A Manual on Apple Pollination
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
APPLE (Fruit Varieties)
E TG/14/9 ORIGINAL: English DATE: 2005-04-06 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS GENEVA * APPLE (Fruit Varieties) UPOV Code: MALUS_DOM (Malus domestica Borkh.) GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY Alternative Names:* Botanical name English French German Spanish Malus domestica Apple Pommier Apfel Manzano Borkh. The purpose of these guidelines (“Test Guidelines”) is to elaborate the principles contained in the General Introduction (document TG/1/3), and its associated TGP documents, into detailed practical guidance for the harmonized examination of distinctness, uniformity and stability (DUS) and, in particular, to identify appropriate characteristics for the examination of DUS and production of harmonized variety descriptions. ASSOCIATED DOCUMENTS These Test Guidelines should be read in conjunction with the General Introduction and its associated TGP documents. Other associated UPOV documents: TG/163/3 Apple Rootstocks TG/192/1 Ornamental Apple * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest information.] i:\orgupov\shared\tg\applefru\tg 14 9 e.doc TG/14/9 Apple, 2005-04-06 - 2 - TABLE OF CONTENTS PAGE 1. SUBJECT OF THESE TEST GUIDELINES..................................................................................................3 2. MATERIAL REQUIRED ...............................................................................................................................3 -
Planting and Aftercare of New Trees
Where to start? • Fruit plants that fit into to small spaces Producing Fruit for the Home – Apple … on dwarfing rootstocks • Most traditional and local garden centers do not identify specific rootstock ….”Dwarf”, “Semi Dwarf” Ron Perry • Eventual tree size within Dwarf and Semi Dwarf is large Professor Tree Spacing Nursery ID Hort. Department Rootstocks Eventual Height Between Trees Between Rows MSU M.27 or P.22 Dwarf 6 5 10 M.9 Dwarf 8 8 12 M.26 Dwarf 16 10 16 M.7 Semi Dwarf 18 14 22 MM.106 or 111 Semi Dwarf 20 16 22 Where to start? Where to start? • Fruit plants that fit into to small spaces – Cherry - Sour • Select desired fruit which will grow in your area. Tree Spacing Rootstocks • Determine how much space you have available. Varieties Eventual Height Between Trees Between Rows Northstar Mahaleb 10 8 12 • Select varieties which are easiest to grow. Montmorency Gi.5 or 6 12 10 12 Montmorency Mahaleb 12 10 14 – Disease or insect resistant varieties to reduce pest Montmorency Mazzard 14 12 16 pressures. Balaton Mahaleb 14 12 16 – Cherry - Sweet – Assess soil / site conditions Tree Spacing • Full sun VS shade or partial Nursery ID • Soil internal drainage Rootstocks Eventual Height Between Trees Between Rows • Weed competition (lawns are too competitive) Gi.5 Dwarf 12 12 16 Gi.6 Dwarf 14 14 16 Mahaleb Semi Dwarf 20 14 16 Mazzard Semi Dwarf 24 16 20 Average Annual Minimum Temperatures Where to start? (USDA Plant Hardiness Zone Map) Most MI fruit sites Zone 5 (-20oF to -10oF) to 6 (-10oF to 0oF) • Fruit plants that fit into to small spaces – Peach, Nectarine, Apricot and Plums – Can generally plant at a spacing of 10 ft X 15 ft* • * If trained to open center or vase shape • Closer spacing, needs to be trained in Chistmas Tree form (Vertical Axe). -
2011 University of Delaware Watermelon Pollenizer Trial Introduction Materials and Methods
2011 University of Delaware Watermelon Pollenizer Trial Gordon Johnson & Emmalea Ernest University of Delaware Elbert N. & Ann V. Carvel Research and Education Center 16483 County Seat Highway Georgetown, DE 19947 (302) 856-7303 [email protected] [email protected] Introduction The purpose of the 2011 Watermelon Pollenizer Trial was to evaluate both special pollenizer varieties and regular diploid watermelon varieties in an in-row planting arrangement with standard seedless watermelons. Ten special pollenizer varieties, and five Allsweet type diploid varieties were tested. As a control, a treatment in which no pollenizer was planted was also included. Variety/Treatment Name Source Company Pollenizer Type Summer Flavor 800 Abbot & Cobb Allsweet Type Tropical Harris Moran Allsweet Type Encore Hollar Seeds/Seedway Allsweet Type Sangria Rogers-Syngenta Allsweet Type Stargazer Seminis Allsweet Type POL - 10319 Abbot & Cobb Special Pollenizer POL - 4290 Abbot & Cobb Special Pollenizer POL - 4370 Abbot & Cobb Special Pollenizer POL - 4400 Abbot & Cobb Special Pollenizer Accomplice Harris Moran Special Pollenizer Sidekick Harris Moran Special Pollenizer Polimax Nunhems Special Pollenizer sp-4 Syngenta Special Pollenizer sp-5 Syngenta Special Pollenizer PollenPro Zeraim Gedera/Siegers Special Pollenizer No Pollenizer Materials and Methods Plot Set-Up The trial was set up in a randomized complete block design with four replications. Black plastic mulch beds were laid on 7’ centers. A total of 32 rows of mulch were laid with a 30’ drive row between every 8 beds. Each of the four sections of eight rows was treated as one block. The third and seventh row out of each 8-row section was a treatment row. -
The Pollination Deficit Towards Supply Chain Resilience in the Face of Pollinator Decline
The pollination deficit Towards supply chain resilience in the face of pollinator decline Acknowledgements This resource is an output of the Cambridge Conservation Initiative (CCI), supported by the Arcadia Fund. We are grateful for the inputs of all the companies, interviewees and workshop attendees who contributed their time and expertise. Particular thanks go to Dr Alexandra-Maria Klein and Dr Virginie Boreux, to Mars, The Jordans & Ryvita Company, Sustainable Agriculture Network and The Body Shop for inputting into this report. Thanks also to Dr Chloe Montes for her work in shaping this project and to Professor Simon Potts and Dr Tom Breeze. Project partners The University of Cambridge Institute for Sustainability Leadership (CISL) www.cisl.cam.ac.uk The University of Cambridge Institute for Sustainability Leadership empowers business and policy leaders to make the necessary adjustments to their organisations, industries and economic systems in light of this challenge. By bringing together multidisciplinary researchers with influential business and policy practitioners across the globe, we foster an exchange of ideas across traditional boundaries to generate new solutions- oriented thinking. Fauna & Flora International (FFI) www.fauna-flora.org Fauna & Flora International (FFI) protects threatened species and ecosystems worldwide, choosing solutions that are sustainable, based on sound science and that take account of human needs. Operating in more than 50 countries worldwide, FFI saves species from extinction and habitats from destruction, while improving the livelihoods of local people. Founded in 1903, FFI is the world’s longest established international conservation body and a registered charity. UN Environment World Conservation Monitoring Centre (UNEP-WCMC) www.unep-wcmc.org UNEP-WCMC is the specialist biodiversity assessment arm of United Nations Environment, the world’s foremost intergovernmental environmental organisation. -
Crop Pollination Management Needs Flower‐Visitor Monitoring and Target Values
Received: 30 July 2019 | Accepted: 21 December 2019 DOI: 10.1111/1365-2664.13574 PRACTITIONER'S PERSPECTIVE Crop pollination management needs flower-visitor monitoring and target values Lucas A. Garibaldi1,2 | Agustín Sáez3 | Marcelo A. Aizen3 | Thijs Fijen4 | Ignasi Bartomeus5 1Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo Rural, Abstract Universidad Nacional de Río Negro, San 1. Despite the crucial importance of biotic pollination for many crops, land managers Carlos de Bariloche, Argentina rarely monitor the levels of crop pollination needed to guide farming decisions. 2Instituto de Investigaciones en Recursos Naturales, Agroecología y Desarrollo 2. The few existing pollination recommendations focus on a particular number of Rural, Consejo Nacional de Investigaciones honeybee or bumblebee hives per crop area, but these guidelines do not accu- Científicas y Técnicas, San Carlos de Bariloche, Argentina rately predict the actual pollination services that crops receive. 3Grupo de Ecología de la Polinización, 3. We argue that pollination management for pollinator-dependent crops should be INIBIOMA, CONICET—Universidad Nacional del Comahue, San Carlos de Bariloche, based on direct measures of pollinator activity. We describe a protocol to quickly Argentina perform such a task by monitoring flower visitation rates. 4 Plant Ecology and Nature Conservation 4. We provide target values of visitation rates for crop yield maximization for several Group, Wageningen University, Wageningen, The Netherlands important crops by considering the number of visits per flower needed to ensure 5Department of Integrative Ecology, full ovule fertilization. If visitation rates are well below or above these target val- Estación Biológica de Doñana, EBD-CSIC, ues, corrective measures should be taken. -
Apples: Organic Production Guide
A project of the National Center for Appropriate Technology 1-800-346-9140 • www.attra.ncat.org Apples: Organic Production Guide By Tammy Hinman This publication provides information on organic apple production from recent research and producer and Guy Ames, NCAT experience. Many aspects of apple production are the same whether the grower uses low-spray, organic, Agriculture Specialists or conventional management. Accordingly, this publication focuses on the aspects that differ from Published nonorganic practices—primarily pest and disease control, marketing, and economics. (Information on March 2011 organic weed control and fertility management in orchards is presented in a separate ATTRA publica- © NCAT tion, Tree Fruits: Organic Production Overview.) This publication introduces the major apple insect pests IP020 and diseases and the most effective organic management methods. It also includes farmer profiles of working orchards and a section dealing with economic and marketing considerations. There is an exten- sive list of resources for information and supplies and an appendix on disease-resistant apple varieties. Contents Introduction ......................1 Geographical Factors Affecting Disease and Pest Management ...........3 Insect and Mite Pests .....3 Insect IPM in Apples - Kaolin Clay ........6 Diseases ........................... 14 Mammal and Bird Pests .........................20 Thinning ..........................20 Weed and Orchard Floor Management ......20 Economics and Marketing ........................22 Conclusion -
Protocol for Using Pollinators in Hybrid Vegetable Seed Production an Outline for Improving Pollinator Effectiveness FEBRUARY 2018
Protocol for using pollinators in hybrid vegetable seed production An outline for improving pollinator effectiveness FEBRUARY 2018 APPROVED BY ISF Working Group Vegetable Seed Production EDITTED BY The listed pollination researchers : Avi GABAI - Hazera, Israel Bernard E. VAISSIÈRE - Institut National de la Recherche Agronomique, UR406 Abeilles et Environnement, 84914 Avignon cedex, France Tjeerd BLACQUIÈRE - Wageningen Plant Research, Wageningen University & Research, Netherlands Breno M. FREITAS - Departamento de Zootecnia, Universidade Federal do Ceará, Brazil Mike ALLSOPP - Plant Protection Research, Agricultural Research Council, Stellenbosch, South Africa Stan CHABERT - Association Nationale des Agriculteurs Multiplicateurs de Semences Oléagineuses, 17700 Saint Pierre d'Amilly, France Arnon DAG - Plant Sciences, Agricultural Research Organization, Ministry of Agriculture, Israel Protocol for using pollinators in hybrid vegetable seed production 2 1. INTRODUCTION Pollination in hybrid vegetable seed production is the transfer of pollen from the anthers of the male fertile flowers to the stigma of the male sterile (female) flowers. The pollination phase has a significant impact on final seed yield and quality. In many vegetable crops, such as onion (Allium cepa), carrot (Daucus carota), cabbage (Brassica oleracea), cauliflower (B. oleracea) and radish (Raphanus sativus), pollination is performed mainly by honey bees (Apis mellifera). However, although it is the main managed pollinator, there are other wild and managed pollinators that can be of significant commercial value. Pollination quality is expressed as the quantity of pollen moved to the female flower; this depends on the pollinators’ activity and their mobility between the flowers of the two lines. 2. OBJECTIVES This document details the essential points in using pollinators for commercial hybrid seed production: Honey bee hive management and colony (populated beehive) strength regulations. -
You and Your Gender Identity
YOU AND YOUR GENDER IDENTITY YOU AND YOUR GENDER IDENTITY A GUIDE TO DISCOVERY Dara Hoffman-Fox, LPC Skyhorse Publishing Disclaimer: The contents of this book are presented for informational and supportive purposes only and are not intended to replace the services of a mental health or medical professional. Should you have questions about the presented material, contact your own doctor or clinician. Should you need immediate assistance, please contact 911 (if it is available in your area) or go to the nearest emergency room. Copyright © 2017 by Dara Hoffman-Fox Toward a Transformation of the Self © 2017 by Zinnia Jones Introduction © 2017 by Sam Dylan Finch Foreword © 2017 by Zander Keig All rights reserved. No part of this book may be reproduced in any manner without the express written consent of the publisher, except in the case of brief excerpts in critical reviews or articles. All inquiries should be addressed to Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018. Skyhorse Publishing books may be purchased in bulk at special discounts for sales promotion, corporate gifts, fund-raising, or educational purposes. Special editions can also be created to specifications. For details, contact the Special Sales Department, Skyhorse Publishing, 307 West 36th Street, 11th Floor, New York, NY 10018 or [email protected]. Skyhorse® and Skyhorse Publishing® are registered trademarks of Skyhorse Publishing, Inc.se, a Delaware corporation. Visit our website at www.skyhorsepublishing.com. 10 9 8 7 6 5 4 3 2 1 Library of Congress Cataloging-in-Publication Data is available on file. Cover design by Jean Mangahas and Jane Sheppard Cover photo by Shutterstock Print ISBN: 978-1-5107-2305-4 Ebook ISBN: 978-1-5107-2307-8 Printed in the United States of America To the hundreds of counseling clients I’ve worked with since opening my private practice in 2008. -
Precision Pollinator Management: Strategies for Supporting Pollinators on Your Crop $240,355,000 $144,207,000 $52,137,000 $31,371,000
Precision Pollinator Management: Strategies for supporting pollinators on your crop $240,355,000 $144,207,000 $52,137,000 $31,371,000 New York crops dependent on pollination Values from: New York State Agricultural Overview. 2014, USDA $2,800,000 $3,042,000 $20,493,000 $12,640,000 $10,091,000 $7,520,000 $3,472,000 Both wild native bees and honey bees are crucial to agricultural production Wild bee Honey bee 100% 90% 80% 70% 60% 50% 40% 30% 20% 10% 0% 1. Lewis & Smith 1969, Russo et al 2017, Petersen et al 2013, O’Neill et al, 20??, Winfree et al 2008. Pesticide Management • Growers should follow integrated pest & disease management practices • scouting early and often • Use disease risk models • Spray between late afternoon and very early morning • Select fungicides with lower risk rankings • Grower should consider increasing natural habitat floral diversity within 250 meters of crop • Growers and beekeepers need to communicate more Make and effort to meet local beekeepers • Make pollination contracts • Grower communicates with beekeeper when intending to spray • Beekeeper lets growers know when they put their hives nearby (1-2 miles radius. • Beekeeper educates grower • Grower educates beekeeper Habitat Management 1. Provide a diversity of wild foraging plants species 2. Push for 3-5 species blooming at all times across season • At least before and after crop bloom • At least 30-100 meters from crop margin 3. Provide safe nesting sites for native bees 30-100 meters from crop margin (away from drift) 4. Mow small areas on margins to provide bareground for the ground-nesting species – Manage 1/3 area each year. -
Vendor Manual
WYOMING WIC PROGRAM VENDOR MANUAL Revised May 2021 TABLE OF CONTENTS TABLE OF CONTENTS ........................................................................................................................................................................2 INTRODUCTION ................................................................................................................................................................................4 WIC PROGRAM INFORMATION ........................................................................................................................................................5 Participant Eligibility .....................................................................................................................................................................5 How is WIC funded? .....................................................................................................................................................................5 Why does WIC specify infant formula brands? ............................................................................................................................5 How do the vendors fit into the program? ..................................................................................................................................5 WYO W.E.S.T. Card .......................................................................................................................................................................6 Card Problems ..............................................................................................................................................................................6 -
INF03 Reduce Lists of Apple Varieites
ECE/TRADE/C/WP.7/GE.1/2009/INF.3 Specialized Section on Standardization of Fresh Fruit and Vegetables Fifty-fifth session Geneva, 4 - 8 May 2009 Items 4(a) of the provisional agenda REVISION OF UNECE STANDARDS Proposals on the list of apple varieties This note has been put together by the secretariat following the decision taken by the Specialized Section at its fifty-fourth session to collect information from countries on varieties that are important in international trade. Replies have been received from the following countries: Canada, Czech Republic, Finland, France, Germany, Italy, Netherlands, New Zealand, Poland, Slovakia, South Africa, Sweden, Switzerland and the USA. This note also includes the documents compiled for the same purpose and submitted to the fifty-second session of the Specialized Section. I. Documents submitted to the 52nd session of the Specialized Section A. UNECE Standard for Apples – List of Varieties At the last meeting the 51 st session of the Specialized Section GE.1 the delegation of the United Kingdom offered to coordinate efforts to simplify the list of apple varieties. The aim was to see what the result would be if we only include the most important varieties that are produced and traded. The list is designed to help distinguish apple varieties by colour groups, size and russeting it is not exhaustive, non-listed varieties can still be marketed. The idea should not be to list every variety grown in every country. The UK asked for views on what were considered to be the most important top thirty varieties. Eight countries sent their views, Italy, Spain, the Netherlands, USA, Slovakia, Germany Finland and the Czech Republic. -
Interacting Effects of Pollination, Water and Nutrients on Fruit Tree Performance
UC Berkeley UC Berkeley Previously Published Works Title Interacting effects of pollination, water and nutrients on fruit tree performance. Permalink https://escholarship.org/uc/item/56k3s617 Journal Plant biology (Stuttgart, Germany), 17(1) ISSN 1435-8603 Authors Klein, A-M Hendrix, SD Clough, Y et al. Publication Date 2015 DOI 10.1111/plb.12180 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Plant Biology ISSN 1435-8603 RESEARCH PAPER Interacting effects of pollination, water and nutrients on fruit tree performance A.-M. Klein1,2, S. D. Hendrix3, Y. Clough4, A. Scofield5 & C. Kremen6 1 Institute of Earth and Environmental Sciences, University of Freiburg, Freiburg, Germany 2 Institute of Ecology, Leuphana University, Germany 3 Department of Biology, University of Iowa, Iowa City, USA 4 Agroecology, Georg-August University, Gottingen,€ Germany 5 Scofield Almond Farms, Dunnigan, CA, USA 6 Environmental Sciences Policy and Management, University of California, Berkeley, USA Keywords ABSTRACT Almond; foliage; fruit tree; leaf loss; plant resource limitation; pollination–resource Pollination is critical to fruit production, but the interactions of pollination with interactions; Prunus dulcis. plant resources on a plant’s reproductive and vegetative features are largely over- looked. We examined the influences of pollination, irrigation and fertilisation on the Correspondence performance of almond, Prunus dulcis, in northern California. We used a full-factorial A.-M. Klein, Chair of Nature Conservation design to test for the effects of pollination limitation on fruit production and foliage and Landscape Ecology variables of whole trees experiencing four resource treatments: (i) normal water and Institute of Earth and Environmental Sciences nutrients, (ii) reduced water, (iii) no nutrients, and (iv) reduced water and no nutri- University of Freiburg ents.