Volatility Information Trading in the Option Market
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Implied Volatility Modeling
Implied Volatility Modeling Sarves Verma, Gunhan Mehmet Ertosun, Wei Wang, Benjamin Ambruster, Kay Giesecke I Introduction Although Black-Scholes formula is very popular among market practitioners, when applied to call and put options, it often reduces to a means of quoting options in terms of another parameter, the implied volatility. Further, the function σ BS TK ),(: ⎯⎯→ σ BS TK ),( t t ………………………………(1) is called the implied volatility surface. Two significant features of the surface is worth mentioning”: a) the non-flat profile of the surface which is often called the ‘smile’or the ‘skew’ suggests that the Black-Scholes formula is inefficient to price options b) the level of implied volatilities changes with time thus deforming it continuously. Since, the black- scholes model fails to model volatility, modeling implied volatility has become an active area of research. At present, volatility is modeled in primarily four different ways which are : a) The stochastic volatility model which assumes a stochastic nature of volatility [1]. The problem with this approach often lies in finding the market price of volatility risk which can’t be observed in the market. b) The deterministic volatility function (DVF) which assumes that volatility is a function of time alone and is completely deterministic [2,3]. This fails because as mentioned before the implied volatility surface changes with time continuously and is unpredictable at a given point of time. Ergo, the lattice model [2] & the Dupire approach [3] often fail[4] c) a factor based approach which assumes that implied volatility can be constructed by forming basis vectors. Further, one can use implied volatility as a mean reverting Ornstein-Ulhenbeck process for estimating implied volatility[5]. -
On Volatility Swaps for Stock Market Forecast: Application Example CAC 40 French Index
Hindawi Publishing Corporation Journal of Probability and Statistics Volume 2014, Article ID 854578, 6 pages http://dx.doi.org/10.1155/2014/854578 Research Article On Volatility Swaps for Stock Market Forecast: Application Example CAC 40 French Index Halim Zeghdoudi,1,2 Abdellah Lallouche,3 and Mohamed Riad Remita1 1 LaPSLaboratory,Badji-MokhtarUniversity,BP12,23000Annaba,Algeria 2 Department of Computing Mathematics and Physics, Waterford Institute of Technology, Waterford, Ireland 3 Universite´ 20 Aout, 1955 Skikda, Algeria Correspondence should be addressed to Halim Zeghdoudi; [email protected] Received 3 August 2014; Revised 21 September 2014; Accepted 29 September 2014; Published 9 November 2014 Academic Editor: Chin-Shang Li Copyright © 2014 Halim Zeghdoudi et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. This paper focuses on the pricing of variance and volatility swaps under Heston model (1993). To this end, we apply this modelto the empirical financial data: CAC 40 French Index. More precisely, we make an application example for stock market forecast: CAC 40 French Index to price swap on the volatility using GARCH(1,1) model. 1. Introduction a price index. The underlying is usually a foreign exchange rate (very liquid market) but could be as well a single name Black and Scholes’ model [1]isoneofthemostsignificant equity or index. However, the variance swap is reliable in models discovered in finance in XXe century for valuing the index market because it can be replicated with a linear liquid European style vanilla option. -
Managed Futures and Long Volatility by Anders Kulp, Daniel Djupsjöbacka, Martin Estlander, Er Capital Management Research
Disclaimer: This article appeared in the AIMA Journal (Feb 2005), which is published by The Alternative Investment Management Association Limited (AIMA). No quotation or reproduction is permitted without the express written permission of The Alternative Investment Management Association Limited (AIMA) and the author. The content of this article does not necessarily reflect the opinions of the AIMA Membership and AIMA does not accept responsibility for any statements herein. Managed Futures and Long Volatility By Anders Kulp, Daniel Djupsjöbacka, Martin Estlander, er Capital Management Research Introduction and background The buyer of an option straddle pays the implied volatility to get exposure to realized volatility during the lifetime of the option straddle. Fung and Hsieh (1997b) found that the return of trend following strategies show option like characteristics, because the returns tend to be large and positive during the best and worst performing months of the world equity markets. Fung and Hsieh used lookback straddles to replicate a trend following strategy. However, the standard way to obtain exposure to volatility is to buy an at-the-money straddle. Here, we will use standard option straddles with a dynamic updating methodology and flexible maturity rollover rules to match the characteristics of a trend follower. The lookback straddle captures only one trend during its maturity, but with an effective systematic updating method the simple option straddle captures more than one trend. It is generally accepted that when implementing an options strategy, it is crucial to minimize trading, because the liquidity in the options markets are far from perfect. Compared to the lookback straddle model, the trading frequency for the simple straddle model is lower. -
White Paper Volatility: Instruments and Strategies
White Paper Volatility: Instruments and Strategies Clemens H. Glaffig Panathea Capital Partners GmbH & Co. KG, Freiburg, Germany July 30, 2019 This paper is for informational purposes only and is not intended to constitute an offer, advice, or recommendation in any way. Panathea assumes no responsibility for the content or completeness of the information contained in this document. Table of Contents 0. Introduction ......................................................................................................................................... 1 1. Ihe VIX Index .................................................................................................................................... 2 1.1 General Comments and Performance ......................................................................................... 2 What Does it mean to have a VIX of 20% .......................................................................... 2 A nerdy side note ................................................................................................................. 2 1.2 The Calculation of the VIX Index ............................................................................................. 4 1.3 Mathematical formalism: How to derive the VIX valuation formula ...................................... 5 1.4 VIX Futures .............................................................................................................................. 6 The Pricing of VIX Futures ................................................................................................ -
Futures & Options on the VIX® Index
Futures & Options on the VIX® Index Turn Volatility to Your Advantage U.S. Futures and Options The Cboe Volatility Index® (VIX® Index) is a leading measure of market expectations of near-term volatility conveyed by S&P 500 Index® (SPX) option prices. Since its introduction in 1993, the VIX® Index has been considered by many to be the world’s premier barometer of investor sentiment and market volatility. To learn more, visit cboe.com/VIX. VIX Futures and Options Strategies VIX futures and options have unique characteristics and behave differently than other financial-based commodity or equity products. Understanding these traits and their implications is important. VIX options and futures enable investors to trade volatility independent of the direction or the level of stock prices. Whether an investor’s outlook on the market is bullish, bearish or somewhere in-between, VIX futures and options can provide the ability to diversify a portfolio as well as hedge, mitigate or capitalize on broad market volatility. Portfolio Hedging One of the biggest risks to an equity portfolio is a broad market decline. The VIX Index has had a historically strong inverse relationship with the S&P 500® Index. Consequently, a long exposure to volatility may offset an adverse impact of falling stock prices. Market participants should consider the time frame and characteristics associated with VIX futures and options to determine the utility of such a hedge. Risk Premium Yield Over long periods, index options have tended to price in slightly more uncertainty than the market ultimately realizes. Specifically, the expected volatility implied by SPX option prices tends to trade at a premium relative to subsequent realized volatility in the S&P 500 Index. -
Option Prices Under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗
Option Prices under Bayesian Learning: Implied Volatility Dynamics and Predictive Densities∗ Massimo Guidolin† Allan Timmermann University of Virginia University of California, San Diego JEL codes: G12, D83. Abstract This paper shows that many of the empirical biases of the Black and Scholes option pricing model can be explained by Bayesian learning effects. In the context of an equilibrium model where dividend news evolve on a binomial lattice with unknown but recursively updated probabilities we derive closed-form pricing formulas for European options. Learning is found to generate asymmetric skews in the implied volatility surface and systematic patterns in the term structure of option prices. Data on S&P 500 index option prices is used to back out the parameters of the underlying learning process and to predict the evolution in the cross-section of option prices. The proposed model leads to lower out-of- sample forecast errors and smaller hedging errors than a variety of alternative option pricing models, including Black-Scholes and a GARCH model. ∗We wish to thank four anonymous referees for their extensive and thoughtful comments that greatly improved the paper. We also thank Alexander David, Jos´e Campa, Bernard Dumas, Wake Epps, Stewart Hodges, Claudio Michelacci, Enrique Sentana and seminar participants at Bocconi University, CEMFI, University of Copenhagen, Econometric Society World Congress in Seattle, August 2000, the North American Summer meetings of the Econometric Society in College Park, June 2001, the European Finance Association meetings in Barcelona, August 2001, Federal Reserve Bank of St. Louis, INSEAD, McGill, UCSD, Universit´edeMontreal,andUniversity of Virginia for discussions and helpful comments. -
The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: the Case of WTI Crude Oil Market
energies Article The Impact of Implied Volatility Fluctuations on Vertical Spread Option Strategies: The Case of WTI Crude Oil Market Bartosz Łamasz * and Natalia Iwaszczuk Faculty of Management, AGH University of Science and Technology, 30-059 Cracow, Poland; [email protected] * Correspondence: [email protected]; Tel.: +48-696-668-417 Received: 31 July 2020; Accepted: 7 October 2020; Published: 13 October 2020 Abstract: This paper aims to analyze the impact of implied volatility on the costs, break-even points (BEPs), and the final results of the vertical spread option strategies (vertical spreads). We considered two main groups of vertical spreads: with limited and unlimited profits. The strategy with limited profits was divided into net credit spread and net debit spread. The analysis takes into account West Texas Intermediate (WTI) crude oil options listed on New York Mercantile Exchange (NYMEX) from 17 November 2008 to 15 April 2020. Our findings suggest that the unlimited vertical spreads were executed with profits less frequently than the limited vertical spreads in each of the considered categories of implied volatility. Nonetheless, the advantage of unlimited strategies was observed for substantial oil price movements (above 10%) when the rates of return on these strategies were higher than for limited strategies. With small price movements (lower than 5%), the net credit spread strategies were by far the best choice and generated profits in the widest price ranges in each category of implied volatility. This study bridges the gap between option strategies trading, implied volatility and WTI crude oil market. The obtained results may be a source of information in hedging against oil price fluctuations. -
VIX Futures As a Market Timing Indicator
Journal of Risk and Financial Management Article VIX Futures as a Market Timing Indicator Athanasios P. Fassas 1 and Nikolas Hourvouliades 2,* 1 Department of Accounting and Finance, University of Thessaly, Larissa 41110, Greece 2 Department of Business Studies, American College of Thessaloniki, Thessaloniki 55535, Greece * Correspondence: [email protected]; Tel.: +30-2310-398385 Received: 10 June 2019; Accepted: 28 June 2019; Published: 1 July 2019 Abstract: Our work relates to the literature supporting that the VIX also mirrors investor sentiment and, thus, contains useful information regarding future S&P500 returns. The objective of this empirical analysis is to verify if the shape of the volatility futures term structure has signaling effects regarding future equity price movements, as several investors believe. Our findings generally support the hypothesis that the VIX term structure can be employed as a contrarian market timing indicator. The empirical analysis of this study has important practical implications for financial market practitioners, as it shows that they can use the VIX futures term structure not only as a proxy of market expectations on forward volatility, but also as a stock market timing tool. Keywords: VIX futures; volatility term structure; future equity returns; S&P500 1. Introduction A fundamental principle of finance is the positive expected return-risk trade-off. In this paper, we examine the dynamic dependencies between future equity returns and the term structure of VIX futures, i.e., the curve that connects daily settlement prices of individual VIX futures contracts to maturities across time. This study extends the VIX futures-related literature by testing the market timing ability of the VIX futures term structure regarding future stock movements. -
WACC and Vol (Valuation for Companies with Real Options)
Counterpoint Global Insights WACC and Vol Valuation for Companies with Real Options CONSILIENT OBSERVER | December 21, 2020 Introduction AUTHORS Twenty-twenty has been extraordinary for a lot of reasons. The global Michael J. Mauboussin pandemic created a major health challenge and an unprecedented [email protected] economic shock, there was plenty of political uncertainty, and the Dan Callahan, CFA stock market’s results were surprising to many.1 The year was also [email protected] fascinating for investors concerned with corporate valuation. Theory prescribes that the value of a company is the present value of future free cash flow. The task of valuing a business comes down to an assessment of cash flows and the opportunity cost of capital. The stock prices of some companies today imply expectations for future cash flows in excess of what seems reasonably achievable. Automatically assuming these companies are mispriced may be a mistake because certain businesses also have real option value. The year 2020 is noteworthy because the weighted average cost of capital (WACC), which is applied to visible parts of the business, is well below its historical average, and volatility (vol), which drives option value, is well above its historical average. Businesses that have real option value benefit from a lower discount rate on their current operations and from the higher volatility of the options available to them. In this report, we define real options, discuss what kinds of businesses are likely to have them, and review the valuation implication of a low cost of capital and high volatility. We finish with a method to incorporate real options analysis into traditional valuation. -
Intraday Volatility Surface Calibration
INTRADAY VOLATILITY SURFACE CALIBRATION Master Thesis Tobias Blomé & Adam Törnqvist Master thesis, 30 credits Department of Mathematics and Mathematical Statistics Spring Term 2020 Intraday volatility surface calibration Adam T¨ornqvist,[email protected] Tobias Blom´e,[email protected] c Copyright by Adam T¨ornqvist and Tobias Blom´e,2020 Supervisors: Jonas Nyl´en Nasdaq Oskar Janson Nasdaq Xijia Liu Department of Mathematics and Mathematical Statistics Examiner: Natalya Pya Arnqvist Department of Mathematics and Mathematical Statistics Master of Science Thesis in Industrial Engineering and Management, 30 ECTS Department of Mathematics and Mathematical Statistics Ume˚aUniversity SE-901 87 Ume˚a,Sweden i Abstract On the financial markets, investors search to achieve their economical goals while simultaneously being exposed to minimal risk. Volatility surfaces are used for estimating options' implied volatilities and corresponding option prices, which are used for various risk calculations. Currently, volatility surfaces are constructed based on yesterday's market in- formation and are used for estimating options' implied volatilities today. Such a construction gets redundant very fast during periods of high volatility, which leads to inaccurate risk calculations. With an aim to reduce volatility surfaces' estimation errors, this thesis explores the possibilities of calibrating volatility surfaces intraday using incomplete mar- ket information. Through statistical analysis of the volatility surfaces' historical movements, characteristics are identified showing sections with resembling mo- tion patterns. These insights are used to adjust the volatility surfaces intraday. The results of this thesis show that calibrating the volatility surfaces intraday can reduce the estimation errors significantly during periods of both high and low volatility. -
Options Order Flow, Volatility Demand and Variance Risk Premium
Options Order Flow, Volatility Demand and Variance Risk Premium Prasenjit Chakrabartia and K Kiran Kumarb a Doctoral Student, Finance and Accounting Area, Indian Institute of Management Indore, India, 453556 b Associate Professor, Finance and Accounting Area, Indian Institute of Management Indore, India,453556 Abstract: This study investigates whether volatility demand of options impacts the magnitude of variance risk premium change. It further investigates whether the sign of variance risk premium change conveys information about realized volatility innovations. We calculate volatility demand of options by vega-weighted order imbalance. Further, we classify volatility demand of options into different moneyness categories. Analysis shows that volatility demand of options significantly impacts the variance risk premium change. Among the moneyness categories, we find that volatility demand of the most expensive options significantly impacts variance risk premium change. Further, we find positive (negative) sign of variance risk premium change conveys information about positive (negative) innovation in realized volatility. Keywords: Variance risk premium; Volatility demand; Model free implied volatility; Realized variance; Options contract JEL Classifications: G12; G13; G14 ----------------- aCorresponding author. E-mail: [email protected], mobile number: +91 7869911060, Finance and Accounting Area, Indian Institute of Management Indore, India, 453556 0 1. Introduction It is consistently observed that systematic selling of volatility in options market results in economic gains. Options strategies that engage in selling volatility practice are gaining popularity among practitioners. Such strategies prompt practitioners to diversify investment opportunities distinct from the traditional asset classes. Theories of finance suggest that economic gains by selling volatility can be attributed to variance risk premium. Variance risk premium is defined as the difference between risk neutral and physical expectation of variance. -
Hartford Financial Services Annual Meeting Call
HARTFORD FINANCIAL SERVICES ANNUAL MEETING MARCH 29, 2005 CALL PARTICIPANTS • Kimberly Johnson The Hartford Financial Services Group Head of Investor Relations • Lizabeth Zlatkus The Hartford Financial Services Group EVP & CFO, Hartford Life • Daniel Guilbert The Hartford Financial Services Group AVP, Risk Management/Hedging & Hartford Life • David Braun The Hartford Financial Services Group SVP & Chief Risk Officer Hartford Investment Management Company • Ernie McNeill The Hartford Financial Services Group VP and CAO, Hartford Life • Jim Trimble The Hartford Financial Services Group VP and Chief Actuary, Hartford Life • Vic Severino The Hartford Financial Services Group SVP and CIO, Hartford Life • Vanessa Wilson Deutsche Bank Analyst • Jeff Shuman KBW Analyst • Jason Booker Analyst • Steven Gavios Genus Associates Analyst • Ken Crawford Citigroup Asset Management Analyst • Eric Burke Lehman Brothers Analyst PRESENTATION Kimberly Johnson: We'll get our session started today. My name is Kim Johnson, and I head Investor Relations at The Hartford. And on behalf of the Life Company management team and our Income management team, I want to welcome you here to our half-day session focused on hedging and risk management. Last December 2003, we had a Life Company Investor Day. And at that point in time, we discussed, in fairly good detail, the approach that we're using for our hedging programs. And this morning, you'll get a chance to understand how we've evolved from that point in time, what's changed, what we've learned, and how we're doing the business today. Before we get into that agenda, I've got a couple of things. First off, I'd ask that your cell phone ringers off.