2020 ABSTRACT. Along with the awareness stages, namely 1) the extraction stage of to obtain quality plant products, the use of Jatropha curcas L. seeds and the breeding plant-based insecticides is increasingly of the Crocidolomia binotalis test larvae being used. One of the plants used as a and 2) the testing stage with seven plant-based insecticide is Jatropha curcas concentration levels of Jatropha curcas L. L. (Jarak pagar) because it contains toxic extract as a plant-based insecticide. ingredients to kill cabbage caterpillar ANOVA test showed that the treatments pests (Crocidolomia binotalis). This study of Jatropha curcas L. extract gave the aims to determine the effectiveness of death effect on larvae [F-count > F-table Jatropha curcas L. on the mortality of (116.8 > 2.37)]. Dead larvae change color Crocidolomia binotalis cabbage to black and their body shape will curve. caterpillars. The research method used The fastest larval death occurs 24 HAA, was a Completely Randomized Design with a concentration of 40,000 ppm, which (CRD) 7 × 3, consisting of seven is 50%.
    [Show full text]
  • Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring Within the Kahului Airport Environs, Maui, Hawai‘I: Synthesis Report
    Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Prepared by Francis G. Howarth, David J. Preston, and Richard Pyle Honolulu, Hawaii January 2012 Surveying for Terrestrial Arthropods (Insects and Relatives) Occurring within the Kahului Airport Environs, Maui, Hawai‘i: Synthesis Report Francis G. Howarth, David J. Preston, and Richard Pyle Hawaii Biological Survey Bishop Museum Honolulu, Hawai‘i 96817 USA Prepared for EKNA Services Inc. 615 Pi‘ikoi Street, Suite 300 Honolulu, Hawai‘i 96814 and State of Hawaii, Department of Transportation, Airports Division Bishop Museum Technical Report 58 Honolulu, Hawaii January 2012 Bishop Museum Press 1525 Bernice Street Honolulu, Hawai‘i Copyright 2012 Bishop Museum All Rights Reserved Printed in the United States of America ISSN 1085-455X Contribution No. 2012 001 to the Hawaii Biological Survey COVER Adult male Hawaiian long-horned wood-borer, Plagithmysus kahului, on its host plant Chenopodium oahuense. This species is endemic to lowland Maui and was discovered during the arthropod surveys. Photograph by Forest and Kim Starr, Makawao, Maui. Used with permission. Hawaii Biological Report on Monitoring Arthropods within Kahului Airport Environs, Synthesis TABLE OF CONTENTS Table of Contents …………….......................................................……………...........……………..…..….i. Executive Summary …….....................................................…………………...........……………..…..….1 Introduction ..................................................................………………………...........……………..…..….4
    [Show full text]
  • Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales
    1 Citation: Badenes-Pérez, F. R. 2019. Trap Crops and Insectary Plants in the Order 2 Brassicales. Annals of the Entomological Society of America 112: 318-329. 3 https://doi.org/10.1093/aesa/say043 4 5 6 Trap Crops and Insectary Plants in the Order Brassicales 7 Francisco Rubén Badenes-Perez 8 Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, 28006 9 Madrid, Spain 10 E-mail: [email protected] 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 ABSTRACT This paper reviews the most important cases of trap crops and insectary 26 plants in the order Brassicales. Most trap crops in the order Brassicales target insects that 27 are specialist in plants belonging to this order, such as the diamondback moth, Plutella 28 xylostella L. (Lepidoptera: Plutellidae), the pollen beetle, Meligethes aeneus Fabricius 29 (Coleoptera: Nitidulidae), and flea beetles inthe genera Phyllotreta Psylliodes 30 (Coleoptera: Chrysomelidae). In most cases, the mode of action of these trap crops is the 31 preferential attraction of the insect pest for the trap crop located next to the main crop. 32 With one exception, these trap crops in the order Brassicales have been used with 33 brassicaceous crops. Insectary plants in the order Brassicales attract a wide variety of 34 natural enemies, but most studies focus on their effect on aphidofagous hoverflies and 35 parasitoids. The parasitoids benefiting from insectary plants in the order Brassicales 36 target insects pests ranging from specialists, such as P. xylostella, to highly polyfagous, 37 such as the stink bugs Euschistus conspersus Uhler and Thyanta pallidovirens Stål 38 (Hemiptera: Pentatomidae).
    [Show full text]
  • Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods
    CORE Metadata, citation and similar papers at core.ac.uk Provided by Greenwich Academic Literature Archive ORIGINAL RESEARCH published: 28 September 2018 doi: 10.3389/fpls.2018.01425 Pesticidal Plant Extracts Improve Yield and Reduce Insect Pests on Legume Crops Without Harming Beneficial Arthropods Yolice Tembo 1, Angela G. Mkindi 2, Prisila A. Mkenda 2, Nelson Mpumi 2, Regina Mwanauta 2, Philip C. Stevenson 3,4, Patrick A. Ndakidemi 2 and Steven R. Belmain 4* 1 Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi, 2 Nelson Mandela African Institution of Science and Technology, Arusha, Tanzania, 3 Jodrell Laboratory, Royal Botanic Gardens, Richmond, United Kingdom, 4 Natural Resources Institute, University of Greenwich, Chatham Maritime, Kent, United Kingdom In the fight against arthropod crop pests using plant secondary metabolites, most research has focussed on the identification of bioactive molecules. Several hundred candidate plant species and compounds are now known to have pesticidal properties against a range of arthropod pest species. Despite this growing body of research, Edited by: few natural products are commercialized for pest management whilst on-farm use of Giovanni Benelli, existing botanically-based pesticides remains a small, but growing, component of crop Scuola Sant’Anna di Studi Avanzati, Italy protection practice. Uptake of natural pesticides is at least partly constrained by limited Reviewed by: data on the trade-offs of their use on farm. The research presented here assessed Marcel Amichot, the potential trade-offs of using pesticidal plant extracts on legume crop yields and UMR7254 Institut Sophia Agrobiotech the regulating ecosystem services of natural pests enemies. The application of six (ISA), France Carlos L.
    [Show full text]