Analytical Finance Volume I

Total Page:16

File Type:pdf, Size:1020Kb

Analytical Finance Volume I The Mathematics of Equity Derivatives, Markets, Risk and Valuation ANALYTICAL FINANCE VOLUME I JAN R. M. RÖMAN Analytical Finance: Volume I Jan R. M. Röman Analytical Finance: Volume I The Mathematics of Equity Derivatives, Markets, Risk and Valuation Jan R. M. Röman Västerås, Sweden ISBN 978-3-319-34026-5 ISBN 978-3-319-34027-2 (eBook) DOI 10.1007/978-3-319-34027-2 Library of Congress Control Number: 2016956452 © The Editor(s) (if applicable) and The Author(s) 2017 This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, express or implied, with respect to the material contained herein or for any errors or omissions that may have been made. Cover image © David Tipling Photo Library / Alamy Printed on acid-free paper This Palgrave Macmillan imprint is published by Springer Nature The registered company is Springer International Publishing AG The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland To my soulmate, supporter and love – Jing Fang Preface This book is based upon lecture notes, used and developed for the course Analytical Finance I at Mälardalen University in Sweden. The aim is to cover the most essential elements of valuing derivatives on equity markets. This will also include the maths needed to understand the theory behind the pricing of the market instruments, that is, probability theory and stochastic processes. We will include pricing with time-discrete models and models in continuous time. First, in Chap. 1 and 2 we give a short introduction to trading, risk and arbitrage-free pricing, which is the platform for the rest of the book. Then a number of different binomial models are discussed. Binomial models are impor- tant, not only to understand arbitrage and martingales, but also they are widely used to calculate the price and the Greeks for many types of derivative. Binomial models are used in trading software to handle and value several kinds of derivative, especially Bermudan and American type options. We also discuss how to increase accuracy when using binomial models. We continue with an introduction to numerical methods to solve partial differential equations (PDEs) and Monte Carlo simulations. In Chap. 3, an introduction to probability theory and stochastic integration is given. Thereafter we are ready to study continuous finance and partial differential equations, which is used to model many financial derivatives. We focus on the Black–Scholes equation in particular. In the continuous time model, there are no solutions to American options, since they can be exercised during the entire lifetime of the contracts. Therefore we have no well-defined boundary condition. Since most exchange-traded options with stocks as vii viii Preface underlying are of American type, we still need to use descrete models, such as the binomial model. We will also discuss a number of generalizations relating to Black–Scholes, such as stochastic volatility and time-dependent parameters. We also discuss a number of analytical approximations for American options. A short introduction to Poisson processes is also given. Then we study diffusion processes in general, martingale representation and the Girsanov theorem. Before finishing off with a general guide to pricing via Black–Scholes we also give an introduction to exotic options such as weather derivatives and volatility models. As we will see, many kinds of financial instrument can be valued via a discounted expected payoff of a contingent claim in the future. We will denote this expectation E[X(T)] where X(T) is the so-called contingent claim at time T. This future value must then be discounted with a risk-free interest rate, r,to give the present value of the claim. If we use continuous compounding we can write the present value of the contingent claim as r T t XtðÞ ¼eÀ ðÞÀ EX½ðÞ T : In the equation above, T is the maturity time and t the present time. Example: If you buy a call option on an underlying (stock) with maturity T and strike price K, you will have the right, but not the obligation, to buy the stock at time T, to the price K.IfS(t) represents the stock price at time t, the contingent claim can be expressed as X(T) ¼ max{S(T) – K, 0}. This means that the present value is given by r T t r T t XtðÞ ¼eÀ ðÞÀ EX½¼ðÞ T eÀ ðÞÀ E½ maxfg SðÞÀ T K,0 : The max function indicates a price of zero if K S(T). With this condition you can buy the underlying stock at a lower (same) price on the market, so the option is worthless. By solving this expectation value we will see that this can be given (in continuous time) as the Black–Scholes–Merton formula. But generally we have a solution as : ÀrðÞTÀt : XtðÞ ¼SðÞ0 Q1ðÞÀSTðÞ> K e K Q2ðÞSTðÞ> K ; > > where Q1(S(T) K) and Q2(S(T) K) make up the risk neutral probability for the underlying price to reach the strike price K in different “reference systems”. This can be simplified to the Black–Scholes–Merton formula as Preface ix : ÀrðÞTÀt : XtðÞ ¼SðÞ0 NdðÞÀ1 e K NdðÞ2 : Here d1 and d2 are given (derived) variables. N(x) is the standard normal distribution with mean 0 and variance 1, so N(d2) represent the probability for the stock to reach the strike price K. The variables d1 and d2 will depend on the initial stock price, the strike price, interest rate, maturity time and volatility. The volatility is a measure of how much the stock price may vary in a specific period in time. Normally we use 252 days, since this is an approximation of the number of trading days in a year. Also remark that by buying a call option (i.e., going long in the option contract), as in the example above, we do not take any risk. The reason is that we cannot lose more money than what we invested. This is because we have the right, but not the obligation, to fulfil the contract. The seller, on the other hand, takes the risk, since he/she has to sell the underlying stock at price K. So if he/she doesn’t own the underlying stock he/she might have to buy the stock at a very high price and then sell it at a much lower price, the option strike price K. Therefore, a seller of a call option, who have the obligation to sell the underlying stock to the holder, takes a risky position if the stock price becomes higher than the option strike price. Acknowledgements I would like to thank all my students for their comments and questions during my lectures. Special thanks go to Mai Xin who asked me to translate my notes into English. I would also like to thank Professor Dmitrii Silvestrov, who encouraged me to teach Analytical Finance, and Professor Anatoly Malyarenko for his assistance and advice. xi Contents 1 Trading Financial Instruments 1 1.1 Clearing and Settlement 1 1.2 About Risk 7 1.3 Credit and Counterparty Risk 10 1.4 Settlement Risk 12 1.5 Market Risk 12 1.6 Model Risk 13 2 Time-Discrete Models 21 2.1 Pricing via Arbitrage 21 2.2 Martingales 23 2.3 The Central Limit Theorem 25 2.4 A Simple Random Walk 27 2.5 The Binomial Model 29 2.6 Modern Pricing Theory Based on Risk-Neutral Valuation 38 2.7 More on Binomial Models 43 2.8 Finite Difference Methods 65 2.9 Value-at-Risk (VaR) 78 3 Introduction to Probability Theory 91 3.1 Introduction 91 3.2 A Binomial Model 91 3.3 Finite Probability Spaces 93 3.4 Properties of Normal and Log-Normal Distributions 121 xiii xiv Contents 3.5 The Itô Lemma 125 3.6 Stochastic Integration 133 4 Continuous Time Models 145 4.1 Classifications of Partial Differential Equations 145 4.2 Parabolic PDEs 146 4.3 The Black–Scholes–Merton Model 154 4.4 Volatility 177 4.5 Parity Relations 187 4.6 A Practical Guide to Pricing 189 4.7 Currency Options and the Garman–Kohlhagen Model 197 4.8 Analytical Pricing Formulas for American Options 235 4.9 Poisson Processes and Jump Diffusion 240 5 Black–Scholes – Diffusion Models 245 5.1 Martingale Representation 245 5.2 Girsanov Transformation 246 5.3 Securities Paying Dividends 273 5.4 Hedging 284 6 Exotic Options 289 6.1 Contract for Difference: CFD 290 6.2 Binary Options/Digital Options 292 6.3 Barrier Options: Knock-out and Knock-in Options 298 6.4 Lookback Options 311 6.5 Asian Options 312 6.6 Chooser Options 316 6.7 Forward Options 318 6.8 Compound Options: Options on Options 324 6.9 Multi-asset Options 326 6.10 Basket Options 328 6.11 Correlation Options 332 6.12 Exchange Options 332 6.13 Currency-linked Options 333 6.14 Pay-later Options 335 6.15 Extensible Options 336 6.16 Quantos 337 6.17 Structured Products 340 Contents xv 6.18 Summary of Exotic Instruments 345 6.19 Something About Weather Derivatives 346 7 Pricing Using Deflators 351 7.1 Introduction to Deflators 351 8 Strategies with Options 365 8.1 Introduction 365 8.2 Strategies 375 8.3 A Decreasing
Recommended publications
  • Tracking and Trading Volatility 155
    ffirs.qxd 9/12/06 2:37 PM Page i The Index Trading Course Workbook www.rasabourse.com ffirs.qxd 9/12/06 2:37 PM Page ii Founded in 1807, John Wiley & Sons is the oldest independent publishing company in the United States. With offices in North America, Europe, Aus- tralia, and Asia, Wiley is globally committed to developing and marketing print and electronic products and services for our customers’ professional and personal knowledge and understanding. The Wiley Trading series features books by traders who have survived the market’s ever changing temperament and have prospered—some by reinventing systems, others by getting back to basics. Whether a novice trader, professional, or somewhere in-between, these books will provide the advice and strategies needed to prosper today and well into the future. For a list of available titles, visit our web site at www.WileyFinance.com. www.rasabourse.com ffirs.qxd 9/12/06 2:37 PM Page iii The Index Trading Course Workbook Step-by-Step Exercises and Tests to Help You Master The Index Trading Course GEORGE A. FONTANILLS TOM GENTILE John Wiley & Sons, Inc. www.rasabourse.com ffirs.qxd 9/12/06 2:37 PM Page iv Copyright © 2006 by George A. Fontanills, Tom Gentile, and Richard Cawood. All rights reserved. Published by John Wiley & Sons, Inc., Hoboken, New Jersey. Published simultaneously in Canada. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 646-8600, or on the web at www.copyright.com.
    [Show full text]
  • Are Defensive Stocks Expensive? a Closer Look at Value Spreads
    Are Defensive Stocks Expensive? A Closer Look at Value Spreads Antti Ilmanen, Ph.D. November 2015 Principal For several years, many investors have been concerned about the apparent rich valuation of Lars N. Nielsen defensive stocks. We analyze the prices of these Principal stocks using value spreads and find that they are not particularly expensive today. Swati Chandra, CFA Vice President Moreover, valuations may have limited efficacy in predicting strategy returns. This piece lends insight into possible reasons by focusing on the contemporaneous relation (i.e., how changes in value spreads are related to returns over the same period). We highlight a puzzling case where a defensive long/short strategy performed well during a recent two- year period when its value spread normalized from abnormally rich levels. For most asset classes, cheapening valuations coincide with poor performance. However, this relationship turns out to be weaker for long/short factor portfolios where several mechanisms can loosen the presumed strong link between value spread changes and strategy returns. Such wedges include changing fundamentals, evolving positions, carry and beta mismatches. Overall, investors should be cognizant of the tenuous link between value spreads and returns. We thank Gregor Andrade, Cliff Asness, Jordan Brooks, Andrea Frazzini, Jacques Friedman, Jeremy Getson, Ronen Israel, Sarah Jiang, David Kabiller, Michael Katz, AQR Capital Management, LLC Hoon Kim, John Liew, Thomas Maloney, Lasse Pedersen, Lukasz Pomorski, Scott Two Greenwich Plaza Richardson, Rodney Sullivan, Ashwin Thapar and David Zhang for helpful discussions Greenwich, CT 06830 and comments. p: +1.203.742.3600 f: +1.203.742.3100 w: aqr.com Are Defensive Stocks Expensive? A Closer Look at Value Spreads 1 Introduction puzzling result — buying a rich investment, seeing it cheapen, and yet making money — in Are defensive stocks expensive? Yes, mildly, more detail below.
    [Show full text]
  • Evidence from SME Bond Markets
    Temi di discussione (Working Papers) Asymmetric information in corporate lending: evidence from SME bond markets by Alessandra Iannamorelli, Stefano Nobili, Antonio Scalia and Luana Zaccaria September 2020 September Number 1292 Temi di discussione (Working Papers) Asymmetric information in corporate lending: evidence from SME bond markets by Alessandra Iannamorelli, Stefano Nobili, Antonio Scalia and Luana Zaccaria Number 1292 - September 2020 The papers published in the Temi di discussione series describe preliminary results and are made available to the public to encourage discussion and elicit comments. The views expressed in the articles are those of the authors and do not involve the responsibility of the Bank. Editorial Board: Federico Cingano, Marianna Riggi, Monica Andini, Audinga Baltrunaite, Marco Bottone, Davide Delle Monache, Sara Formai, Francesco Franceschi, Salvatore Lo Bello, Juho Taneli Makinen, Luca Metelli, Mario Pietrunti, Marco Savegnago. Editorial Assistants: Alessandra Giammarco, Roberto Marano. ISSN 1594-7939 (print) ISSN 2281-3950 (online) Printed by the Printing and Publishing Division of the Bank of Italy ASYMMETRIC INFORMATION IN CORPORATE LENDING: EVIDENCE FROM SME BOND MARKETS by Alessandra Iannamorelli†, Stefano Nobili†, Antonio Scalia† and Luana Zaccaria‡ Abstract Using a comprehensive dataset of Italian SMEs, we find that differences between private and public information on creditworthiness affect firms’ decisions to issue debt securities. Surprisingly, our evidence supports positive (rather than adverse) selection. Holding public information constant, firms with better private fundamentals are more likely to access bond markets. Additionally, credit conditions improve for issuers following the bond placement, compared with a matched sample of non-issuers. These results are consistent with a model where banks offer more flexibility than markets during financial distress and firms may use market lending to signal credit quality to outside stakeholders.
    [Show full text]
  • A Practitioner's Guide to Structuring Listed Equity Derivative Securities
    21 A Practitioner’s Guide to Structuring Listed Equity Derivative Securities JOHN C. BRADDOCK, MBA Executive Director–Investments CIBC Oppenheimer A Division of CIBC World Markets Corp., New York BENJAMIN D. KRAUSE, LLB Senior Vice President Capital Markets Division Chicago Board Options Exchange, New York Office INTRODUCTION Since the mid-1980s, “financial engineers” have created a wide array of instru- ments for use by professional investors in their search for higher returns and lower risks. Institutional investors are typically the most voracious consumers of structured derivative financial products, however, retail investors are increasingly availing themselves of such products through public, exchange- listed offerings. Design and engineering lie at the heart of the market for equity derivative securities. Through the use of computerized pricing and val- uation technology and instantaneous worldwide communications, today’s financial engineers are able to create new and varied instruments that address day-to-day client needs. This in turn has encouraged the development of new financial products that have broad investor appeal, many of which qualify for listing and trading on the principal securities markets. Commonly referred to as listed equity derivatives because they are listed on stock exchanges and trade under equity rules, these new financial products fuse disparate invest- ment features into single instruments that enable retail investors to replicate both speculative and risk management strategies employed by investment pro- fessionals. Options on individual common stocks are the forerunners of many of today’s publicly traded equity derivative products. They have been part of the 434 GUIDE TO STRUCTURING LISTED EQUITY DERIVATIVE SECURITIES securities landscape since the early 1970s.1 The notion of equity derivatives as a distinct class of securities, however, did not begin to solidify until the late 1980s.
    [Show full text]
  • 307439 Ferdig Master Thesis
    Master's Thesis Using Derivatives And Structured Products To Enhance Investment Performance In A Low-Yielding Environment - COPENHAGEN BUSINESS SCHOOL - MSc Finance And Investments Maria Gjelsvik Berg P˚al-AndreasIversen Supervisor: Søren Plesner Date Of Submission: 28.04.2017 Characters (Ink. Space): 189.349 Pages: 114 ABSTRACT This paper provides an investigation of retail investors' possibility to enhance their investment performance in a low-yielding environment by using derivatives. The current low-yielding financial market makes safe investments in traditional vehicles, such as money market funds and safe bonds, close to zero- or even negative-yielding. Some retail investors are therefore in need of alternative investment vehicles that can enhance their performance. By conducting Monte Carlo simulations and difference in mean testing, we test for enhancement in performance for investors using option strategies, relative to investors investing in the S&P 500 index. This paper contributes to previous papers by emphasizing the downside risk and asymmetry in return distributions to a larger extent. We find several option strategies to outperform the benchmark, implying that performance enhancement is achievable by trading derivatives. The result is however strongly dependent on the investors' ability to choose the right option strategy, both in terms of correctly anticipated market movements and the net premium received or paid to enter the strategy. 1 Contents Chapter 1 - Introduction4 Problem Statement................................6 Methodology...................................7 Limitations....................................7 Literature Review.................................8 Structure..................................... 12 Chapter 2 - Theory 14 Low-Yielding Environment............................ 14 How Are People Affected By A Low-Yield Environment?........ 16 Low-Yield Environment's Impact On The Stock Market........
    [Show full text]
  • Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options Under Uncertainty
    Real Rainbow Options in Commodity Applications Valuing Multi-Factor Output Options under Uncertainty A Thesis submitted to the University of Manchester for the Degree of Doctor of Business Administration in the Faculty of Humanities 2010 Jörg Dockendorf Manchester Business School Contents LIST OF TABLES ....................................................................................................... 4 LIST OF FIGURES ..................................................................................................... 4 ABSTRACT .................................................................................................................. 5 DECLARATION .......................................................................................................... 6 COPYRIGHT STATEMENT ..................................................................................... 7 ACKNOWLEDGEMENTS ......................................................................................... 8 1 INTRODUCTION ................................................................................................ 9 1.1 Research Objectives and Questions ............................................................. 11 1.2 Contributions to Knowledge ........................................................................ 12 1.3 Thesis Overview........................................................................................... 13 2 REVIEW OF RAINBOW OPTIONS AND THE COMMODITY CONTEXT .................................................................................................................
    [Show full text]
  • The Forward Smile in Stochastic Local Volatility Models
    The forward smile in stochastic local volatility models Andrea Mazzon∗ Andrea Pascucciy Abstract We introduce an approximation of forward start options in a multi-factor local-stochastic volatility model. We derive explicit expansion formulas for the so-called forward implied volatility which can be useful to price complex path-dependent options, as cliquets. The expansion involves only polynomials and can be computed without the need for numerical procedures or special functions. Recent results on the exploding behaviour of the forward smile in the Heston model are confirmed and generalized to a wider class of local-stochastic volatility models. We illustrate the effectiveness of the technique through some numerical tests. Keywords: forward implied volatility, cliquet option, local volatility, stochastic volatility, analytical ap- proximation Key messages • approximation for the forward implied volatility • local stochastic volatility models • explosion of the out-of-the-money forward smile 1 Introduction In an arbitrage-free market, we consider the risk-neutral dynamics described by the d-dimensional Markov diffusion dXt = µ(t; Xt)dt + σ(t; Xt)dWt; (1.1) where W is a m-dimensional Brownian motion. The first component X1 represents the log-price of an asset, while the other components of X represent a number of things, e.g., stochastic volatilities, economic indicators or functions of these quantities. We are interested in the forward start payoff + X1 −X1 k e t+τ t − e (1.2) ∗Gran Sasso Science Institute, viale Francesco Crispi 7, 67100 L'Aquila, Italy ([email protected]) yDipartimento di Matematica, Universit`a di Bologna, Piazza di Porta S.
    [Show full text]
  • The Promise and Peril of Real Options
    1 The Promise and Peril of Real Options Aswath Damodaran Stern School of Business 44 West Fourth Street New York, NY 10012 [email protected] 2 Abstract In recent years, practitioners and academics have made the argument that traditional discounted cash flow models do a poor job of capturing the value of the options embedded in many corporate actions. They have noted that these options need to be not only considered explicitly and valued, but also that the value of these options can be substantial. In fact, many investments and acquisitions that would not be justifiable otherwise will be value enhancing, if the options embedded in them are considered. In this paper, we examine the merits of this argument. While it is certainly true that there are options embedded in many actions, we consider the conditions that have to be met for these options to have value. We also develop a series of applied examples, where we attempt to value these options and consider the effect on investment, financing and valuation decisions. 3 In finance, the discounted cash flow model operates as the basic framework for most analysis. In investment analysis, for instance, the conventional view is that the net present value of a project is the measure of the value that it will add to the firm taking it. Thus, investing in a positive (negative) net present value project will increase (decrease) value. In capital structure decisions, a financing mix that minimizes the cost of capital, without impairing operating cash flows, increases firm value and is therefore viewed as the optimal mix.
    [Show full text]
  • New Frontiers in Practical Risk Management
    New Frontiers in Practical Risk Management English edition Issue n.6-S pring 2015 Iason ltd. and Energisk.org are the editors of Argo newsletter. Iason is the publisher. No one is al- lowed to reproduce or transmit any part of this document in any form or by any means, electronic or mechanical, including photocopying and recording, for any purpose without the express written permission of Iason ltd. Neither editor is responsible for any consequence directly or indirectly stem- ming from the use of any kind of adoption of the methods, models, and ideas appearing in the con- tributions contained in Argo newsletter, nor they assume any responsibility related to the appropri- ateness and/or truth of numbers, figures, and statements expressed by authors of those contributions. New Frontiers in Practical Risk Management Year 2 - Issue Number 6 - Spring 2015 Published in June 2015 First published in October 2013 Last published issues are available online: www.iasonltd.com www.energisk.org Spring 2015 NEW FRONTIERS IN PRACTICAL RISK MANAGEMENT Editors: Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Andrea RONCORONI (ESSEC Business School, Paris) Executive Editor: Luca OLIVO (Iason ltd) Scientific Editorial Board: Fred Espen BENTH (University of Oslo) Alvaro CARTEA (University College London) Antonio CASTAGNA (Co-founder of Iason ltd and CEO of Iason Italia srl) Mark CUMMINS (Dublin City University Business School) Gianluca FUSAI (Cass Business School, London) Sebastian JAIMUNGAL (University of Toronto) Fabio MERCURIO (Bloomberg LP) Andrea RONCORONI (ESSEC Business School, Paris) Rafal WERON (Wroclaw University of Technology) Iason ltd Registered Address: 6 O’Curry Street Limerick 4 Ireland Italian Address: Piazza 4 Novembre, 6 20124 Milano Italy Contact Information: [email protected] www.iasonltd.com Energisk.org Contact Information: [email protected] www.energisk.org Iason ltd and Energisk.org are registered trademark.
    [Show full text]
  • Options Trading Strategies: Complete Guide to Getting Started and Making Money with Stock Options
    Options Trading Strategies Complete Guide to Getting Started and Making Money with Stock Options Scott J. Danes Dylanna Publishing Copyright © 2014 by Scott J. Danes All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Dylanna Publishing First edition: 2014 Disclaimer This book is for informational purposes only. The views expressed are those of the author alone, and should not be taken as expert, legal, or medical advice. The reader is responsible for his or her own actions. Every attempt has been made to verify the accuracy of the information in this publication. However, neither the author nor the publisher assumes any responsibility for errors, omissions, or contrary interpretation of the material contained herein. Neither the author or the publisher assumes any responsibility or liability whatsoever on the behalf of the reader or purchaser of this material. Contents Introduction Options 101 What Are Options? Buying and Selling Options Advantages of Options Trading Leverage Risk Limitation—Hedging Disadvantages of Options Trading Levels of Risk Intrinsic Value Time Decay Taxes Types and Styles of Options Call Options Put Options Using Call and Put Options to Make a Profit Styles of Options American Options European Options Exotic Options LEAPS Index Options Option Prices and Valuation In-The-Money (ITM) At-The-Money (ATM) Out-of-The-Money (OTM) Intrinsic Value versus
    [Show full text]
  • Regulatory Circular RG16-044
    Regulatory Circular RG16-044 Date: February 29, 2016 To: Trading Permit Holders From: Regulatory Division RE: Product Description and Margin and Net Capital Requirements - Asian Style Settlement FLEX Broad-Based Index Options - Cliquet Style Settlement FLEX Broad-Based Index Options KEY POINTS On March 21, 2016, Chicago Board Options Exchange, Incorporated (“CBOE” or “Exchange”) plans to commence trading Asian style settlement and Cliquet style settlement FLEX Broad-Based Index Options (“Asian options” and “Cliquet options,” respectively).1 Asian and Cliquet options are permitted only for broad-based indexes on which options are eligible for trading on CBOE. Asian and Cliquet options may not be exercised prior to the expiration date and must have a $100 multiplier. Asian style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is based on an arithmetic average of the specified closing prices of an underlying broad-based index taken on 12 predetermined monthly observation dates. Cliquet style settlement is a settlement style that may be designated for FLEX Broad-Based Index options and results in the contract settling to an exercise settlement value that is equal to the greater of $0 or the sum of capped monthly returns (i.e., percent changes in the closing value of the underlying broad-based index from one month to the next month) applied over 12 predetermined monthly observation dates. The monthly observation date is set by the parties to a transaction. It is the date each month on which the value of the underlying broad-based index is observed for the purpose of calculating the exercise settlement value.
    [Show full text]
  • Calibration Risk for Exotic Options
    Forschungsgemeinschaft through through Forschungsgemeinschaft SFB 649DiscussionPaper2006-001 * CASE - Center for Applied Statistics and Economics, Statisticsand Center forApplied - * CASE Calibration Riskfor This research was supported by the Deutsche the Deutsche by was supported This research Wolfgang K.Härdle** Humboldt-Universität zuBerlin,Germany SFB 649, Humboldt-Universität zu Berlin zu SFB 649,Humboldt-Universität Exotic Options Spandauer Straße 1,D-10178 Berlin Spandauer http://sfb649.wiwi.hu-berlin.de http://sfb649.wiwi.hu-berlin.de Kai Detlefsen* ISSN 1860-5664 the SFB 649 "Economic Risk". "Economic the SFB649 SFB 6 4 9 E C O N O M I C R I S K B E R L I N Calibration Risk for Exotic Options K. Detlefsen and W. K. H¨ardle CASE - Center for Applied Statistics and Economics Humboldt-Universit¨atzu Berlin Wirtschaftswissenschaftliche Fakult¨at Spandauer Strasse 1, 10178 Berlin, Germany Abstract Option pricing models are calibrated to market data of plain vanil- las by minimization of an error functional. From the economic view- point, there are several possibilities to measure the error between the market and the model. These different specifications of the error give rise to different sets of calibrated model parameters and the resulting prices of exotic options vary significantly. These price differences often exceed the usual profit margin of exotic options. We provide evidence for this calibration risk in a time series of DAX implied volatility surfaces from April 2003 to March 2004. We analyze in the Heston and in the Bates model factors influencing these price differences of exotic options and finally recommend an error func- tional.
    [Show full text]