Forward Implied Volatility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Arithmetic Variance Swaps
Arithmetic variance swaps Article (Accepted Version) Leontsinis, Stamatis and Alexander, Carol (2017) Arithmetic variance swaps. Quantitative Finance, 17 (4). pp. 551-569. ISSN 1469-7688 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/62303/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk Arithmetic Variance Swaps Stamatis Leontsinisa and Carol Alexanderb a RwC Asset Management, London b School of Business, Management and Economics, University of Sussex To appear in Quantitative Finance, 2016 (in press) Abstract Biases in standard variance swap rates can induce substantial deviations below market rates. -
The Forward Smile in Stochastic Local Volatility Models
The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S. -
On Volatility Swaps for Stock Market Forecast: Application Example CAC 40 French Index
Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2014, Article ID 854578, 6 pages http://dx.doi.org/10.1155/2014/854578 Research Article On Volatility Swaps for Stock Market Forecast: Application Example CAC 40 French Index Halim Zeghdoudi,1,2 Abdellah Lallouche,3 and Mohamed Riad Remita1 1 LaPSLaboratory,Badji-MokhtarUniversity,BP12,23000Annaba,Algeria 2 Department of Computing Mathematics and Physics, Waterford Institute of Technology, Waterford, Ireland 3 Universite´ 20 Aout, 1955 Skikda, Algeria Correspondence should be addressed to Halim Zeghdoudi; [email protected] Received 3 August 2014; Revised 21 September 2014; Accepted 29 September 2014; Published 9 November 2014 Academic Editor: Chin-Shang Li Copyright © 2014 Halim Zeghdoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper focuses on the pricing of variance and volatility swaps under Heston model (1993). To this end, we apply this modelto the empirical financial data: CAC 40 French Index. More precisely, we make an application example for stock market forecast: CAC 40 French Index to price swap on the volatility using GARCH(1,1) model. 1. Introduction a price index. The underlying is usually a foreign exchange rate (very liquid market) but could be as well a single name Black and Scholes’ model [1]isoneofthemostsignificant equity or index. However, the variance swap is reliable in models discovered in finance in XXe century for valuing the index market because it can be replicated with a linear liquid European style vanilla option. -
Further Developments in Volatility Derivatives Modeling
Introduction Prior work Parameter estimation Model vs market prices Conclusion Further Developments in Volatility Derivatives Modeling Jim Gatheral Global Derivatives Trading & Risk Management, Paris May 21, 2008 Introduction Prior work Parameter estimation Model vs market prices Conclusion Disclaimer The opinions expressed in this presentation are those of the author alone, and do not necessarily reflect the views of of Merrill Lynch, its subsidiaries or affiliates. Introduction Prior work Parameter estimation Model vs market prices Conclusion Motivation and context We would like to have a model that prices consistently 1 options on SPX 2 options on VIX 3 options on realized variance We believe there may be such a model because we can identify relationships between options on SPX, VIX and variance. For example: 1 Puts on SPX and calls on VIX both protect against market dislocations. 2 Bruno Dupire constructs an upper bound on the price of options on variance from the prices of index options. 3 The underlying of VIX options is the square-root of a forward-starting variance swap. The aim is not necessarily to find new relationships; the aim is to devise a tool for efficient determination of relative value. Introduction Prior work Parameter estimation Model vs market prices Conclusion Outline 1 Review of prior work Double Lognormal vs Double Heston 2 Parameter estimation Time series analysis of variance curves Time series analysis of SABR fits to SPX options 3 Model vs market prices Numerical techniques Pricing of options on VIX and SPX Options on realized variance 4 Conclusion Is the model right? Introduction Prior work Parameter estimation Model vs market prices Conclusion Review of prior work We found that double-mean reverting lognormal dynamics for SPX instantaneous variance gave reasonable fits to both SPX and VIX option volatility smiles. -
New Frontiers in Practical Risk Management
New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark. -
Credit Derivatives Handbook
08 February 2007 Fixed Income Research http://www.credit-suisse.com/researchandanalytics Credit Derivatives Handbook Credit Strategy Contributors Ira Jersey +1 212 325 4674 [email protected] Alex Makedon +1 212 538 8340 [email protected] David Lee +1 212 325 6693 [email protected] This is the second edition of our Credit Derivatives Handbook. With the continuous growth of the derivatives market and new participants entering daily, the Handbook has become one of our most requested publications. Our goal is to make this publication as useful and as user friendly as possible, with information to analyze instruments and unique situations arising from market action. Since we first published the Handbook, new innovations have been developed in the credit derivatives market that have gone hand in hand with its exponential growth. New information included in this edition includes CDS Orphaning, Cash Settlement of Single-Name CDS, Variance Swaps, and more. We have broken the information into several convenient sections entitled "Credit Default Swap Products and Evaluation”, “Credit Default Swaptions and Instruments with Optionality”, “Capital Structure Arbitrage”, and “Structure Products: Baskets and Index Tranches.” We hope this publication is useful for those with various levels of experience ranging from novices to long-time practitioners, and we welcome feedback on any topics of interest. FOR IMPORTANT DISCLOSURE INFORMATION relating to analyst certification, the Firm’s rating system, and potential conflicts -
Volatility As Investment - Crash Protection with Calendar Spreads of Variance Swaps
Journal of Applied Operational Research (2014) 6(4), 243–254 © Tadbir Operational Research Group Ltd. All rights reserved. www.tadbir.ca ISSN 1735-8523 (Print), ISSN 1927-0089 (Online) Volatility as investment - crash protection with calendar spreads of variance swaps Uwe Wystup 1,* and Qixiang Zhou 2 1 MathFinance AG, Frankfurt, Germany 2 Frankfurt School of Finance & Management, Germany Abstract. Nowadays, volatility is not only a risk measure but can be also considered an individual asset class. Variance swaps, one of the main investment vehicles, can obtain pure exposure on realized volatility. In normal market phases, implied volatility is often higher than the realized volatility will turn out to be. We present a volatility investment strategy that can benefit from both negative risk premium and correlation of variance swaps to the underlying stock index. The empirical evidence demonstrates a significant diversification effect during the financial crisis by adding this strategy to an existing portfolio consisting of 70% stocks and 30% bonds. The back-testing analysis includes the last ten years of history of the S&P500 and the EUROSTOXX50. Keywords: volatility; investment strategy; stock index; crash protection; variance swap * Received July 2014. Accepted November 2014 Introduction Volatility is an important variable of the financial market. The accurate measurement of volatility is important not only for investment but also as an integral part of risk management. Generally, there are two methods used to assess volatility: The first one entails the application of time series methods in order to make statistical conclusions based on historical data. Examples of this method are ARCH/GARCH models. -
Regulatory Circular RG16-044
Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value. -
Calibration Risk for Exotic Options
Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional. -
The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments
JOURNAL OF FINANCIAL AND QUANTITATIVE ANALYSIS Vol. 45, No. 5, Oct. 2010, pp. 1279–1310 COPYRIGHT 2010, MICHAEL G. FOSTER SCHOOL OF BUSINESS, UNIVERSITY OF WASHINGTON, SEATTLE, WA 98195 doi:10.1017/S0022109010000463 The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments Daniel Egloff, Markus Leippold, and Liuren Wu∗ Abstract This paper performs specification analysis on the term structure of variance swap rates on the S&P 500 index and studies the optimal investment decision on the variance swaps and the stock index. The analysis identifies 2 stochastic variance risk factors, which govern the short and long end of the variance swap term structure variation, respectively. The highly negative estimate for the market price of variance risk makes it optimal for an investor to take short positions in a short-term variance swap contract, long positions in a long-term variance swap contract, and short positions in the stock index. I. Introduction The financial market is becoming increasingly aware of the fact that the re- turn variance on stock indexes is stochastic (Engle (2004)) and the variance risk is heavily priced (Carr and Wu (2009)). Associated with this recognition is the development of a large number of variance-related derivative products. The most actively traded is the variance swap contract. The contract has 0 value at inception. At maturity, the long side of the variance swap contract receives the difference be- tween a standard measure of the realized variance and a fixed rate, called the vari- ance swap rate, determined at the inception of the contract. Traditional derivative contracts such as calls, puts, and straddles also have variance risk exposure, ∗Egloff, [email protected], QuantCatalyst, Hardturmstrasse 101, 8005 Zurich, Switzerland; Leippold, [email protected], University of Zurich, Swiss Banking Institute, Plattenstrasse 14, 8032 Zurich, Switzerland; and Wu, [email protected], Baruch College, Zicklin School of Business, One Bernard Baruch Way, Box B10-225, New York, NY 10010. -
The Price of Interest Rate Variance Risk and Optimal Investments in Interest Rate Derivatives
The price of interest rate variance risk and optimal investments in interest rate derivatives Anders B. Trolle Copenhagen Business School Abstract Recent research on unspanned stochastic variance raises the possibility that interest rate derivatives constitute an important component of optimal fixed income portfo- lios. In this paper, I estimate a flexible dynamic term structure model that allows for unspanned stochastic variance on an extensive data set of swaps and swaptions. I find that variance risk is predominantly unspanned by bonds, and that the price of risk on the unspanned variance factor is significantly larger in absolute value than the prices of risk on the term structure factors. Consequently, Sharpe ratios on variance sensitive derivatives are about three times larger than Sharpe ratios on bonds or short-term bond futures. These findings are corroborated by an analysis of the Treasury futures market, where the variance risk premium is estimated with a model independent approach. I then solve the dynamic portfolio choice problem for a long-term fixed income investor with and without access to interest rate derivatives and find substantial utility gains from participating in the derivatives market. JEL Classification: G11 Keywords: Portfolio choice, derivatives, stochastic variance, swaps, Treasury futures This version: December 2008 ——————————— I have benefitted from discussions with Giovanni Barone-Adesi, Michael Brennan, Wolfgang B¨uhler, Pierre Collin-Dufresne, David Lando, Francis Longstaff, Claus Munk, Carsten Sørensen and seminar participants at Copenhagen Business School. I am particularly grateful to Eduardo Schwartz for extensive comments. Some of the results in this paper were previously circulated under the title “Dynamic interest rate derivative strategies in the presence of unspanned stochastic volatility”. -
Variance Swap Payoffs, Risk Premia and Extreme Market Conditions
Variance swap payoffs, risk premia and extreme market conditions Jeroen V.K. Rombouts1, Lars Stentoft2 and Francesco Violante3 June 5, 2017 Abstract This paper estimates the Variance Risk Premium (VRP) directly from synthetic variance swap payoffs. Since variance swap payoffs are highly volatile, we extract the VRP by using signal extraction techniques based on a state-space representation of our model in combination with a simple economic constraint. Our approach, only requiring option implied volatilities and daily returns for the underlying, provides measurement error free estimates of the part of the VRP related to normal market conditions, and allows constructing variables indicating agents' expectations under extreme market conditions. The latter variables and the VRP generate different re- turn predictability on the major US indices. A factor model is proposed to extract a market VRP which turns out to be priced when considering Fama and French port- folios. Keywords: Variance risk premium; Variance swaps; Return predictability; Factor Model, Kalman filter, CAPM. JEL Classification: C12, C22, G12, G13 1ESSEC Business School, Av. B. Hirsch, Cergy Pontoise, France 95021. Phone: +33 1 3443 3049 - E-mail: [email protected] 2Department of Economics and Department of Statistical and Actuarial Sciences, University of Western Ontario, Social Science Centre, London, ON, Canada N6A 5C2, Phone: +1 519 661 2111 ext. 85311 - E-mail: [email protected] 3MEMOTEF - Sapienza Universit´adi Roma, Via del Castro Laurenziano 9, Roma, Italy 00161, and